Functional Programming (in C++)

David Sankel Sankel Software

Functional Programming What? Why? How (in C++)? Algebraic Data Types : $()$, $=$, $=$, \otimes , \oplus $FunctionS: d \rightarrow (b \rightarrow c)$ Generic Programming $\overline{C^{\bullet}(C) \rightarrow C} \rightarrow \overline{D}$ Category Theory : monoid, monad, etc.

unit, primitive type, one value, denoted ()

unit, primitive type, one value, denoted () + product, binary type operation, denoted a \otimes b, "a and b", one of each

unit, primitive type, one value, denoted () + product, binary type operation, denoted a \otimes b, "a and b", one of each + sum, binary type operation, Denoted a $\overline{\Theta}$ b, "a or b", one of one

unit, (), one value product, a \otimes b, "a and b" $sum, a \oplus b, "a or b"$

unit, (), one value product, $a \otimes b$, " a and b " sum, $a \oplus b$, " a or b " is the same as, $a = b$ is implemented with, a := b

 $H\cap U\subset U:=\left(\right)$ \overline{false} $:=$ () $bool = true \oplus false$

true is implemented with unit. false is implemented with unit. A bool value is the same as a true value or a false value.

$Z = ()$ N := Z ⊕ N

Z is implemented with unit. A N value is the same as a Z value or an N value.

$Z = ()$ N := Z ⊕ N

z∈ Z N $\overline{)}$ $=$ (0,z) N 1 $=$ (1, N $\overline{)}$ $) = (\underline{1}, (\underline{0}, \underline{z}))$ N $\overline{2}$ $=$ (1, N 1) = $(1,(0,z)))$

Type Functions

Add parameter on left side of := or := symbol that can be used on the right.

 $\begin{bmatrix} \begin{bmatrix} \end{bmatrix} & \cdots & \begin{bmatrix} \end{bmatrix} \end{bmatrix}$ $L a = [] \oplus (a \otimes L a)$

A value of "L of a" is either a value of [] or (a value of a and a value of $T \circ f$ a").

Type Functions

 $\left[\begin{smallmatrix}\right] \end{smallmatrix} \right]$:= $\left(\begin{smallmatrix}\right)$ $L a = \Box \oplus (a \otimes L a)$

Say a is a value of type a. and e is the i value of type []. (0,e) $(1, (0, 0, e))$ i $(1, 0)$ j $(1, (0, 0, e))$.
|
|

Type Functions

T a := (T a \otimes T a) \oplus a

Binary tree with values of type 'a' at the leaves.

Abstract

$\boxed{\text{Simple } (0, =, =, \infty, \bigotimes) }$

Powerful

- ...

Algebraic Data Types (in C++!) Our critera for functional concepts in C++ - No (minimal) syntax sugar, it scares away the new bees. - Mixes well with typical C++. - No copycatting other languages and their limitations..

Easy ones

- Unit (): use boost::mpl::void_

 $-$ New unit types: $T = ()$ struct T {};

 $-$ " is the same as": $a = b$ typedef b a;

Product Types

$-z = a \otimes b \otimes c$. struct. Named accessors - a ⊗ b. boost.fusion.vector. Access by index - boost.fusion.map. Both accessor methods.

Sum Types

- Can use enum when underlying types - are units, and - aren't used elsewhere. - Can use a product type with an index. - common and error prone - Can use polymorphic base class. - not really nice syntax/error prone

Sum Types

- boost.variant (best option!) - arbitrary underlying types - small syntax overhead - access by index or type

a ⊕ b ⊕ c boost::variant<a,b,c>

Algebraic Data Types (in C++!) $\overline{\text{``is implemented with''}}$, \equiv , wrap it in a struct $\overline{\text{RO1}}$ \equiv double struct R01 { explicit R01(const double impl_) $:$ impl(impl $)$ $\{$ double impl; }; - accessor functions (invariant guaranteed) - internal impl access function (invariant requirement)

Algebraic Data Types (in C++!) Type Functions (:= style) Use "type function trait" from boost.mpl. $none = 0,$ Op $a = none \oplus a$ struct none{}; template< typename a > struct Op { typedef boost::variant<none,a> type; };

Algebraic Data Types (in C++!) Type Functions (= style) Use a wrapper template struct $none = 0, Op a = none \oplus a$ struct none{}; template< typename a > struct Op { explicit Op(boost::variant<none,a>); boost::variant<none,a> impl; };

Recursive Types

- sum types: use make_recursive_variant

product types: use make_recursive_variant (see paper for details)

What the heck is a recursive product type? S a $=$ a \otimes (S a)

- Seems like nonsense!?

What the heck is a recursive product type? S a $=$ a \otimes (S a)

- Seems like nonsense!? - Nope - Think of the recursion as being a computation of type (S a) - ...

Laziness (in C++!)

How can we represent a computation of a value in C++?

Laziness (in C++!)

How can we represent a computation of a value in C++?

A 0 argument function.

Laziness (in C++!)

How can we represent a computation of a value in C++?

- A 0 argument function. template< typename a> struct lazy { typedef boost::function< a () > type; };

What the heck is a recursive product type? S a $=$ a \otimes (S a)

- Streams of type a. See paper for a direct implementation.

Functions

 $f: A \rightarrow B$

A set S of pairs (a,b) where a∈A b∈B. For every a∈A, there exists exactly one corresponding pair in S.

bool f(int);

$bool f(int),$ \implies $in+ \rightarrow bool$

What is a C++ function? $bool$ $f(int)$; \implies $in+ \rightarrow bool$ What about multiple arguments?

Lets try another case. bool $f2(int, int),$

Lets try another case. $bool f2(int, int); \implies (int@int) \rightarrow bool$

- Use our product type operator! $-$ c++-function-tuples " $f2$ $(2,13)$ "

- Still something missing...

bool f3(int, int) { ++someglobalvar; return true; }

- (int⊗int)→ bool doesn't work! - Consider the corresponding set.

bool f3(int, int); (int⊗int⊗World)→ { ++someglobalvar; (World⊗bool) return true; }

- (int⊗int)→ bool doesn't work! - Consider the corresponding set. - Introduce new parameter and return value, World...

Translation

R f(A 1 A $\overline{2}$ $A_{(.,.)}$ n);

 $\wedge\wedge\wedge$

 (A) 1 ⊗A $\overline{2}$...A n ⊗World)→ (World⊗R)

Currying

 $a \otimes b \rightarrow c$

 $+\circ$

 $a \rightarrow (b \rightarrow c)$

- function returns a function (convenient) \rightarrow is right associative - Works with any function where the domain is a product.

Translation

$$
R f(A_1, A_2, \ldots, A_n);
$$

 (A) 1 ⊗A $\overline{2}$...A n \otimes World) \rightarrow (World \otimes R)

 \sim A 1 \rightarrow A $\overline{2}$...A n \rightarrow World \rightarrow (World \otimes R)

Introducing IO $io a = World \rightarrow (World \otimes a)$

- Simple type function - We can actually implement io a in C++.

template< typename a > struct io $\bigg\{$ typedef boost::function<a ()> type; }

Translation

$$
R f(A_1, A_2, \ldots, A_n);
$$

c++-function-tuple (A) 1 ⊗A $\overline{2}$...A n \otimes World) \rightarrow (World \otimes R)

curry A 1 \rightarrow A $\overline{2}$...A n \rightarrow World \rightarrow (World \otimes R)

io

n

 \rightarrow io R

...A

A

1

 \rightarrow A

 $\overline{2}$

Functions (in C++)

gfp library (netsuperbrain.com/gfp)

- gfp::ciof (curried io function) - Converts a c++ function pointer into a function as we formulated.

- gfp::cfunc (curried function) $-$ cfunc $+\text{type}$ => function<function<c (b)> a>

Intuition:

"an empty thing", could refer to several things, but not all.

"empty", a property of many things, but not all.

Formulation:

"an empty thing" - requires a type to be concrete $-$ type (a<Emptiable) \rightarrow a $-$ read \leq as "has a profile in" - a function from types to values. $"$ empty" $-$ type (a HasEmpty) \rightarrow (a \rightarrow bool)

Formulation:

Emptiable, a type class - A typeclass is a set of pairs (a,p) $-$ a is a $=$ type or type function - p is a profile that fits certain patterns and laws Our restrictions - At most one pair per type - Profile is a simple value

HasEmpty:

An element in HasEmpty - (std::vector<int>, z) where bool z(std::vector & z) $\{$ return z empty $()$; $\}$ To implement "empty" we need to get the corresponding value (function) from a type in HasEmpty.

HasEmpty:

An call to "empty": std::vector<int> v; empty<std:::vector<int>>::profile()(v); looks up a profile given a type. - but wait...

HasEmpty:

Passing v, of known type, makes the explicit type redundant. ☹ empty cannot be passed to functions.

Generic Programming (in C++!) Polymorphic Functions: - Idea is to infer the type arguments from the value arguments. struct Empty { typedef bool result_type; bool operator()(std::vector<int>) //... one operator() for each type. } empty; empty(v); //infers the type from v.

Generic Programming (in C++!) Polymorphic Values: Same type inference trick doesn't work for values. - Introduce resolve: resolve<std::vector<int>>(emptyThing); Polymorphic values must follow a Certain trait

Generic Programming (in C++!)

Polymorphic Values:

struct EmptyThing { template<typename T> struct result; $\sqrt{2}$ result<this_type(vector<int>*)>::type operator()(vector<int>* dummy); $\sqrt{2}$ emptyThing;

Generic Programming (in C++!) Polymorphic Values & Functions:

- Covers all generics we care about Cannot be extended to support new types without modification of underlying code. No relation between related
	- polymorphic values and functions.

Generic Programming (in C++!)

Polymorphic Classes:

Extendable collections of polymorphic values and functions. - Use partial template instantiation to select supported type. The polymorphic entities select appropriate instantiation when used.

Category Theory

deals abstractly with mathematical structures and relations between them.

Gives some guidance as to what to do with generics.

Very powerful and expressive.

Category Theory

Monoids A $O\in A$ $+ A \rightarrow A \rightarrow A$

$A, O, and + form a monoid when + is$ associative and 0 is an identity for +.

Category Theory (Monoids) There are lots of monoids! in $+$, 0 $:$ sum monoid - bool, &&, true: all monoid string, concat, "": string monoid $a \rightarrow m$: function monoid - m monoid - forwards monoid operations to results. - io m: io monoid. Similar to function monoid.

Category Theory (Monoids)

Quick example: h eader : Message \rightarrow string $contents : Message \rightarrow string$

gfp::cfunc<Message,string> payload = gfp::mplus(header)(contents);

called point free (pointless) programming!.

Category Theory

Much much more:

- functor/pointed: functions, containers... I idiom (applicative functors): FRP, streams - monad: arbitrary computations - foldable: compress collections

Functional Programming (in C++!)

FP Benefits:

- Cleaner design → Cleaner code - less code/static types Less bugs → - Powerful tools

FP (in C++) Benefits:

- No need to switch languages
- Integrates well
- Easy to use (no special syntax)
- Highly Capable