
BoostCon 2011

© 2011 IBM CorporationC++ Standard

C++0x & C1x: the Dawn of new Standards

Michael Wong
michaelw@ca.ibm.com

IBM Toronto Lab
Canadian C++ Standard Committee

BoostCon 2011

© 2011 IBM Corporation2 IBM

IBM Rational Disclaimer

 © Copyright IBM Corporation 2011. All rights reserved. The information
contained in these materials is provided for informational purposes only, and
is provided AS IS without warranty of any kind, express or implied. IBM shall
not be responsible for any damages arising out of the use of, or otherwise
related to, these materials. Nothing contained in these materials is intended
to, nor shall have the effect of, creating any warranties or representations
from IBM or its suppliers or licensors, or altering the terms and conditions of
the applicable license agreement governing the use of IBM software.
References in these materials to IBM products, programs, or services do not
imply that they will be available in all countries in which IBM operates.
Product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or
other factors, and are not intended to be a commitment to future product or
feature availability in any way. IBM, the IBM logo, Rational, the Rational logo,
Telelogic, the Telelogic logo, and other IBM products and services are
trademarks of the International Business Machines Corporation, in the United
States, other countries or both. Other company, product, or service names
may be trademarks or service marks of others.

BoostCon 2011

© 2011 IBM Corporation3 IBM

The IBM Rational C/C++ Café

ibm.com/rational/cafe/community/ccpp

http://www-949.ibm.com/software/rational/cafe/community/ccpp

BoostCon 2011

© 2011 IBM Corporation4

Agenda

 Is this legal C++03 code?

 C++0x/C1x standard

 C++ 0x issues since BoostCon 2010

 Bonus 1: C++ 0x Compiler Support Survey

 Questions?

BoostCon 2011

© 2011 IBM Corporation5

Is this legal C++03 syntax?

template<class T> using Vec =

vector<T,My_alloc<T>>;

Vec<double> v = { 2.3, 1.2, 6.7, 4.5 };

//sort(v);

for(auto p = v.begin(); p!=v.end(); ++p)

cout << *p << endl;

BoostCon 2011

© 2011 IBM Corporation6

Hello Concurrent World

#include <iostream>

#include <thread> //#1

void hello() //#2

{

std::cout<<"Hello Concurrent World"<<std::endl;

}

int main()

{

std::thread t(hello); //#3

t.join(); //#4

}

BoostCon 2011

© 2011 IBM Corporation7

Is this valid C++ today? Are these equivalent?

int x = 0;

atomic<int> y = 0;

Thread 1:
x = 17;
y.store(1,
memory_order_release);
// or: y.store(1);

Thread 2:
while
(y.load(memory_order_acq
uire) != 1)
// or: while
(y.load() != 1)

assert(x == 17);

int x = 0;

atomic<int> y = 0;

Thread 1:
x = 17;
y = 1;

Thread 2:
while (y != 1)

continue;
assert(x == 17);

BoostCon 2011

© 2011 IBM Corporation8

Agenda

 Is this legal C++03 code?

 C++0x/C1x standard

 C++ 0x issues since BoostCon 2010

 Bonus 1: C++ 0x Compiler Support Survey

 Questions?

BoostCon 2011

© 2011 IBM Corporation9

C and C++ Standard Progress

1998 C++

Std

1999 C

Std

2003 C++

TC1

2005 C++

TR1

2004 C

TC2

2009:

removed

Concepts

CD1

published

2011

/2012

C++0x*

2001 C

TC1

C 12*

It‟s been >10 years since last C/C++ Standard!

2007 C

TC3
2010:

C++0x

FCD

publishe

d

2010:

C1x

CD1

publishe

d

*Ratification date subject to change without notice

2011:

C1x DIS

publishe

d

2011:

C++0x

FDIS

publishe

d

BoostCon 2011

© 2011 IBM Corporation10

Major stages of C++0x

DONE in

9/2007

DONE in

9/2008

DONE in

3/2010

DONE in

3/2011

In

MADRID

BoostCon 2011

© 2011 IBM Corporation11

C++0x goals

BoostCon 2011

© 2011 IBM Corporation12 IBM

C++0x: areas of language change

Removed

June 2009

BoostCon 2011

© 2011 IBM Corporation13

C++0x, C1x

 C++0x: Codename for the planned new standard for the C++
programming language

– Will replace existing ISO/IEC 14882 standard published in 1998
(C++98) and updated in 2003 (C++03)

– Many new features to core language

– Many library features: most of C++ Technical Report 1 (TR1)

– FDIS in March 2011

– X=A,B,C,D,E,F?

– C++11?

 C1x: Codename for the planned new standard for
the C programming language

– Will replace existing ISO/IEC 9899 standard published in 1999

– DIS in March 2011

May be

X=B!

BoostCon 2011

© 2011 IBM Corporation14

What‟s in C++0x?

 Memory Model and Concurrency [N2138]

 Concurrent Libraries [N2094]

 Initialization [N2116]

 Rvalue references [N2118]

 Other primary features

– Constant expressions, automatic types

 Expanded Library from most of TR1

 140 features, 600 bug fixes to the standard

 What’s out?

– Concepts [N2081]

– Garbage Collection (Replaced by smaller proposal)

BoostCon 2011

© 2011 IBM Corporation15

What‟s in C1x?

 Alignment specificaiton

 _Noreturn specifier

 Type-generic expressions

 Multithreading support

 Unicode

 Deprecate gets

 Bounds checking interfaces

 Analyzability features

 Subnormal macros

 Anonymous structs and unions

 Static assertions

 Create and pen mode for fopen

 Quick_exit

 Macros for constructing complex values

BoostCon 2011

© 2011 IBM Corporation16

What is C++0x?

 Simplifying simple tasks
– Deducing types, ranged for loops,

 Initialization
– Uniform { }, no accidental narrowing

 Support for low-level programming
– Standard layout types, unions, generalized constant expr

 Tools for writing classes
– Init list constructor, inheriting constructor, move, user-defined literals

 Concurrency
– Memory model, threads, locks, atomics, mutex, future, shared_future, atomic_future,

promise, async()

 Standard library components
– Containers, regular expression, random numbers, time, resource mgmt, utility,

metaprogramming, Garbage collection ABI

BoostCon 2011

© 2011 IBM Corporation17

Sum of all things C++0x

 • __cplusplus

 • alignments

 • attributes

 • atomic operations

 • auto (type deduction from initializer)

 • C99 features

 • enum class (scoped and strongly typed enums)

 • copying and rethrowing exceptions

 • constant expressions (generalized and guaranteed;
constexpr)

 • decltype

 • default template parameters for function

 • defaulted and deleted functions (control of defaults)

 • delegating constructors

 • Dynamic Initialization and Destruction with
Concurrency

 • explicit conversion operators

 • extended friend syntax

 • extended integer types

 • extern templates

 • for statement ; see range for statement

 • generalized SFINAE rules

 • Uniform initialization syntax and semantics

 • unions (generalized)

 • user-defined literals

 • variadic templates

 • in-class member initializers

 • inherited constructors

 • initializer lists (uniform and general initialization)

 • lambdas

 • local classes as template arguments

 • long long integers (at least 64 bits)

 • memory model

 • move semantics; see rvalue references

 • Namespace Associations (Strong using)

 • Preventing narrowing

 • null pointer (nullptr)

 • PODs (generalized)

 • range for statement

 • raw string literals

 • right-angle brackets

 • rvalue references

 • static (compile-time) assertions (static_assert)

 • suffix return type syntax (extended function
declaration syntax)

 • template alias

 • template typedef ; see template alias

 • thread-local storage (thread_local)

 • unicode characters

BoostCon 2011

© 2011 IBM Corporation18

List of Standard features and papers (110504)

 C++0x (FDIS):

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf

 C++0x (FCD)

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf

 c++0x (CD1):

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n3000.pdf

 Summary of Core language and Library State:

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2869.html

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2870.html

 Summary of C++0x CD1

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2871.html

 Summary of C++ TR1

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2364.html

 TR1(DTR):

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf

 Decimal TR(PDTR):

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2732.pdf

 Math(FCD):

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2717.pdf

 C1x(DIS)

– http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2717.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2717.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2717.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2717.pdf

BoostCon 2011

© 2011 IBM Corporation19

What are the STD documents and their status?

 Library TR1: Draft Technical Report

 C++0x: Final Draft International Standard (FDIS),
has 13/14 TR1 libraries

 C1x: Draft International Standard (DIS)

 Special Math Library: Final Committee Draft

 Decimal Floating Point TR: Draft Technical
Report

 POSIX C++: working draft, target 2012/13

 C++ ABI: working draft, ongoing discussion on
mangling, and common-vendor interoperability

BoostCon 2011

© 2011 IBM Corporation20 IBM

Feature and defect count


Language

–70 features

–300 defects (in the C++ Standard)


Runtime

–70 features

–230 defects (in the C++ Standard)


Too many features to be done in one release

–stage across many compiler releases over several years

–not all Standard defects translate into compiler issues

BoostCon 2011

© 2011 IBM Corporation21

Performance Opportunities, Parallelism, Usability in future
C++0x features

 Improve Execution Time

– memory model, concurrency/atomics, rvalue references, pods,
variadic template, Concepts, auto

 Increase Compile Time

– Concepts, most template features (except variadic template)

 Decrease Compile Time

– Variadic template

 Improve usage/teachability

– Auto, initialization, decltype

 Supports concurrency

– Atomics, fences, basic mutlithreading library, futures

BoostCon 2011

© 2011 IBM Corporation22

Features for whom?

 Library enhancements

 For Class writers

– Move, rvalue ref, deleted and default functions, delegating, inheriting

 For Library writers

– Static assert, explicit conversion, variadic template, decltype

 For you

– >>, auto, range-based for, nullptr, unicode, raw strings, uniform init,
init lists, lambda, trailing return, template aliases, concurrency

 For everyone else

– Class enum, unrestricted union, time library, local types as template
args, C99 compat, scoped allocators, constexpr, user-defined literals,
relaxed POD, extern template, sizeof on class data members, & and
&& member functions, in-class init of static data member, attributes

BoostCon 2011

© 2011 IBM Corporation23

C++0x Library

 Start with original C++98 library

– Improved performance with rvalue reference

– Used variadic templates to improve compile time

– Potential binary incompatibility with C++98 library strings

– Reference counting not allowed

 Added 13/14 TR1 libraries

– Reference wrapper, smart ptrs, return type determination,
enhanced member pointer adapter, enhanced binder,
generalized functors, type traits, random numbers, tuples, fixed
size array, hash tables, regular expressions, C99 cmpat

 Added threading, unique_ptr,forward_list, many
new algorithms

BoostCon 2011

© 2011 IBM Corporation24

Removed or Deprecated features

 Auto as a storage class

 Export semantics

 Register semantics

 Exception specification

 Auto_ptr

 Bind1st/bind2nd

BoostCon 2011

© 2011 IBM Corporation25

Agenda

 Is this legal C++03 code?

 C++0x/C1x standard

 C++ 0x issues since BoostCon 2010

 Bonus 1: C++ 0x Compiler Support Survey

 Questions?

BoostCon 2011

© 2011 IBM Corporation

Since BoostCon 2010

 FCD released and National ballots returned

 All national ballots comments addressed through

3 meetings

 Released FDIS in Mar 2011 in Madrid

 Proof reading done on completed document

 Submitted to ISO for next stage National Ballot

 Once approved, will ship as C++11

26 IBM

BoostCon 2011

© 2011 IBM Corporation

FCD ballot comments at Aug 2010 meeting

 All National bodies

approved with comment,

except one

 Fewer comments then from

CD1 (~500)

– Japan 110

– Great Britain 142

– Finland 19

– US 208

– Switzerland 36

– Germany 23

– Canada 24

27 IBM

Unresolved Accepted Modified Rejected Total

CWG 8 72 4 39 123

LWG 123 28 5 25 181

Editor 19 167 9 20 215

BoostCon 2011

© 2011 IBM Corporation

Key FCD comments
 A few comments asking specifically that

unimplemented features be removed
– Generalized constant expressions (constexpr): gcc

– Unrestricted unions: gcc

– alias templates: EDG

– explicit conversion operator functions: gcc 4.5

– Delegating constructors: IBM

– Raw strings: gcc 4.5

– noexcept: gcc 4.6

– Implicitly-defined move constructors/assignment operator functions: gcc

– Non-static data member initializers: fairly similar feature in Microsoft C++/CLI

 Features that were actually unimplemented at the time were:

– Move semantics for *this

– Inheriting constructors

– User-defined literals

 What happened to noexcept and the issue with terminate vs undefined?

28 IBM

BoostCon 2011

© 2011 IBM Corporation

Nov 2010 Fermi Lab meeting

 The most controversial meeting

– “The atomics have become unstable at Fermi Lab”

– Virtual controls, alignment and noreturn attributes

– Noexcept default on destructors and delete operators

– Noexcept in standard library

– Restricting implicit move generation

– Implicit inference of noexcept

29 IBM

BoostCon 2011

© 2011 IBM Corporation

Mar 2011 Madrid meeting

 Dealt with key issues/controversies early

 Resulted in smooth FDIS with unanimous support

 Key design Issues were:

– Possible Removal of several features

– Complications with range_for found in Boost

– Reconsider the impact of noexcep

– Issue with a few keyword places with hiding and

overriding rules

– Race condition with copying thrown exceptions

30 IBM

BoostCon 2011

© 2011 IBM Corporation

Atomics have become unstable

 C and C++ atomics are slightly incompatible

– C has _Atomic as a qualifier on all types

– C and C++ support different atomic operations

– Different mutexes

31 IBM

BoostCon 2011

© 2011 IBM Corporation32

Operations available on atomic types

atomic_flag atomic_bool,

atomic<class_ty

pe>

atomic_address,

atomic<T*>

atomic_integra

l-type,

atomic<integra

l-type>

test_and_set,

clear

Y

is_lock_free Y Y Y

load, store,

exchange,

compare_exchan

ge_weak+strong

Y Y Y

fetch_add (+=),

fetch_sub (-=),

++, --

Y Y

fetch_or (|=),

fetch_and (&=),

fetch_xor (^=),

Y

BoostCon 2011

© 2011 IBM Corporation

Override controls, alignment, and noreturn attribute

 Attributes, keywords or

contextual keywords

class [[base_check]] Derived

: public Base {

public:

virtual void f [[override]]

();

virtual double g [[final]] (

int);

virtual void h [[hiding]] ();

};

33 IBM

•Post Fermi-lab

class Derived explicit : public

Base {

public:

virtual void f () override;

virtual double g(int) final;

virtual void h() new;

};

•.

BoostCon 2011

© 2011 IBM Corporation

Fails for types hiding types

struct X {/*...*/};

struct Y {/*...*/};

class B {

typedef X value_type;

};

class D explicit : public B {

typedef Y value_type; // well-

formed if "new" can only

appertain to functions

};

34 IBM

•removed the "hiding" feature

and the "explicit" annotation

on classes

•We don‟t know the best

solution, so delay this until

later

BoostCon 2011

© 2011 IBM Corporation

Alignment and noreturn attributes

 alignas in C++, _Alignas in C

 [[noreturn]] in C++, _Noreturn in C

35 IBM

BoostCon 2011

© 2011 IBM Corporation

The problem with range-based for

#include <vector>

namespace n

{

struct X { void begin(); };

struct Y { void begin(); };

template<typename T> void begin(T& t) { t.begin(); }

}

int main()

{

std::vector<n::X> v;

for (auto i : v) // error

{

// ...

}

}
36 IBM

•Produces this error

•error: call of

overloaded

'begin(std::vector<n::

X>)&' is ambiguous

BoostCon 2011

© 2011 IBM Corporation

Range-for problem found from Boost

 A good solution was found, read N3271

 specifies that the range-based for loop should

look for member functions begin() and end() first

– fall back to the current ADL-based behavior only when

the type of the range does not contain either "begin" or

"end".

37 IBM

BoostCon 2011

© 2011 IBM Corporation

Race condition in copying exceptions
 A new C++0x feature is the ability to capture exceptions

– and rethrows them later without knowing what type they are

– Allows you to propagate the exceptions across threads

• Capture exception in one thread,

• pass std::exception_ptr object across to the other thread

• Use std::retrow_exception() on that other thread to rethrow

• Std::async, std:;promise, std::packaged_task‟s exception

propagation is build on this feature

 Problem

– Original proposal required the exception be copied when it was

captured with std::current_exception()

– C++ABI did not store the copy constructor for exception objects

– std:;current_exception() has no copy ability, so copy not req‟d

– if any thread modified the object, then we have race
38 IBM

BoostCon 2011

© 2011 IBM Corporation

Common idiom?

 Catch exceptions by

non-const reference, to

add further info to the

exception, then rethrow

– Propagated from another

thread through std::async,

using std::shared_future

or std:;expception_ptr

– Some platforms allow

copying the exception,

and some do not

39 IBM

try

{

x = f();

}

catch (Y& y)

{

y.modify();

throw;

}

try

{

shared_future<X>

sp = async(f);

x = sp.get();

}

catch (Y& y)

{

y.modify();

throw;

}

BoostCon 2011

© 2011 IBM Corporation

Proposed Solutions

 Current proposed resolution:

– make current_exception() copy

– and make rethrow_exception() copy

 Known issues:

– Pessimizes cases that don‟t need the copy

– Doesn‟t work for reference classes

– Doesn‟t work for mutating copy classes

– Breaks Itanium ABI compatibility

40 IBM

BoostCon 2011

© 2011 IBM Corporation

C++ ABI

void __cxa_throw(void* thrown_exception,

std::type_info* tinfo,

void (*dest)(void*));

 When the client writes “throw X”, the compiler
creates a call to __cxa_throw().

– Pass void* to an X.

– Pass type_info* for X.

– Pass pointer to ~X().

 Does not pass information on how to copy an
X.

41 IBM

BoostCon 2011

© 2011 IBM Corporation

Option 1 for fixing C++ABI

void __cxa_throw_copyable(

void* thrown_exception,

std::type_info* tinfo,

void (*dest)(void*),

void (*copy)(void* d, void* s, size_t sz));

 Problems:

– Our previous OS‟s do not have this function.

– Thus, code compiled for C++0x, even if it did not use

exception_ptr, could not run on our current and

previous OS‟s.
42 IBM

BoostCon 2011

© 2011 IBM Corporation

Option 2 for fixing C++ABI

void __cxa_throw(void* thrown_exception,

std::type_info* tinfo,

void (*dest)(void*));

 But store copy constructor pointer in type_info.

– Which copy constructor pointer?

– Expensive to extract for every call to typeid().

– ODR violation when mixing C++03/C++0x weak
type_info‟s for same type.

43 IBM

BoostCon 2011

© 2011 IBM Corporation

Solution: use good style

 Catch by value

instead of by

reference.

– Force a copy of Y

exactly when and

where you need it.

44 IBM

try

{

shared_future<X> sp = async(f);

x = sp.get();

}

catch (Y y)

{

y.modify();

throw y;

}

BoostCon 2011

© 2011 IBM Corporation

Noexcept is a replacement for empty throw spec
 At March 2011 meeting, deprecated throw-specifcations

– throw(), throw (A, B)

 Check out

– “Boost Exception Specification Rationale”, “A Pragmatic Look at

Exception Specifications”

• “A non-inline function is the one place a „throws nothing‟ [i.e., throw()]

exception-specification may have some benefit with some compilers.”

 Replacement is:

– void f() noexcept {…}

• Optionally takes a compile-time constant expression

– True: f will not throw

 Issues/controversy:

– If user violates the promise, should it terminate, or be

undefined

45 IBM

http://www.boost.org/development/requirements.html
http://www.gotw.ca/publications/mill22.htm
http://www.gotw.ca/publications/mill22.htm

BoostCon 2011

© 2011 IBM Corporation

Noexcept default on destructors and delete
operators

 Tentative resolution from Aug 2010 meeting

 Every destructor/delete op will be noexcept by

default

– Unless a member or base destructor is noexcept(false)

– can still explicitly override the default with noexcept(false)

– Why is this good?

• Inherently unsafe to use a type with throwing destructor

– Can lead to 2 exceptions in flight, which violates C++ rules,

leading to immediate terminate

• Could break some code


46 IBM

BoostCon 2011

© 2011 IBM Corporation

Applying noexcept to the Standard Library

 Started applying noexcept liberally to Standard

library in Nov 2010 meeting

– All empty exception specifications e.g. throw()

– All descriptions with throws nothing

– Analyze all move constructors

– a little too enthusiastically

– Why?

• How to you test something if it is all noexcept?

47 IBM

BoostCon 2011

© 2011 IBM Corporation

Conservative use of noexcept N3297

 Liberally application of noexcept was reversed in

Mar 2011 meeting with this paper

– Hard to test if all functions are not allowed to throw

– Guidelines for marking noexcept

• No library destructor should throw.

• Wide contract is unconditionally noexcept

• If Swap function, move-constructor, move-assignment is

conditionally-wide, then mark as conditionally noexcept

• Extern “C” functions (atomics) are unconditionally noexcept

– Lead to some controversial points where it was not clear

whether noexcept should be applied

• See N3269: shared_future(future<R>&& rhs) should be

allowed to throw

48 IBM

BoostCon 2011

© 2011 IBM Corporation

Implicit deduction of noexcept

template< class T > auto forward_with_side_effect(T& t)

noexcept(noexcept(bar(t)) && noexcept(foo(t))) -> decltype(foo(t))

{

bar(t);

return foo(t);

}

 Ease the burden of writing complicated noexcept

declarations

 Going too far with a relative new feature

 Rejected soundly but may be resurrected with

more experience
49 IBM

BoostCon 2011

© 2011 IBM Corporation

To move or not to move, that is the question!

 FCD: compilers should implicitly generate move

constructors and move assignment operators akin

to the copy constructors and copy assignment

operators that are currently auto generated.

– N3153: Implicit Move Must Go by Dave Abrahams, and

N3174: To move or not to move by Bjarne Stroustrup.

– can breakages be limited by restricting the cases in

which the move members are implicitly generated, or

whether implicit generation should be abandoned

altogether?

50 IBM

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3153.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3174.pdf

BoostCon 2011

© 2011 IBM Corporation

Alternatives
 1.Generate move operations unless a user-specified copy, move, or

destructor is declared (e.g., =default), using the default state as the

moved-from state

– 1.Details: See the “Moving right along” paper

 2.briefly: generate unless a copy, move, or destructor is declared

(e.g., =default), using the state resulting from member moves as the

moved-from state).

– 1.Details: N3174

– 2.This breaks more invariants than [1] but is simpler to implement.

 3.Generate move operations unless a copy operation is

declared (e.g., =default).

– 1.This is the FCD status quo which will become the standard unless we see a

large majority for an alternative

 4.Generate move operations only if the programmer asks for it

using =default.

 5.Never generate move operations.
51 IBM

BoostCon 2011

© 2011 IBM Corporation

Tightened the conditions for generating implicit
move: N3203 (Option 2)

 Treats copy, move and destruction as a group

– if you specify any of them manually then the compiler

won't generate any move operations

 if you specify a move operation then the compiler

won't generate a copy

 would have been nice to prevent implicit

generation of copy operations under the same

circumstances,

– but for backwards compatibility this is still done when it

would be done under C++03,

– though this is deprecated if the user specifies a

destructor or only one of the copy operations.
52 IBM

BoostCon 2011

© 2011 IBM Corporation53

Agenda

 Is this legal C++03 code?

 C++0x/C1x standard

 C++ 0x issues since BoostCon 2010

 Bonus 1: C++ 0x Compiler Support Survey

 Questions?

BoostCon 2011

© 2011 IBM Corporation54

C++0x Compilers
 C++0x support publicly available in 110510

– GNU 4.6, Mar 28, 2011

– Intel 12.0 (EDG), Nov 7, 2010

– IBM xlC++ 11.1, Apr 23, 2010

– Microsoft Visual C++ 2010, Apr 12, 2010

– HP aC++ A.06.22 (EDG), Dec, 2008

– Comeau 4.3.10.1 (EDG), Oct 6, 2008

– Borland/CodeGear C++ Builder 2009 Compiler 6.10, 2H 2008

 No C++0x features available publicly as of 100509 on their latest
compiler, but we do know from their blogs about their future plans

– Sun Studio 12

 Clang/LLVM status

– Language very sparsely supported

– Library 98% done

All information based on publicly available data

BoostCon 2011

© 2011 IBM Corporation55

Updated page of C++0x support

 http://wiki.apache.org/stdcxx/C%2B%2B0xCompile

rSupport

– Maintained by Martin Sebor, me, and other compiler

Tech leads from other company

http://wiki.apache.org/stdcxx/C++0xCompilerSupport
http://wiki.apache.org/stdcxx/C++0xCompilerSupport

BoostCon 2011

© 2011 IBM Corporation56

IBM XL C++ and z/OS C++ compiler status (April, 2011)
 Released in XL C/C++ for AIX/Linux

V10.1 in mid 2008

– -qlanglvl=extended0x option
(umbrella option for all future 0x
features)

– long long,

– sync C99 preprocessor (Empty
macro arguments, Variadic
macros, Trailing comma in enum
definition, Concatenation of mixed-
width string literals)

 In C/C++ for AIX for V11.1, in 2Q 2010
(include all of above)

– Variadic template

– Auto

– Decltype

– Namespace association

– Delegating constructor

– Static assert

 Supports Boost 1.40

All information subject to change without notice

in zOS XL C/C++ V1R11

Extern template

Extended friend

-qwarn0x

V1R12

Long long

C99 preprocessor

Auto

Decltype

Variadic template

Namespace association

Delegating constructor

Static assert

BoostCon 2011

© 2011 IBM Corporation57

GNU

 http://gcc.gnu.org/projects/cxx0x.html

 4.3/4.4/4.5/4.6 support:

– http://gcc.gnu.org/gcc-4.3/cxx0x_status.html

– http://gcc.gnu.org/gcc-4.4/cxx0x_status.html

– http://gcc.gnu.org/gcc-4.5/cxx0x_status.html

– http://gcc.gnu.org/gcc-4.6/cxx0x_status.html

 -std=c++0x or -std=gnu++0x

 GNU will write their own C++0x library, libstdC++, as they have always done:

– http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#id476343

– Possibly the biggest holdback from their completion

 Usually supports latest Boost (Boost 1.46.1)

 Additional Branch

– Concepts

– Lambda

– Delegating constructors

– Raw strings

All information based on publicly available data

http://gcc.gnu.org/projects/cxx0x.html
http://gcc.gnu.org/gcc-4.4/cxx0x_status.html
http://gcc.gnu.org/gcc-4.4/cxx0x_status.html
http://gcc.gnu.org/gcc-4.4/cxx0x_status.html
http://gcc.gnu.org/gcc-4.5/cxx0x_status.html
http://gcc.gnu.org/gcc-4.5/cxx0x_status.html
http://gcc.gnu.org/gcc-4.5/cxx0x_status.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html

BoostCon 2011

© 2011 IBM Corporation58

GNU 4.3/4.4/4.5/4.6 (110410)

 4.3: Rvalue Reference, Variadic Template, Static Assert, Decltype,

Right Angle Bracket, C99 Preprocessor, Extern Templates,

__func__, Long long

 4.4:Extending variadic template template parameters, Auto,

multideclarator auto, removing auto as storage-class specifier, new

function declarator syntax, Propagating exceptions, Strongly-typed

enums, New character types, Unicode string literals, Standard

Layout types, Default and deleted functions, Inline namespaces

 4.5:Initializer lists, Lambdas, Explicit conversion, Raw string

literals, UCN Literals, Extending sizeof, Local and unamed types as

template arguments

 4.6: null pointer, forward declaration of enums, constexpr,

unrestricted unions, range-based for, noexcept, move special

member functions,

BoostCon 2011

© 2011 IBM Corporation59

Intel and likely HP/Comeau (use EDG frontend)

 Intel C++ 12.0 has

– -qstd=c++0x (Linux/Mac OS X), /Qstd:c++0x
(Windows)

– rvalue references

– Standard atomics

– Support of C99 hexadecimal floating point
constants when in ―Windows C++ mode

– Right angle brackets

– Extended friend declarations

– Mixed string literal concatenations

– Support for long long

– Variadic macros

– Static assertions

– Auto-typed variables

– Extern templates

– __func__ predefined identifier

– Declared type of an expression (decltype)

– Universal character name literals

– Strongly-typed enums

– Lambdas

All information based on publicly available data

• Intel C++ Standard Library is based on
Microsoft on Windows (uses
Dinkwumare) and GNU on Linux
(uses GNU‟s libstdC++), Boost 1.39

• HP aC++ V6 has been quiet about
their C++ support, but will likely peggy-
back on EDG as they move to new
versions, uses STLport 5.1.7 as C++
Library, libstd runtime library matches
Rogue Wave Version 1.2.1. , libstd_v2
runtime library matches Rogue Wave
Version 2.02.01. Boost 1.38

• Comeau is also very active in
delivering C++0x as soon as EDG
delivers it to them, runs on multiple
platforms, uses their own libcomo 36
based on an old SGI C++ Std Library

BoostCon 2011

© 2011 IBM Corporation60

MS VS C++ 2010

 http://blogs.msdn.com/vcblog/archive/2010/04/06/c-0x-
core-language-features-in-vc10-the-table.aspx

• Lambdas

• Auto

• Static_assert

• Rvalue references

• decltype

• Nullptr

• Extern templates

• Right angle brackets

• Local and unamed types as template arguments

• Long long

• Exception_ptr

 Supports Boost 1.40

 Traditionally bought from Dinkumware C++
Library

All information based on publicly available data

BoostCon 2011

© 2011 IBM Corporation61

Sun Studio (Version 13 and higher?)

 Steve Clamage’s post (080516):

– http://forums.sun.com/thread.jspa?threadID=5296590
– “Right now, we are working on providing binary compatibility with g++ as an option in the next compiler

release. “

– “We won't release an official (stable, fully-supported) product with C++0X features until the standard is
final. Until then, any feature could change in unpredictable ways. “

– “Beginning some time next year, we expect to have Express releases with some C++0X features.
Express releases are our way of providing compilers with experimental features that might not be
stable yet. It gives our customers a chance to try them out and provide feedback before they become
part of a stable release. “

 No known plans on C++0x Library based on Steve Clamage’s post (070917):

– http://forums.sun.com/thread.jspa?threadID=5165721

– Ships with libCstd, an ancient version of Rogue Wave C++ library from 1999 for binary compatibility

– Ships with STLport 4.5.3 for enhanced performance

– Boost 1.34.1

– Can work with open source Apache C++ Standard Library derived from Rogue Wave 4.1.2

– “A new C++ standard is in progress, planned for completion in 2009. We will release a new compiler,
C++ 6.0, conforming to the new standard, including a fully-conforming standard library as the default.
The new library will be shipped as part of Solaris.
We also plan to maintain compatibility with C++ 5.x and libCstd as an option. Details are still in the
planning stage. “

All information based on publicly available data

http://forums.sun.com/thread.jspa?threadID=5165721

BoostCon 2011

© 2011 IBM Corporation62

Borland/CodeGear C++Builder Compiler 6.10
2009

 http://www.codegear.com/article/38534/images/38534/CBuilder2009Datasheet.pdf

 Rvalue references

 decltype

 Variadic templates (in testing)

 Scoped enumerations

 static_assert

 explicit conversion operators

 Attributes [[final]] and [[noreturn]]

 alignof

 Type traits

 Unicode character types and literals

 long long

 variadic macros

 Dinkumware C++Std Library

 Boost 1.35

All information based on publicly available data

http://www.codegear.com/article/38534/images/38534/CBuilder2009Datasheet.pdf

BoostCon 2011

© 2011 IBM Corporation63

Clang/llvm

 Core language:http://clang.llvm.org/cxx_status.html

– Very far from complete, can‟t compile basic tests

– Variadic template, rvalue ref, extern templ, inline namespace,

long long

 Library:http://libcxx.llvm.org/index.html

 On Mac OS X/i386/x86_64

 Writes its own library libc++.a:

– About 98% complete

– Only missing atomics

http://clang.llvm.org/cxx_status.html

BoostCon 2011

© 2011 IBM Corporation64

Food for thought and Q/A

 This is the chance to get a copy before you have to pay for
it:

– C++ : http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf

– C: http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

 Participate and feedback to Compiler

– What features/libraries interest you or your customers?

– What problem/annoyance you would like the Std to resolve?

– Is Special Math important to you?

– Do you expect 0x features to be used quickly by your customers?

 Talk to me at my blog:

– http://www.ibm.com/software/rational/cafe/blogs/cpp-standard

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf

BoostCon 2011

© 2011 IBM Corporation65

My blogs and email address

 michaelw@ca.ibm.com

 Rational C/C++ cafe:
http://www.ibm.com/software/rational/cafe/community/ccpp

 My Blogs:

 C++ Language & Standard
http://www.ibm.com/software/rational/cafe/blogs/cpp-standard

 Parallel & Multi-Core Computing
http://www.ibm.com/software/rational/cafe/blogs/ccpp-parallel-multicore

 Commercial Computing
http://www.ibm.com/software/rational/cafe/blogs/ccpp-commercial

 Boost test results
http://www.ibm.com/support/docview.wss?rs=2239&context=SSJT9L&uid=swg27006911

 C/C++ Compilers Support Page
http://www.ibm.com/software/awdtools/ccompilers/support/

 C/C++ Feature Request Interface
http://www.ibm.com/support/docview.wss?uid=swg27005811

 XL Fortran Compiler Support Page
http://www.ibm.com/software/awdtools/fortran/xlfortran/support/

 XL Fortran Feature Request Interface
http://www.ibm.com/support/docview.wss?uid=swg27005812

http://www.ibm.com/software/rational/cafe/blogs/cpp-standard
http://www.ibm.com/software/rational/cafe/blogs/cpp-standard
http://www.ibm.com/software/rational/cafe/blogs/cpp-standard

BoostCon 2011

© 2011 IBM Corporation66 IBM

Acknowledgement

 Some slides are borrowed from committee

presentations by various committee members,

their proposals, and private communication

