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ABSTRACT
Functional programming (FP) techniques produce code that
is general, concise, composable, and correct. Until recently
many of these techniques were limited to the realm of
academia and esoteric programming languages. New C++
and boost developments enable us to embed FP in C++ in
a seamless way.

We’ll be covering recursive algebraic data types, curried
functions, purity, generic programming, and category the-
ory.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; D.2.13 [Software Engineering]:
Reusable Software—reusable libraries

General Terms
Design, Languages

Keywords
C++, Boost, Haskell

1. INTRODUCTION
Although the benefits of functional programming have been
widely recognized since the 80s[8] and continues to be a pop-
ular area of academic research[2, 3], popular industrial in-
cantations have largely come in the form of new program-
ming languages, such as F][1] and Scala[4].

While switching to a functional languages for a project has
its benefit, use of functional languages often doesn’t take ad-
vantage of preexisting developer expertise and the resulting
code sometimes has difficult to solve performance issues[15,
7].

Our goal is to implement modern functional programming
in C++ directly. By doing so, we hope to present a frame-

work that has familiar usage to C++ programmers, but is
also powerful enough to implement modern functional pro-
gramming designs.

It is important to us that the design expands upon and inte-
grates well with widely used C++ libraries and constructs.
We feel our approach has uniquely met this goal.

While specific functional idioms have been attempted in
C++[13, 11, 17], none that we are aware of has been able to
handle all of recursive abstract data types, IO, polymorphic
values, polymorphic classes (also known as type classes), and
category theoretic constructs.

2. ALGEBRAIC DATA TYPES
The FP feature of Algebraic Data Types (ADTs) concerns
itself with the creation of complex types from simpler ones
using simple type composition operators. In this section,
we’ll overview the basic ADTs and later we’ll show how to
implement these in C++. Our syntax is mostly borrowed
from Schmidt[16].

2.1 Unit Type
A unit type is a type that has exactly one possible value.
There is a primitive unit type () that is called unit.

2.2 Product Operation
Given two types, A and B, we call the type A⊗B the prod-
uct of A and B. A value of type A⊗B can be thought of as
containing an element of A and an element B. Mathemati-
cally, this is often referred to as a pair where the value (a, b)
is of type A⊗B if a ∈ A and b ∈ B.

Pairing can be generalized to form n-tuples. For example, if
< is the type of the real numbers, < ⊗ <⊗ < is the type of
three dimensional points.

2.3 Sum Operation
Given two types, A and B, we call the type A⊕B the sum
of A and B. A value of type A ⊕ B can be thought of as
containing an element of of type A or an element of type B.

If we have two distinct unit types T and F , T ⊕ F could be
used for the type of booleans.

2.4 Type Definitions



Type definitions allow us to use shorthand names for more
complex types. The general form is a := e where a is the
newly bound identifier and e is the type expression. We read
:= as “is the same as”.

Expanding on our previous example, B := T ⊗ F allows us
to use B wherever we would otherwise use T ⊗ F .

Another form of type definition, a ::= e, allows us to create
new types based on type expressions. We read ::= as “is
implemented with”.

For example, if we wanted to create a boolean type using int
as the underlying representation (ignoring values other than
0 and 1), we would use B ::= int instead of B := int. In
this case we wouldn’t want an arbitrary int to be replaceable
with a B and vice-versa.

2.5 Type Functions
Type functions allow us to create reusable type templates.
The general forms for type functions are f a1 a2 . . . an := e
and f a1 a2 . . . an ::= e where f is the name of the newly
bound type function and the type expression e may use
a1 . . . an.

Consider an OpInt type that can be either an integer or
nothing. A simple way to declare OpInt is as follows:

none ::= ()

OpInt := none⊕ int

If we think optional values are useful in a more general con-
text, we can declare the type function Op that creates vari-
ous optional types based on its type argument:

none ::= ()

Op a := none⊕ a

Creating a concrete type definition for OpInt then becomes:

OpInt := Op int

2.6 Recursive Types
Interesting types occur when type definitions are allowed to
be recursive. That is, they may use the bound name on the
right hand of the = symbol. Here are a few examples:

The natural numbers N :

Z ::= ()

N := Z ⊕N

Lists L of arbitrary types a:

[] ::= ()

L a := []⊕ (a⊗ (L a))

Binary trees, T , with values of type a at leaves:

T a ::= (T a⊗ T a)⊕ a

3. ALGEBRAIC DATA TYPES IN C++
C++ gives us many options for implementing algebraic datatypes.
We’ll look at the most common forms and compare them.

3.1 Unit Type
boost.mpl includes a convenient unit type, void_, that we
use for (). The following code implements A := ().

#include <boost/mpl/void.hpp>

typedef boost::mpl::void_ A;

For implementing new unit types, such as B ::= (), we sim-
ply declare empty structs:

struct B {};

3.2 Product Operator
The most simple way to represent an n-tuple in C++ is with
a C struct. The following struct represents R3 ::= R⊗ R⊗ R.

struct R3

{

R x;

R y;

R z;

};

Using a struct for products has many advantages. There is
not a lot of syntax overhead and accessors for the underlying
values are given convenient names. The disadvantages are
that we must bind the struct to a name (R3 in this case),
and we cannot access the underlying values by the sequence
in which they were declared, something useful in generic
programming.

The Boost library offers several alternatives for product
types and we’ll consider a couple of our favorites here.

The boost.fusion vector template overcomes most of the dis-
advantages of using a struct, but sacrifices convenient acces-
sor names.

#include <boost/fusion/include/vector.hpp>

#include <boost/fusion/include/at_c.hpp>

//...

boost::fusion::vector<A,B,C> p;

boost::fusion::at_c<0>( p ); //extract the value

//of the first type

boost::fusion::at_c<1>( p ); //extract the value

//of the second type

boost::fusion::at_c<2>( p ); //extract the value

//of the third type

boost.fusion’s map provides an implementation of n-tuples
with both named and integer accessors. The index names
are implemented with unit types.



#include <boost/fusion/include/map.hpp>

#include <boost/fusion/include/at_key.hpp>

#include <boost/fusion/include/at_c.hpp>

using boost::fusion::pair;

using boost::fusion::at_key;

using boost::fusion::at_c;

struct x {};

struct y {};

struct z {};

boost::fusion::map

< pair<x, R>

, pair<y, R>

, pair<z, R>

> v;

at_key<x>( v ); //access x

at_key<y>( v ); //access y

at_key<z>( v ); //access z

at_c<1>( v ); //access y by integer

Although boost.fusion maps overcome all the disadvantages
of a struct, they have more syntax overhead and require
extra types for the accessor names.

3.3 Type level sum operators
Standard C++ has very limited support for implementation
of sum. If all the underlying types are units and are not
used elsewhere, the simplest method is to use enum.

For a simple Direction type,

Left ::= ()

Right ::= ()

Direction := Left⊕ Right,

enum can be used as follows:

enum Direction { Left

, Right

};

Direction d;

d = Left;

d = Right;

As with struct-products, enum-sums must be bound to a
name.

For any underlying types, we may use boost.variant. The
following implements A ⊕ B for arbitrary distinct types A
and B:

boost::variant<A, B> v;

v = a; //Where a is of type A.

v = b; //Where b is of type B.

Extraction of values from a variant involves use of the
apply_visitor function. Below we define a function f from
type A⊕B to int.

//This structure handles the different cases. We’ll

//see later how this is a polymorphic function

//class.

struct F

{

typedef int result_type;

int operator()( const A & a ) const

{

//return result for a variant with value a

//of type A...

}

int operator()( const B & b ) const

{

//return result for a variant with value b

//of type B...

}

};

int f( boost::variant<A,B> v )

{

return boost::apply_visitor( F(), v );

}

boost.variant includes several variations of apply_visitor

that are useful in common scenarios.

The final sum implementation we’ll be looking at piggy-
backs on Object Oriented programming. We create an ab-
stract base class and a subclass for every contained type.
shared_ptr from boost is then used to represent the final
type. The following implements C ::= A⊕B:

#include <boost/shared_ptr.hpp>

struct CBase {

//virtual function required to make

//CBase polymorphic

virtual void dummy(){}

};

//C0 wraps values of type A.

struct C0 : public CBase

{

C0( const A & val_ ) : val(val_) { }

A val;

};

//C1 wraps values of type B.

struct C1 : public CBase

{

C1( const B & val_ ) : val(val_) { }

B val;

};

typedef boost::shared_ptr<CBase> C;

//Creation functions

C newC( const A & a )

{ return C(new C0( a ) ); }

C newC( const B & b )



{ return C(new C1( b ) ); }

To extract values, we use a boilerplate case function that is
used in a similar way to apply_visitor from boost.variant.

template< typename F >

typename F::result_type

c_case( F f, C c )

{

using boost::dynamic_pointer_cast;

if( boost::shared_ptr<C0> c0

= dynamic_pointer_cast<C0>( c ) )

f( c0->val );

else if( boost::shared_ptr<C1> c1

= dynamic_pointer_cast<C1>( c ) )

f( c1->val );

else

{

// Should never get here

assert( false );

}

}

Compared to variant-sums, oo-sums require a lot of error-
prone boilerplate per sum. oo-sums also are always created
on the heap where variant-sums can be created on the stack1.
On the other hand, oo-sums allow an underlying type to be
repeated and have no limitations on the number of subtypes.

3.4 Type Definitions
Recall from earlier that we’re using two ways to bind types
to names, “is the same as” (:=) and “is implemented with”
(::=).

As we have already seen, := is easily implemented with
typedef as in the following declaration of R3 := R⊗R⊗R:

typedef boost::fusion::vector<R,R,R> R3;

To implement“is implemented with”binding, we use a wrap-
per struct. Lets say we want to implement a [0, 1) bounded
real number R01 in terms of double. We wouldn’t want to
treat these as the same types2 so our type is R01 ::= double:

struct R01

{

//stops implicit conversions

explicit R01( const double impl_ )

: impl( impl_ )

{

}

double impl;

};

1This is true except for the case of recursive variant-sums
which we’ll see later.
2For example, adding [0, 1) bounded numbers doesn’t have
a straightforward meaning as with double.

Separate construction and access functions are typically pro-
vided when using ::=.

R01 r01FromDouble( const double r )

{

assert( r >= 0 && r < 1.0 );

return R01( r );

}

double r01ToDouble( const R01 & a )

{

return a.impl;

}

//Caller must ensure impl stays in the proper

//range.

double & r01_impl( R01 & a )

{

return a.impl;

}

//...

3.5 Type Functions
The C++ type function trait from mpl suits our purposes
for “is the same as” type functions (:=). The following im-
plements our Op type function from earlier.

struct none {};

template< typename a >

struct Op

{

typedef boost::variant<none,a> type;

};

//An example use of the function

typedef Op<int>::type OpInt;

“Is implemented with” type functions are encoded as a tem-
plate struct with a nested value instead of a nested type. An
implementation of pair a ::= a⊗ a follows:

template< typename a >

struct pair

{

explicit pair( boost::fusion::vector<a,a>

impl_ )

: impl( impl_ )

{

}

boost::fusion::vector<a,a> impl;

};

Separate construction and access functions would likely be
created as with “is implemented with” type definitions.

3.6 Recursive Types
3.6.1 Recursion over sums

Consider a simple int list type,

empty ::= ()



IntList := empty⊕ (int⊗ IntList)

The following well-intentioned variant implementation won’t
work:

using boost::variant;

using boost::fusion::vector;

struct empty{}

typedef variant< empty

, vector< int

, IntList //C++ scope

//rules don’t

//allow this!

>

> IntList;

Fortunately, boost.variant includes a handy workaround
called make_recursive_variant3:

#include <boost/variant/recursive_variant.hpp>

//...

struct empty{};

typedef boost::make_recursive_variant

< empty

, boost::fusion::vector2

< int

, boost::recursive_variant_

>

>::type IntList;

3.6.2 Recursion over products
Before we present our recursive product implementation, it
would be beneficial to review laziness, also called delayed
evaluation.

For a typical C++ function, all arguments must be evaluated
before the function is called, even if the arguments aren’t
used. Consider the following function:

int iff( bool b, int a0, int a1 )

{

if( b ) return a0;

else return a1;

}

This function requires the caller to compute both a0 and a1

even though both aren’t required. If computing a0 and a1
is expensive, this could create performance issues.

Functional programming languages solve this by using the
concept of lazy values. Lazy values are just like normal
(strict) values, but are only computed when required. An
easy way to implement laziness in C++ is to use a
boost::function without arguments4. The type function
lazy abstracts this implementation.

3In the implementation below, we use vector2, the nonva-
riadic form of fusion vectors, to work around an issue with
make recursive variant as of boost 1.39.0
4For a performance penalty, a more sophisticated version
of lazy could cache repeated computations as in McNamara
Smaragdakis[10]

#include <boost/function.hpp>

template< typename a >

struct lazy

{

//a function that simply returns a when called

typedef boost::function< a ()> type;

};

Now we can implement an iff that only evaluates its second
and third arguments when required:

int iff( bool b

, lazy<int>::type a0

, lazy<int>::type a1

)

{

if( b ) return a0(); //Calling a lazy value

//with no arguments

//forces evaluation.

else return a1();

}

We could also implement a version of iff that returns a
lazy value:

lazy<int>::type iff( bool b

, lazy<int>::type a0

, lazy<int>::type a1

)

{

if( b ) return a0;

else return a1;

}

Now that we’ve had a look at laziness, lets return to recur-
sion over products. Consider the following type:

IntStream := int⊗ IntStream

At first glance, this type may seem nonsensical and to re-
quire an infinite amount of space to represent. However,
if we allow the recursion of IntStream to be lazy we can
indeed represent this infinite sequence.

Unfortunately, there isn’t a make_recursive_variant specif-
ically for fusion vectors. On the other hand, by wrapping our
product in a recursive variant, we get the required recursion.

typedef boost::make_recursive_variant

< boost::fusion::vector

< int

, lazy< boost::recursive_variant_ >::type

>

>::type IntStream;



We include an implementation of general streams,

stream a := a⊗ (stream a),

in the appendix.

Exercise 1. Implement the type N of natural numbers, Z :=
(), N := Z ⊗N .

Exercise 2.1. Write, in abstract form, the type function for
general binary trees with one type for leaves and another for
branches.

Exercise 2.2. Implement the type function from exercise 2.1
in C++.

4. FUNCTIONS
The meaning of a function in the context of functional pro-
gramming is very simple. It is simply a mapping from one
type to another. One mathematical representation of a func-
tion is a set of pairs (a, b) where a ∈ A, b ∈ B, where for
every value of type A there is exactly one pair in the set.
We write A → B to refer to the type of functions from A
to B. When we use the word function, we’re referring to a
mathematical function. We use the term C++ function to
refer to C++ functions.

So, just what is a C++ function and how does it relate to
functions? Consider the following C++ function declara-
tion:

bool f( int );

Here we have something that resembles a function with type
int → bool. This general mapping won’t always work
though. For instance, C++ functions might take more than
one argument.

bool f2( int, int );

Using our algebraic data types, we can say this resembles a
function with type (int⊗int)→ bool. A C++ function call
can be thought of as constructing a special C++-function-
tuple and using that as the argument.

However we still don’t have a general meaning for C++ func-
tions. Consider this C++ function:

bool f3( int, int )

{

++some_global_var;

return true;

}

Our straightforward C++-function-tuple mapping won’t
work in this case because the set representation cannot en-
code the change to the global variable. To handle this sit-
uation, FP researchers add another parameter to the input
tuple of type World and a similar parameter to the output

type. World represents the general state of the world and
would include, in this case, some_global_var’s value. f3 has
type

(int⊗ int⊗ World)→ (bool⊗ World).

We now have a formula for getting the type of an arbitrary
C++ function. The type of:

R f(A1, A2, . . . , An);

is

(A1 ⊗A2 · · ·An ⊗ World)→ (World⊗R).

Without loss of generality, if a C++ function has a return
type of void we consider this to be our unit type ().

4.1 Currying
Currying is the process by which we transform a function
with a tuple parameter into a function that returns another
function. Consider the following two C++ functions:

double add(double a, double b)

{

return a+b;

}

//curried version of add

boost::function<double (double)>

addcurry( double a )

{

return boost::bind( add, a, _1 );

}

Ignoring World for now, the type of add is

(double⊗ double)→ double

and the type of addcurry is

double→ (double→ double).

This currying process can be generalized for n arguments
(we will hereafter omit the parenthesis and understand →
to be right associative) . The resulting function is called
“curried”.

Practically, applying curried functions, sometimes called par-
tial application, often results in other useful functions. For
example, the function resulting from addcurry( 1 ) always
adds 1 to its argument.

Curried functions can often be used instead of boost.bind
and boost.lambda. Their lightweight syntax and simple
meaning often makes them preferable.

4.2 IO
Returning to our general type of a C++ function

(A1 ⊗A2 · · ·An ⊗ World)→ (World⊗R)



we curry all the arguments to produce

A1 → A2 · · ·An → World→ (World⊗R).

By convention, functional programmers often use a type
function called IO,

IO a := World→ (World⊗ a).

It is easy to see that IO a represents C++ functions without
arguments with return values of type a. We now write our
general type for C++ functions as

A1 → A2 · · ·An → IO R

With the goal in mind of converting C++ functions into
something that works more like functions, we use the fol-
lowing type function to represent IO:

template< typename a >

struct io

{

typedef boost::function<a ()> type;

};

and the following type function to represent functions:

template< typename a, typename r >

struct func

{

typedef boost::function<r (a)> type;

};

The gfp5 library includes a type function called cfunc that
returns a curried function type of its arguments. For exam-
ple:

gfp::cfunc<int,int,bool>::type

is equivalent to:

func< int, func<int, bool >::type >::type

Given all this, we can now implement a ciof function that
converts a C++ function pointer into a curried io function.

bool f( int, int );

//...

using namespace gfp;

cfunc< int

, int

, io<bool>::type >::type fc = ciof( f );

5Latest version available from
http://netsuperbrain.com/gfp

//fc1 is the partial application of fc with 12.

cfunc< int

, io<bool>::type > fc1 = fc( 12 );

io<bool>::type fc1 = fc1( 0 );

bool b = fc1(); //f actually called here

//with 12 and 0 as the

//arguments.

4.3 Purity
As we’ve seen above, not all C++ functions require a World

argument. These functions are called pure. When convert-
ing pure C++ functions to functions it is often nice to omit
the IO part. gfp includes a gfp::cf function that converts
a C++ function pointer into a pure function. The caller of
gfp::cf must prove that its argument is indeed pure.

bool greaterThan_( int a, int b )

{

//Pure, because no global state

//is changed.

return a > b;

}

gfp::cfunc<int, int, bool>

greaterThan = gfp::cf( greaterThan_ );

bool b = greaterThan( 12 )( 6 );

5. GENERIC PROGRAMMING
The Generic Programming features of FP allow one to write
programming constructs that can be applied to unforeseen
types. In C++ we implement generics with polymorphic
values, polymorphic functions, and polymorphic classes.

5.1 Polymorphic Values
A polymorphic value is like a normal value in C++ except it
has multiple supported types. For example, the polymorphic
value empty supports std::vector<A> types for any A, but
would not support the type int.

To represent polymorphic values in C++, we introduce the
polymorphic value trait. v ∈ V is a polymorphic value if:

1. if A is a supported type, v((A∗)(0)) returns type A,
and boost::result_of<V(U)>::type is type A.

2. if U is not a supported type, v((U∗)(0)) doesn’t com-
pile.

What follows is an implementation of the empty polymorphic
value for arbitrary standard vectors.

//Empty is the polymorphic value type

struct Empty

{

//For boost::result_of support

template< typename T >

struct result;



template< typename A >

struct result< Empty( std::vector< A > ) >

{

typedef std::vector< A > type;

};

//our operator()

template< typename T >

typename result< Empty( T ) >::type

operator()( T const * const dummy ) const

{

typedef typename result< Empty( T ) >::type V;

return V(); //empty vector

}

};

//empty is the polymorphic value

const Empty empty = Empty();

gfp introduces a simple template function that resolves a
polymorphic value into a value of one of its supported types:

namespace gfp

{

//Takes a polymorphic value pv and a type T as

//parameters and returns the result of

//resolving pv into a value of type T.

template< typename T, typename PV >

T resolve( const PV & pv )

{

return pv( (T const * const)0 );

}

}

Use of polymorphic values is then straightforward:

typedef std::vector<std::string> T1;

typedef std::vector<int> T2;

T1 t1 = gfp::resolve<T1>( empty ); // ok

T2 t2 = gfp::resolve<T2>( empty ); // ok

int i = gfp::resolve<int>( empty ); // error, int

// not

// supported

5.2 Polymorphic Functions
One simple way to implement polymorphic functions is to
just use polymorphic values with functions as the supported
types. To call a polymorphic function of this variety, the
library user must explicitly resolve the type. This two-stage
approach of resolving a function’s type and then calling it
can become quickly tedious.

To reduce the aforementioned difficulty, we took an approach
similar to McNamara Smaragdakis[?]. Our approach allows
one to apply a polymorphic function without having to ex-
plicitly resolve its type beforehand. This simplifies the use
of polymorphic functions tremendously.

f ∈ F is a polymorphic function if:

1. If A is a supported argument type and a ∈ A, f(a)
returns type boost::result_of<F(A)>::type.

2. If U is not a supported argument type and u ∈ U , f(u)
results in a compile error.

3. The return type of f can be any of a polymorphic value
type, a polymorphic function type, or a normal type.

What follows is a polymorphic function that computes the
length of any std::vector or std::set types.

//Length is the polymorphic function type

struct Length

{

//For boost::result_of support

typedef int result_type;

template< typename T >

result_type operator()

( const std::vector<T> & v ) const

{

return v.size();

}

template< typename T >

result_type operator()

( const std::set<T> & s ) const

{

return s.size();

}

};

//length is the polymorphic function

Length length = Length();

Polymorphic functions are used just the same as normal
functions.

std::vector<int> v;

//...

int i = length( v ); //here length is auto-

//matically resolved

//to the std::vector

//argument type when

//called.

typedef gfp::cfunc< std::set<char>

, int >::type F;

F f = F( length ); //here length is

//explicitly resolved

//to type F.

5.3 Polymorphic Classes
Extending a polymorphic entity (function or value) to han-
dle a new type requires direct modification of that entity’s
code. Oftentimes it is preferable to allow someone to extend
several related polymorphic entities in separate program-
ming modules. Polymorphic classes allow this.

A polymorphic class C consists of

1. A single argument template struct declaration called
C.



2. A boost concept checking class named IsC that serves
to verify if a type T is supported by C and verify that
T ’s corresponding extension class has the correct poly-
morphic member types.

3. For each of the related polymorphic entities of C, a cor-
responding implementation that uses extension classes
to select a specific implementation for a supported
type.

4. For all supported types, a partial or complete template
specialization the C struct with valid implementations
for each of the related polymorphic entities. These are
called extension classes.

To illuminate the idea, we’ll look a at a polymorphic class
called Showable. It has one entity called show.

#include <boost/concept_check.hpp>

//Single argument declaration

template< typename T >

struct Showable;

//Concept checking class

template< typename T >

struct IsShowable

{

//Nested type show must be a polymorphic

//function type from T to string.

typedef typename Showable<T>::show t;

};

//Show is the polymorphic function type

struct Show

{

typedef string result_type;

template< typename T >

string operator()( const T & t ) const

{

//The polymorphic functions of

//a class use BOOST_CONCEPT_ASSERT

//ensuring a supported type.

BOOST_CONCEPT_ASSERT((IsShowable<T>));

//Here the specific implementation is

//selected and used.

return typename Showable<T>::show()( t );

}

};

//show is the polymorphic function.

const Show show = Show();

At this point the show polymorphic function of the Show-
able polymorphic class has no supported types. Adding a
supported type involves specializing the Showable template.
Below we make such an extension for the int type:

//A show polymorphic function type that works

//only on int.

struct ShowInt

{

typedef std::string result_type;

std::string operator()( const int i ) const

{

return boost::lexical_cast<std::string>(i);

}

};

template<>

struct Showable<int>

{

//declares ShowInt as the polymorphic

//function type for ints.

typedef ShowInt show;

};

We can even extend Showable to support arbitrary variants
of other supported types using partial template specializa-
tion:

//The polymorphic function type for variants

//of types supported by Showable.

struct ShowVariant

{

typedef std::string result_type;

template< BOOST_PP_ENUM_PARAMS

( BOOST_VARIANT_LIMIT_TYPES

, typename T

)

>

std::string operator()

( const boost::variant

< BOOST_PP_ENUM_PARAMS

( BOOST_VARIANT_LIMIT_TYPES

, T

)

> & v

) const

{

//this will only compile when all

//of v’s subtypes are supported by

//Showable.

return boost::apply_visitor( show, v );

}

};

template< BOOST_PP_ENUM_PARAMS

( BOOST_VARIANT_LIMIT_TYPES

, typename T

)

>

struct Showable

< boost::variant

< BOOST_PP_ENUM_PARAMS

( BOOST_VARIANT_LIMIT_TYPES

, T

)

>

>

{

typedef ShowVariant show;

};



6. CATEGORY THEORY
Category theory is a field of pure mathematics that deals
with relationships between abstract sets. Functional Pro-
gramming uses several category theoretical concepts to come
up with interesting and highly reusable polymorphic entities.

A complete exposition of applied category theory is outside
the scope of this paper. We hope to whet the reader’s ap-
petite with a few examples. See [19] for an extensive treat-
ment of the different polymorphic classes and [14, 9, 12, 18,
6] for some interesting applications.

6.1 Monoids
One of the simplest concepts of Category Theory is the
monoid. A type (M), an element of that type (0), and a
binary operator over that type (+ with type M →M →M)
form a monoid if the operator is associative and 0 is an iden-
tity.

For example: the std::string type, the empty string, and
std::string’s concatenation operator (operator+) form a
monoid. gfp includes a polymorphic class Monoid with cor-
responding polymorphic entities mzero and mplus.

Things start to get interesting when we try to form monoids
out of more complex types. For instance, a function (A →
B) can form a monoid if we require B to be a monoid. We
define 0 to a function that always returns the 0 of B. We
define + to return a function that applies its first two pa-
rameters to the third and uses B’s + on the result. Consider
the following example:

string header_( const string & s )

{

return show( s.size() ) + ";";

}

gfp::cfunc<string,string>::type

header = gfp::cf( header_ );

string contents_( const string & s )

{

return s + ";";

}

gfp::cfunc<string,string>::type

contents = gfp::cf( contents_ );

gfp::cfunc<string,string>::type

message = gfp::mplus( header )( contents );

The message function would return “5;hello;” with an input
of “hello”.

Let’s look at another monoid example. Our unit type is part
of a trivial monoid and IO A forms a monoid in a similar way
to functions. This combination allows us to easily sequence
procedures functionally:

//gfp includes the following typedef:

//typedef gfp::io

// < boost::mpl::void_ >::type Action;

void writeLn_( const string & s )

{

std::cout << s << std::endl;

}

gfp::cfunc<string,Action>::type

writeLn = gfp::ciof( writeLn_ );

gfp::cfunc<Action>::type

writeWorm = writeLn("_/\__/\__0>");

gfp::cfunc<Action>::type

notifyLoading = gfp::mplus( writeLn("Loading...")

, writeWorm

);

6.2 Polymorphic Classes for Standard Types
One positive aspect of category inspired polymorphic classes
is their broad applicability. Algorithms written for a functor,
for instance, will work for any number of built-in types as
well as those that have yet to be designed. To give an idea of
what is possible, we list below where common types in boost
and standard C++ fall into category theoretic polymorphic
classes6:

1. Monoid/Functor/Pointed/Idiom/Monad/Foldable/
Traversable

(a) std::basic string

(b) std::deque

(c) std::list

(d) std::stack

(e) std::queue

(f) boost::optional

2. Monoid/Functor/Pointed/Idiom/Monad

(a) std::pair

(b) boost::compressed pair

(c) boost::function1

(d) boost::fusion::vector

(e) boost::tuple

3. Monoid/Functor/Pointed/Idiom/Foldable/
Traversable

(a) boost::array

4. Monoid/Foldable

(a) std::string

(b) std::bitset

(c) std::priority queue

(d) std::set

(e) std::multiset

(f) boost::bimap

5. Monoid/Functor/Foldable/Traversable

(a) std::map

(b) std::multimap

6Our selection comes from [19] but we use the term idiom
instead of applicative functor



7. CONCLUSIONS
In this paper, we presented a solution to the problem of
embedding modern functional programming concepts in the
C++ language. We demonstrated recursive algebraic data
types implemented with standard C++ constructs, boost.fusion,
and boost.variant. We showed how curried functions, with
and without io, build upon and integrate with boost.function.
Our design of polymorphic functions is similar to that of Mc-
Namara and Smaragdakis[11], but integrates with boost’s
result-of operator. A novel design for polymorphic values
and polymorphic classes was presented which allowed for
category theoretic concepts to be integrated.

The concepts here have already been used successfully in two
large scale CAD/CAM frameworks to implement embedded
domain specific languages (EDSLs) for motion control and
functional reactive programming[5] for operator user inter-
faces.
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APPENDIX
A. STREAMS
template< typename T >

struct lazy

{

typedef boost::function0< T > type;

};

template< typename T >

struct stream

{

typedef typename boost::make_recursive_variant

< boost::fusion::vector2

< T

, typename lazy

< boost::recursive_variant_

>::type

>

>::type type;

};

namespace detail

{

template< typename Stream >

struct stream_inner_type

{



typedef typename boost::mpl::at_c

< typename Stream::types

, 0

>::type type;

};

}

namespace result_of

{

template< typename Stream >

struct stream_head

{

typedef typename detail

::stream_inner_type<Stream>

::type inner_type;

typedef typename

boost::fusion::result_of::at_c

< const inner_type

, 0

>::type type;

};

};

template< typename Stream >

typename result_of::stream_head<Stream>::type

stream_head( const Stream & s )

{

typedef typename detail

::stream_inner_type<Stream>

::type inner_type;

return boost::fusion::at_c<0>

( boost::get<inner_type>( s ) );

}

namespace result_of

{

template< typename Stream >

struct stream_tail

{

typedef typename detail

::stream_inner_type<Stream>

::type inner_type;

typedef typename

boost::fusion::result_of::at_c

< const inner_type

, 1

>::type type;

};

};

template< typename Stream >

typename result_of::stream_tail<Stream>::type

stream_tail( const Stream & s )

{

typedef typename detail

::stream_inner_type<Stream>

::type inner_type;

return boost::fusion::at_c<1>

( boost::get<inner_type>( s ) );

}

template< typename T, typename F >

typename stream<T>::type

stream_create( const T & t, F f )

{

typedef typename stream<T>::type Stream;

typedef typename detail

::stream_inner_type<Stream>

::type inner_type;

return inner_type( t, f );

}


