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Functional Programming
What? Why? How (in C++)?

- Algebraic Data Types : (), :=, ::=, ⊗ , ⊕
- Functions : a→ (b→ c)
- Generic Programming

      : (c◄C) → c →  int 
- Category Theory
      : monoid, monad, etc.



  

Algebraic Data Types

unit, primitive type, one value, denoted ()
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unit, primitive type, one value, denoted ()
+

product, binary type operation,

   denoted a ⊗ b, a and b , one of each“ ”



  

Algebraic Data Types

unit, primitive type, one value, denoted ()
+

product, binary type operation,

   denoted a ⊗ b, a and b , one of each “ ”
+

sum, binary type operation,

   Denoted a ⊕ b, a or b ,“ ”
   one of one



  

Algebraic Data Types

unit, (), one value

product, a ⊗ b, a and b“ ”
sum, a ⊕ b, a or b“ ”



  

Algebraic Data Types

unit, (), one value

product, a ⊗ b, a and b“ ”
sum, a ⊕ b, a or b“ ”
is the same as, a := b
is implemented with, a ::= b



  

Examples:

true ::= ()
false ::= ()

bool := true ⊕ false

true is implemented with unit.
false is implemented with unit.
A bool value is the same as a true value or 
a false value.



  

Examples:

Z ::= ()

N := Z ⊕ N

Z is implemented with unit.
A N value is the same as a Z value or an N 
value.



  

Examples:

Z ::= ()

N := Z ⊕ N

z∈  Z
N

0
 = (0,z)

N
1
 = (1,N

0
) = (1,(0,z))

N
2
 = (1,N

1
) = (1,(1,(0,z)))



  

Type Functions

Add parameter on left side of ::= or := 
symbol that can be used on the right.

[] ::= ()

L a := [] ⊕ (a ⊗ L a)

A value of L of a  is either a“ ”
value of [] or (a value of a and a value of 
L of a ).“ ”



  

Type Functions

[] ::= ()

L a := [] ⊕ (a ⊗ L a)

Say a
i
 is a value of type a. and e is the 

value of type [].
(0,e)
(1,(a

i
,(0,e))

(1,(a
j
,(1,(a

i
,(0,e))



  

Type Functions

T a ::= (T a ⊗ T a) ⊕ a

Binary tree with values of type 'a' at the 
leaves.



  

Algebraic Data Types

- Abstract

- Simple ((), :=, ::=, ⊗ , ⊕)

- Powerful

- ...



  

Algebraic Data Types (in C++!)

Our critera for functional concepts in C++

- No (minimal) syntax sugar, it scares
  away the new bees.

- Mixes well with typical C++.

- No copycatting other
  languages and their limitations..



  

Algebraic Data Types (in C++!)

Easy ones

- Unit (): use boost::mpl::void_

- New unit types: T ::= ()
      struct T {};

- is the same as : a := b“ ”
      typedef b a;



  

Algebraic Data Types (in C++!)

Product Types

- z ::= a ⊗ b ⊗ c. struct. Named 
                               accessors

- a ⊗ b. boost.fusion.vector. Access by
                                  index

- boost.fusion.map. Both accessor methods.



  

Algebraic Data Types (in C++!)

Sum Types

- Can use enum when underlying types
   - are units, and
   - aren't used elsewhere.

- Can use a product type with an index.
   - common and error prone

- Can use polymorphic base class.
   - not really nice syntax/error prone



  

Algebraic Data Types (in C++!)

Sum Types

- boost.variant (best option!)
   - arbitrary underlying types
   - small syntax overhead
   - access by index or type

a ⊕ b ⊕ c
boost::variant<a,b,c>



  

Algebraic Data Types (in C++!)
“is implemented with , ::=, wrap it in a struct”
R01 ::= double

    struct R01
    { explicit R01( const double impl_ )
                  : impl( impl_ ) {}
      double impl;
    }; 
- accessor functions (invariant
                          guaranteed)
- internal impl access function (invariant
                                   requirement)



  

Algebraic Data Types (in C++!)
Type Functions (:= style)

Use type function trait  from boost.mpl.“ ”
none ::= (), Op a := none ⊕ a
struct none{};
template< typename a >
struct Op {
  typedef boost::variant<none,a>
               type;
};



  

Algebraic Data Types (in C++!)
Type Functions (::= style)

Use a wrapper template struct

none ::= (), Op a ::= none ⊕ a
struct none{};
template< typename a >
struct Op {
  explicit Op( boost::variant<none,a>);
     //...

  boost::variant<none,a> impl;
};



  

Algebraic Data Types (in C++!)

Recursive Types

- sum types: use make_recursive_variant

- product types: use
  make_recursive_variant (see
  paper for details)



  

What the heck is a recursive 
product type?

S a ::= a ⊗ (S a)

 - Seems like nonsense!?



  

What the heck is a recursive 
product type?

S a ::= a ⊗ (S a)

 - Seems like nonsense!?
 - Nope
 - Think of the recursion as being a 
computation of type (S a)
 - ...



  

Laziness (in C++!)

How can we represent a computation of a 
value in C++?



  

Laziness (in C++!)

How can we represent a computation of a 
value in C++?

- A 0 argument function.



  

Laziness (in C++!)

How can we represent a computation of a 
value in C++?

- A 0 argument function.

template< typename a>
struct lazy
{ typedef boost::function< a () >
            type;
};



  

What the heck is a recursive 
product type?

S a ::= a ⊗ (S a)

 - Streams of type a. See paper for a 
direct implementation.



  

Functions

f : A →  B

A set S of pairs (a,b) where a∈ A b∈ B. For 

every a∈ A, there exists exactly one 
corresponding pair in S.



  

What is a C++ function?

bool f(int);



  

What is a C++ function?

bool f(int);          =>       int→ bool



  

What is a C++ function?

bool f(int);          =>       int→ bool
What about multiple arguments?



  

What is a C++ function?

Lets try another case.
bool f2(int, int);



  

What is a C++ function?

Lets try another case.

bool f2(int, int);       =>  (int⊗ int)→ bool

 - Use our product type operator!

 - c++-function-tuples f2 (2,13)“ ”

 - Still something missing...



  

What is a C++ function?

bool f3(int, int)
{  ++someglobalvar;
  return true; }

 - (int⊗ int)→ bool doesn't work!
 - Consider the corresponding set.



  

What is a C++ function?

bool f3(int, int);           (int⊗ int⊗World)→
{  ++someglobalvar;       (World⊗bool)
  return true; }

 - (int⊗ int)→ bool doesn't work!
 - Consider the corresponding set.
 - Introduce new parameter
   and return value, World...



  

What is a C++ function?

Translation

R f(A
1
, A

2
,...,A

n
);

^^^

(A
1
⊗A

2
...A

n
⊗World)→ (World⊗R)



  

Currying

a  ⊗ b  c→
to

a  (b  c)→ →

- function returns a function (convenient)
-  is right associative→
- Works with any function where
  the domain is a product.



  

What is a C++ function?

Translation

R f(A
1
, A

2
,...,A

n
);

^^^

(A
1

A⊗
2
...A

n
World) (World R)⊗ → ⊗

^^^

A
1
→A

2
...A

n
World (World R)→ → ⊗



  

Introducing IO

io a := World  (World  a)→ ⊗

- Simple type function
- We can actually implement io a in C++.

template< typename a >
struct io
{
  typedef boost::function<a ()> type; }



  

What is a C++ function?

Translation

R f(A
1
, A

2
,...,A

n
);

c++-function-tuple

(A
1

A⊗
2
...A

n
World) (World R)⊗ → ⊗

curry

A
1
→A

2
...A

n
World (World R)→ → ⊗

io

A
1
→A

2
...A

n
 io R→



  

Functions (in C++)

gfp library (netsuperbrain.com/gfp)

- gfp::ciof (curried io function)
  - Converts a c++ function pointer into a
    function as we formulated.

- gfp::cfunc (curried function)
  - cfunc<a,b,c>::type =>
    function<function<c (b)> a>



  

Generic Programming

Intuition:

- an empty thing , could refer to several“ ”
  things, but not all.

- empty , a property of many things,“ ”
  but not all.



  

Generic Programming

Formulation:

- an empty thing“ ”
   - requires a type to be concrete
   - type (a◄Emptiable)  a→
   - read  as has a profile in◄ “ ”
   - a function from types to values

- empty“ ”
   - type (a HasEmpty◄ )  (a  bool)→ →



  

Generic Programming

Formulation:

- Emptiable, a type class
  - A typeclass is a set of pairs (a,p)
    - a is a ::= type or type function
    - p is a profile that fits certain 
      patterns and laws
- Our restrictions
  - At most one pair per type
  - Profile is a simple value



  

Generic Programming

HasEmpty:

- An element in HasEmpty
  - (std::vector<int>, z ) where

bool z( std::vector & z )
        { return z.empty(); }
- To implement empty  we need to“ ”
  get the corresponding value
  (function) from a type in
  HasEmpty.



  

Generic Programming

HasEmpty:

- An call to empty :“ ”
std::vector<int> v;

  empty<std:::vector<int>>::profile()( v );

- looks up a profile given a type.

- but wait...



  

Generic Programming

HasEmpty:

empty<std:::vector<int>>::profile()( v );

- Passing v, of known type, makes the
  explicit type redundant. ☹
- empty cannot be passed to functions.☹



  

Generic Programming (in C++!)

Polymorphic Functions:

- Idea is to infer the type arguments 
from the value arguments.

struct Empty
{ typedef bool result_type;
  bool operator()( std::vector<int> )
  //... one operator() for each type.
} empty;

- empty(v); //infers the type from v.



  

Generic Programming (in C++!)

Polymorphic Values:

- Same type inference trick doesn't work 
for values.

- Introduce resolve:
     resolve<std::vector<int>>( emptyThing );

- Polymorphic values must follow a
  Certain trait . . .



  

Generic Programming (in C++!)

Polymorphic Values:

struct EmptyThing
{ template<typename T>
  struct result;
  //...
  result<this_type(vector<int>*)>::type
  operator()( vector<int>* dummy );
  //...
} emptyThing;



  

Generic Programming (in C++!)

Polymorphic Values & Functions:

- Covers all generics we care about
- Cannot be extended to support new
  types without modification of underlying
  code.
- No relation between related
  polymorphic values and functions.



  

Generic Programming (in C++!)

Polymorphic Classes:

- Extendable collections of polymorphic
  values and functions.
- Use partial template instantiation to 
  select supported type.
- The polymorphic entities select
  appropriate instantiation when
  used.



  

Category Theory

- deals abstractly with mathematical
  structures and relations between them.

- Gives some guidance as to what to do
  with generics.

- Very powerful and expressive.



  

Category Theory

Monoids
A

0 A∈
+ :A  A  A→ →

A, 0, and + form a monoid when + is 
associative and 0 is an identity for
+.



  

Category Theory (Monoids)

There are lots of monoids!

- int, +, 0 : sum monoid
- bool, &&, true: all monoid
- string, concat, : string monoid“”
- a  m: function monoid→
  - m monoid
  - forwards monoid operations to results.
- io m: io monoid. Similar to function monoid.



  

Category Theory (Monoids)

Quick example:
- header : Message  string→
- contents : Message  string→

gfp::cfunc<Message,string>
payload = gfp::mplus( header )( contents );

- called point free (pointless) programming!.



  

Category Theory

Much much more:

- functor/pointed: functions, containers...

- idiom (applicative functors): FRP, streams 

- monad: arbitrary computations

- foldable: compress collections



  

Functional Programming (in C++!)

FP Benefits:
 - Cleaner design  Cleaner code→
 - less code/static types  Less bugs→
 - Powerful tools

FP (in C++) Benefits:
 - No need to switch languages
 - Integrates well
 - Easy to use (no special syntax)
 - Highly Capable
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