

Functional Programming (in C++)

David Sankel
Sankel Software

bo

ost
con 2010

Functional Programming
What? Why? How (in C++)?

- Algebraic Data Types : (), :=, ::=, ⊗ , ⊕
- Functions : a→ (b→ c)
- Generic Programming

 : (c◄C) → c → int
- Category Theory
 : monoid, monad, etc.

Algebraic Data Types

unit, primitive type, one value, denoted ()

Algebraic Data Types

unit, primitive type, one value, denoted ()
+

product, binary type operation,

 denoted a ⊗ b, a and b , one of each“ ”

Algebraic Data Types

unit, primitive type, one value, denoted ()
+

product, binary type operation,

 denoted a ⊗ b, a and b , one of each “ ”
+

sum, binary type operation,

 Denoted a ⊕ b, a or b ,“ ”
 one of one

Algebraic Data Types

unit, (), one value

product, a ⊗ b, a and b“ ”
sum, a ⊕ b, a or b“ ”

Algebraic Data Types

unit, (), one value

product, a ⊗ b, a and b“ ”
sum, a ⊕ b, a or b“ ”
is the same as, a := b
is implemented with, a ::= b

Examples:

true ::= ()
false ::= ()

bool := true ⊕ false

true is implemented with unit.
false is implemented with unit.
A bool value is the same as a true value or
a false value.

Examples:

Z ::= ()

N := Z ⊕ N

Z is implemented with unit.
A N value is the same as a Z value or an N
value.

Examples:

Z ::= ()

N := Z ⊕ N

z∈ Z
N

0
 = (0,z)

N
1
 = (1,N

0
) = (1,(0,z))

N
2
 = (1,N

1
) = (1,(1,(0,z)))

Type Functions

Add parameter on left side of ::= or :=
symbol that can be used on the right.

[] ::= ()

L a := [] ⊕ (a ⊗ L a)

A value of L of a is either a“ ”
value of [] or (a value of a and a value of
L of a).“ ”

Type Functions

[] ::= ()

L a := [] ⊕ (a ⊗ L a)

Say a
i
 is a value of type a. and e is the

value of type [].
(0,e)
(1,(a

i
,(0,e))

(1,(a
j
,(1,(a

i
,(0,e))

Type Functions

T a ::= (T a ⊗ T a) ⊕ a

Binary tree with values of type 'a' at the
leaves.

Algebraic Data Types

- Abstract

- Simple ((), :=, ::=, ⊗ , ⊕)

- Powerful

- ...

Algebraic Data Types (in C++!)

Our critera for functional concepts in C++

- No (minimal) syntax sugar, it scares
 away the new bees.

- Mixes well with typical C++.

- No copycatting other
 languages and their limitations..

Algebraic Data Types (in C++!)

Easy ones

- Unit (): use boost::mpl::void_

- New unit types: T ::= ()
 struct T {};

- is the same as : a := b“ ”
 typedef b a;

Algebraic Data Types (in C++!)

Product Types

- z ::= a ⊗ b ⊗ c. struct. Named
 accessors

- a ⊗ b. boost.fusion.vector. Access by
 index

- boost.fusion.map. Both accessor methods.

Algebraic Data Types (in C++!)

Sum Types

- Can use enum when underlying types
 - are units, and
 - aren't used elsewhere.

- Can use a product type with an index.
 - common and error prone

- Can use polymorphic base class.
 - not really nice syntax/error prone

Algebraic Data Types (in C++!)

Sum Types

- boost.variant (best option!)
 - arbitrary underlying types
 - small syntax overhead
 - access by index or type

a ⊕ b ⊕ c
boost::variant<a,b,c>

Algebraic Data Types (in C++!)
“is implemented with , ::=, wrap it in a struct”
R01 ::= double

 struct R01
 { explicit R01(const double impl_)
 : impl(impl_) {}
 double impl;
 };
- accessor functions (invariant
 guaranteed)
- internal impl access function (invariant
 requirement)

Algebraic Data Types (in C++!)
Type Functions (:= style)

Use type function trait from boost.mpl.“ ”
none ::= (), Op a := none ⊕ a
struct none{};
template< typename a >
struct Op {
 typedef boost::variant<none,a>
 type;
};

Algebraic Data Types (in C++!)
Type Functions (::= style)

Use a wrapper template struct

none ::= (), Op a ::= none ⊕ a
struct none{};
template< typename a >
struct Op {
 explicit Op(boost::variant<none,a>);
 //...

 boost::variant<none,a> impl;
};

Algebraic Data Types (in C++!)

Recursive Types

- sum types: use make_recursive_variant

- product types: use
 make_recursive_variant (see
 paper for details)

What the heck is a recursive
product type?

S a ::= a ⊗ (S a)

 - Seems like nonsense!?

What the heck is a recursive
product type?

S a ::= a ⊗ (S a)

 - Seems like nonsense!?
 - Nope
 - Think of the recursion as being a
computation of type (S a)
 - ...

Laziness (in C++!)

How can we represent a computation of a
value in C++?

Laziness (in C++!)

How can we represent a computation of a
value in C++?

- A 0 argument function.

Laziness (in C++!)

How can we represent a computation of a
value in C++?

- A 0 argument function.

template< typename a>
struct lazy
{ typedef boost::function< a () >
 type;
};

What the heck is a recursive
product type?

S a ::= a ⊗ (S a)

 - Streams of type a. See paper for a
direct implementation.

Functions

f : A → B

A set S of pairs (a,b) where a∈ A b∈ B. For

every a∈ A, there exists exactly one
corresponding pair in S.

What is a C++ function?

bool f(int);

What is a C++ function?

bool f(int); => int→ bool

What is a C++ function?

bool f(int); => int→ bool
What about multiple arguments?

What is a C++ function?

Lets try another case.
bool f2(int, int);

What is a C++ function?

Lets try another case.

bool f2(int, int); => (int⊗ int)→ bool

 - Use our product type operator!

 - c++-function-tuples f2 (2,13)“ ”

 - Still something missing...

What is a C++ function?

bool f3(int, int)
{ ++someglobalvar;
 return true; }

 - (int⊗ int)→ bool doesn't work!
 - Consider the corresponding set.

What is a C++ function?

bool f3(int, int); (int⊗ int⊗World)→
{ ++someglobalvar; (World⊗bool)
 return true; }

 - (int⊗ int)→ bool doesn't work!
 - Consider the corresponding set.
 - Introduce new parameter
 and return value, World...

What is a C++ function?

Translation

R f(A
1
, A

2
,...,A

n
);

^^^

(A
1
⊗A

2
...A

n
⊗World)→ (World⊗R)

Currying

a ⊗ b c→
to

a (b c)→ →

- function returns a function (convenient)
- is right associative→
- Works with any function where
 the domain is a product.

What is a C++ function?

Translation

R f(A
1
, A

2
,...,A

n
);

^^^

(A
1

A⊗
2
...A

n
World) (World R)⊗ → ⊗

^^^

A
1
→A

2
...A

n
World (World R)→ → ⊗

Introducing IO

io a := World (World a)→ ⊗

- Simple type function
- We can actually implement io a in C++.

template< typename a >
struct io
{
 typedef boost::function<a ()> type; }

What is a C++ function?

Translation

R f(A
1
, A

2
,...,A

n
);

c++-function-tuple

(A
1

A⊗
2
...A

n
World) (World R)⊗ → ⊗

curry

A
1
→A

2
...A

n
World (World R)→ → ⊗

io

A
1
→A

2
...A

n
 io R→

Functions (in C++)

gfp library (netsuperbrain.com/gfp)

- gfp::ciof (curried io function)
 - Converts a c++ function pointer into a
 function as we formulated.

- gfp::cfunc (curried function)
 - cfunc<a,b,c>::type =>
 function<function<c (b)> a>

Generic Programming

Intuition:

- an empty thing , could refer to several“ ”
 things, but not all.

- empty , a property of many things,“ ”
 but not all.

Generic Programming

Formulation:

- an empty thing“ ”
 - requires a type to be concrete
 - type (a◄Emptiable) a→
 - read as has a profile in◄ “ ”
 - a function from types to values

- empty“ ”
 - type (a HasEmpty◄) (a bool)→ →

Generic Programming

Formulation:

- Emptiable, a type class
 - A typeclass is a set of pairs (a,p)
 - a is a ::= type or type function
 - p is a profile that fits certain
 patterns and laws
- Our restrictions
 - At most one pair per type
 - Profile is a simple value

Generic Programming

HasEmpty:

- An element in HasEmpty
 - (std::vector<int>, z) where

bool z(std::vector & z)
 { return z.empty(); }
- To implement empty we need to“ ”
 get the corresponding value
 (function) from a type in
 HasEmpty.

Generic Programming

HasEmpty:

- An call to empty :“ ”
std::vector<int> v;

 empty<std:::vector<int>>::profile()(v);

- looks up a profile given a type.

- but wait...

Generic Programming

HasEmpty:

empty<std:::vector<int>>::profile()(v);

- Passing v, of known type, makes the
 explicit type redundant. ☹
- empty cannot be passed to functions.☹

Generic Programming (in C++!)

Polymorphic Functions:

- Idea is to infer the type arguments
from the value arguments.

struct Empty
{ typedef bool result_type;
 bool operator()(std::vector<int>)
 //... one operator() for each type.
} empty;

- empty(v); //infers the type from v.

Generic Programming (in C++!)

Polymorphic Values:

- Same type inference trick doesn't work
for values.

- Introduce resolve:
 resolve<std::vector<int>>(emptyThing);

- Polymorphic values must follow a
 Certain trait . . .

Generic Programming (in C++!)

Polymorphic Values:

struct EmptyThing
{ template<typename T>
 struct result;
 //...
 result<this_type(vector<int>*)>::type
 operator()(vector<int>* dummy);
 //...
} emptyThing;

Generic Programming (in C++!)

Polymorphic Values & Functions:

- Covers all generics we care about
- Cannot be extended to support new
 types without modification of underlying
 code.
- No relation between related
 polymorphic values and functions.

Generic Programming (in C++!)

Polymorphic Classes:

- Extendable collections of polymorphic
 values and functions.
- Use partial template instantiation to
 select supported type.
- The polymorphic entities select
 appropriate instantiation when
 used.

Category Theory

- deals abstractly with mathematical
 structures and relations between them.

- Gives some guidance as to what to do
 with generics.

- Very powerful and expressive.

Category Theory

Monoids
A

0 A∈
+ :A A A→ →

A, 0, and + form a monoid when + is
associative and 0 is an identity for
+.

Category Theory (Monoids)

There are lots of monoids!

- int, +, 0 : sum monoid
- bool, &&, true: all monoid
- string, concat, : string monoid“”
- a m: function monoid→
 - m monoid
 - forwards monoid operations to results.
- io m: io monoid. Similar to function monoid.

Category Theory (Monoids)

Quick example:
- header : Message string→
- contents : Message string→

gfp::cfunc<Message,string>
payload = gfp::mplus(header)(contents);

- called point free (pointless) programming!.

Category Theory

Much much more:

- functor/pointed: functions, containers...

- idiom (applicative functors): FRP, streams

- monad: arbitrary computations

- foldable: compress collections

Functional Programming (in C++!)

FP Benefits:
 - Cleaner design Cleaner code→
 - less code/static types Less bugs→
 - Powerful tools

FP (in C++) Benefits:
 - No need to switch languages
 - Integrates well
 - Easy to use (no special syntax)
 - Highly Capable

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

