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Agenda

 Is this legal C++03 code?

 C++0x/C1x standard

 C++ 0x issues since BoostCon 2010

 Bonus 1: C++ 0x Compiler Support Survey

 Questions?
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Is this legal C++03 syntax?

template<class T> using Vec = 

vector<T,My_alloc<T>>; 

Vec<double> v = { 2.3, 1.2, 6.7, 4.5 }; 

//sort(v); 

for(auto p = v.begin(); p!=v.end(); ++p) 

cout << *p << endl;
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Hello Concurrent World

#include <iostream>

#include <thread> //#1

void hello() //#2

{

std::cout<<"Hello Concurrent World"<<std::endl;

}

int main()

{

std::thread t(hello); //#3

t.join(); //#4

}
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Is this valid C++ today? Are these equivalent?

int x = 0;

atomic<int> y = 0;

Thread 1:
x = 17;
y.store(1, 
memory_order_release);
// or: y.store(1);

Thread 2:
while 
(y.load(memory_order_acq
uire) != 1)
// or: while 
(y.load() != 1)

assert(x == 17); 

int x = 0;

atomic<int> y = 0;

Thread 1:
x = 17;
y = 1;

Thread 2:
while (y != 1)

continue;
assert(x == 17);
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Agenda

 Is this legal C++03 code?

 C++0x/C1x standard

 C++ 0x issues since BoostCon 2010

 Bonus 1: C++ 0x Compiler Support Survey

 Questions?
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C and C++ Standard Progress

1998 C++ 

Std

1999 C 

Std

2003 C++ 

TC1

2005 C++ 

TR1

2004 C 

TC2

2009: 

removed 

Concepts

CD1 

published

2011 

/2012 

C++0x*

2001 C 

TC1

C 12*

It‟s been >10 years since last C/C++ Standard!

2007 C 

TC3
2010: 

C++0x 

FCD 

publishe

d

2010: 

C1x 

CD1 

publishe

d

*Ratification date subject to change without notice

2011: 

C1x DIS 

publishe

d

2011: 

C++0x 

FDIS 

publishe

d
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Major stages of C++0x

DONE in 

9/2007

DONE in 

9/2008

DONE in  

3/2010

DONE in 

3/2011

In 

MADRID
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C++0x goals



BoostCon 2011

© 2011 IBM Corporation12 IBM

C++0x: areas of language change

Removed 

June 2009
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C++0x, C1x

 C++0x: Codename for the planned new standard for the C++ 
programming language

– Will replace existing ISO/IEC 14882 standard published in 1998 
(C++98) and updated in 2003 (C++03)

– Many new features to core language

– Many library features: most of C++ Technical Report 1 (TR1)

– FDIS in March 2011

– X=A,B,C,D,E,F? 

– C++11?

 C1x: Codename for the planned new standard for 
the C programming language

– Will replace existing ISO/IEC 9899 standard published in 1999

– DIS in March 2011

May be 

X=B!
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What‟s in C++0x?

 Memory Model and Concurrency [N2138]

 Concurrent Libraries [N2094]

 Initialization [N2116]

 Rvalue references [N2118]

 Other primary features

– Constant expressions, automatic types

 Expanded Library from most of TR1

 140 features, 600 bug fixes to the standard

 What’s out?

– Concepts [N2081]

– Garbage Collection (Replaced by smaller proposal)
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What‟s in C1x?

 Alignment specificaiton

 _Noreturn specifier

 Type-generic expressions

 Multithreading support

 Unicode

 Deprecate gets

 Bounds checking interfaces

 Analyzability features

 Subnormal macros

 Anonymous structs and unions

 Static assertions

 Create and pen mode for fopen

 Quick_exit

 Macros for constructing complex values
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What is C++0x?

 Simplifying simple tasks 
– Deducing types, ranged for loops,

 Initialization 
– Uniform { }, no accidental narrowing

 Support for low-level programming 
– Standard layout types, unions, generalized constant expr

 Tools for writing classes 
– Init list constructor, inheriting constructor, move, user-defined literals

 Concurrency 
– Memory model, threads, locks, atomics, mutex, future, shared_future, atomic_future, 

promise, async()

 Standard library components 
– Containers, regular expression, random numbers, time, resource mgmt, utility, 

metaprogramming, Garbage collection ABI
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Sum of all things C++0x

 • __cplusplus 

 • alignments 

 • attributes 

 • atomic operations 

 • auto  (type deduction from initializer) 

 • C99 features 

 • enum class  (scoped and strongly typed enums) 

 • copying and rethrowing exceptions 

 • constant expressions  (generalized and guaranteed; 
constexpr) 

 • decltype 

 • default template parameters for function 

 • defaulted and deleted functions  (control of defaults) 

 • delegating constructors 

 • Dynamic Initialization and Destruction with 
Concurrency 

 • explicit conversion operators 

 • extended friend syntax 

 • extended integer types 

 • extern templates 

 • for statement ; see range for statement 

 • generalized SFINAE rules 

 • Uniform initialization syntax and semantics 

 • unions  (generalized) 

 • user-defined literals 

 • variadic templates 

 • in-class member initializers 

 • inherited constructors 

 • initializer lists  (uniform and general initialization) 

 • lambdas 

 • local classes as template arguments 

 • long long integers  (at least 64 bits) 

 • memory model 

 • move semantics; see rvalue references 

 • Namespace Associations  (Strong using) 

 • Preventing narrowing 

 • null pointer  (nullptr) 

 • PODs  (generalized) 

 • range for statement 

 • raw string literals 

 • right-angle brackets 

 • rvalue references 

 • static (compile-time) assertions  (static_assert) 

 • suffix return type syntax  (extended function 
declaration syntax) 

 • template alias 

 • template typedef ; see template alias 

 • thread-local storage  (thread_local) 

 • unicode characters 
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List of Standard features and papers (110504)

 C++0x (FDIS):

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf

 C++0x (FCD)

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf

 c++0x (CD1):

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n3000.pdf

 Summary of Core language and Library State:

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2869.html

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2870.html

 Summary of C++0x CD1

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2871.html

 Summary of C++ TR1

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2364.html

 TR1(DTR):

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf

 Decimal TR(PDTR):

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2732.pdf

 Math(FCD):

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2717.pdf

 C1x(DIS)

– http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2717.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2717.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2717.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2717.pdf


BoostCon 2011

© 2011 IBM Corporation19

What are the STD documents and their status?

 Library TR1: Draft Technical Report

 C++0x: Final Draft International Standard (FDIS), 
has 13/14 TR1 libraries

 C1x: Draft International Standard (DIS)

 Special Math Library: Final Committee Draft

 Decimal Floating Point TR: Draft Technical 
Report

 POSIX C++: working draft, target 2012/13

 C++ ABI: working draft, ongoing discussion on 
mangling, and common-vendor interoperability
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Feature and defect count


Language

–70 features

–300 defects ( in the C++ Standard)


Runtime

–70 features

–230 defects ( in the C++ Standard)


Too many features to be done in one release

–stage across many compiler releases over several years

–not all Standard defects translate into compiler issues
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Performance Opportunities, Parallelism, Usability in future 
C++0x features

 Improve Execution Time

– memory model, concurrency/atomics, rvalue references, pods, 
variadic template, Concepts, auto

 Increase Compile Time

– Concepts, most template features (except variadic template)

 Decrease Compile Time

– Variadic template

 Improve usage/teachability

– Auto, initialization, decltype

 Supports concurrency

– Atomics, fences, basic mutlithreading library, futures
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Features for whom?

 Library enhancements

 For Class writers

– Move, rvalue ref, deleted and default functions, delegating, inheriting

 For Library writers

– Static assert, explicit conversion, variadic template, decltype

 For you

– >>, auto, range-based for, nullptr, unicode, raw strings, uniform init, 
init lists, lambda, trailing return, template aliases, concurrency

 For everyone else

– Class enum, unrestricted union, time library, local types as template 
args, C99 compat, scoped allocators, constexpr, user-defined literals, 
relaxed POD, extern template, sizeof on class data members, & and 
&& member functions, in-class init of static data member, attributes
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C++0x Library

 Start with original C++98 library

– Improved performance with rvalue reference

– Used variadic templates to improve compile time

– Potential binary incompatibility with C++98 library strings

– Reference counting not allowed

 Added 13/14 TR1 libraries

– Reference wrapper, smart ptrs, return type determination, 
enhanced member pointer adapter, enhanced binder, 
generalized functors, type traits, random numbers, tuples, fixed 
size array, hash tables, regular expressions, C99 cmpat

 Added threading, unique_ptr,forward_list, many 
new algorithms
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Removed or Deprecated features

 Auto as a storage class

 Export semantics

 Register semantics

 Exception specification

 Auto_ptr

 Bind1st/bind2nd



BoostCon 2011

© 2011 IBM Corporation25

Agenda

 Is this legal C++03 code?

 C++0x/C1x standard

 C++ 0x issues since BoostCon 2010

 Bonus 1: C++ 0x Compiler Support Survey

 Questions?
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Since BoostCon 2010

 FCD released and National ballots returned

 All national ballots comments addressed through 

3 meetings

 Released FDIS in Mar 2011 in Madrid

 Proof reading done on completed document

 Submitted to ISO for next stage National Ballot

 Once approved, will ship as C++11

26 IBM
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FCD ballot comments at Aug 2010 meeting

 All National bodies 

approved with comment, 

except one

 Fewer comments then from 

CD1 (~500)

– Japan 110

– Great Britain 142

– Finland 19

– US 208

– Switzerland 36

– Germany 23

– Canada 24

27 IBM

Unresolved Accepted Modified Rejected Total

CWG 8 72 4 39 123

LWG 123 28 5 25 181

Editor 19 167 9 20 215
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Key FCD comments 
 A few comments asking specifically that 

unimplemented features be removed
– Generalized constant expressions (constexpr): gcc

– Unrestricted unions: gcc

– alias templates: EDG

– explicit conversion operator functions: gcc 4.5

– Delegating constructors: IBM

– Raw strings: gcc 4.5

– noexcept: gcc 4.6

– Implicitly-defined move constructors/assignment operator functions: gcc

– Non-static data member initializers: fairly similar feature in Microsoft C++/CLI

 Features that were actually unimplemented at the time were:

– Move semantics for *this

– Inheriting constructors

– User-defined literals

 What happened to noexcept and the issue with terminate vs undefined?

28 IBM
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Nov 2010 Fermi Lab meeting

 The most controversial meeting

– “The atomics have become unstable at Fermi Lab”

– Virtual controls, alignment and noreturn attributes

– Noexcept default on destructors and delete operators

– Noexcept in standard library

– Restricting implicit move generation

– Implicit inference of noexcept

29 IBM
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Mar 2011 Madrid meeting

 Dealt with key issues/controversies early

 Resulted in smooth FDIS with unanimous support

 Key design Issues were:

– Possible Removal of several features

– Complications with range_for found in Boost

– Reconsider the impact of noexcep

– Issue with a few keyword places with hiding and 

overriding rules

– Race condition with copying thrown exceptions

30 IBM
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Atomics have become unstable

 C and C++ atomics are slightly incompatible

– C has _Atomic as a qualifier on all types

– C and C++ support different atomic operations

– Different mutexes

31 IBM
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Operations available on atomic types

atomic_flag atomic_bool, 

atomic<class_ty

pe>

atomic_address, 

atomic<T*>

atomic_integra

l-type, 

atomic<integra

l-type>

test_and_set, 

clear

Y

is_lock_free Y Y Y

load, store, 

exchange, 

compare_exchan

ge_weak+strong

Y Y Y

fetch_add (+=), 

fetch_sub (-=),

++, --

Y Y

fetch_or (|=), 

fetch_and (&=), 

fetch_xor (^=), 

Y
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Override controls, alignment, and noreturn attribute

 Attributes, keywords or 

contextual keywords

class [[base_check]] Derived 

: public Base { 

public: 

virtual void f [[override]] 

(); 

virtual double g [[final]] ( 

int ); 

virtual void h [[hiding]] (); 

};

33 IBM

•Post Fermi-lab

class Derived explicit : public 

Base { 

public: 

virtual void f () override;   

virtual double g( int ) final;

virtual void h() new; 

};

•.
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Fails for types hiding types

struct X {/*...*/};

struct Y {/*...*/};

class B {

typedef X value_type;

};

class D explicit : public B {

typedef Y value_type; // well-

formed if "new" can only 

appertain to functions

};

34 IBM

•removed the "hiding" feature 

and the "explicit" annotation 

on classes

•We don‟t know the best 

solution, so delay this until 

later 
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Alignment and noreturn attributes

 alignas in C++, _Alignas in C

 [[noreturn]] in C++, _Noreturn in C

35 IBM
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The problem with range-based for 

#include <vector> 

namespace n 

{ 

struct X { void begin(); }; 

struct Y { void begin(); }; 

template<typename T> void begin(T& t) { t.begin(); } 

} 

int main() 

{ 

std::vector<n::X> v; 

for (auto i : v) // error 

{ 

// ... 

} 

} 
36 IBM

•Produces this error

•error: call of 

overloaded 

'begin(std::vector<n::

X>)&' is ambiguous
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Range-for problem found from Boost

 A good solution was found, read N3271

 specifies that the range-based for loop should 

look for member functions begin() and end() first

– fall back to the current ADL-based behavior only when 

the type of the range does not contain either "begin" or 

"end".

37 IBM
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Race condition in copying exceptions
 A new C++0x feature is the ability to capture exceptions 

– and rethrows them later without knowing what type they are

– Allows you to propagate the exceptions across threads

• Capture exception in one thread, 

• pass std::exception_ptr object across to the other thread

• Use std::retrow_exception() on that other thread to rethrow

• Std::async, std:;promise, std::packaged_task‟s exception 

propagation is build on this feature

 Problem

– Original proposal required the exception be copied when it was 

captured with std::current_exception()

– C++ABI did not store the copy constructor for exception objects

– std:;current_exception() has no copy ability, so copy not req‟d

– if any thread modified the object, then we have race
38 IBM
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Common idiom?

 Catch exceptions by 

non-const reference, to 

add further info to the 

exception, then rethrow

– Propagated from another 

thread through std::async, 

using std::shared_future 

or std:;expception_ptr

– Some platforms allow 

copying the exception, 

and some do not

39 IBM

try

{

x = f();

}

catch (Y& y)

{

y.modify();

throw;

}

try

{

shared_future<X> 

sp = async(f);

x = sp.get();

}

catch (Y& y)

{

y.modify();

throw;

}
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Proposed Solutions

 Current proposed resolution:

– make current_exception() copy

– and make rethrow_exception() copy

 Known issues:

– Pessimizes cases that don‟t need the copy

– Doesn‟t work for reference classes

– Doesn‟t work for mutating copy classes

– Breaks Itanium ABI compatibility

40 IBM
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C++ ABI

void __cxa_throw(void* thrown_exception,

std::type_info* tinfo,

void (*dest)(void*) );

 When the client writes “throw X”, the compiler 
creates a call to __cxa_throw().

– Pass void* to an X.

– Pass type_info* for X.

– Pass pointer to ~X().

 Does not pass information on how to copy an 
X.

41 IBM
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Option 1 for fixing C++ABI

void __cxa_throw_copyable(

void* thrown_exception,

std::type_info* tinfo,

void (*dest)(void*),

void (*copy)(void* d, void* s, size_t sz) );

 Problems:

– Our previous OS‟s do not have this function.

– Thus, code compiled for C++0x, even if it did not use 

exception_ptr, could not run on our current and 

previous OS‟s.
42 IBM
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Option 2 for fixing C++ABI

void __cxa_throw(void* thrown_exception,

std::type_info* tinfo,

void (*dest)(void*) );

 But store copy constructor pointer in type_info.

– Which copy constructor pointer?

– Expensive to extract for every call to typeid().

– ODR violation when mixing C++03/C++0x weak 
type_info‟s for same type.

43 IBM
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Solution: use good style

 Catch by value 

instead of by 

reference.

– Force a copy of  Y 

exactly when and 

where you need it.

44 IBM

try

{

shared_future<X> sp = async(f);

x = sp.get();

}

catch (Y y)

{

y.modify();

throw y;

}
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Noexcept is a replacement for empty throw spec
 At March 2011 meeting, deprecated throw-specifcations

– throw(), throw ( A, B)

 Check out

– “Boost Exception Specification Rationale”, “A Pragmatic Look at 

Exception Specifications”

• “A non-inline function is the one place a „throws nothing‟ [i.e., throw()] 

exception-specification may have some benefit with some compilers.”

 Replacement is:

– void f() noexcept {…}

• Optionally takes a compile-time constant expression

– True: f will not throw

 Issues/controversy:

– If user violates the promise, should it terminate, or be 

undefined

45 IBM

http://www.boost.org/development/requirements.html
http://www.gotw.ca/publications/mill22.htm
http://www.gotw.ca/publications/mill22.htm
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Noexcept default on destructors and delete 
operators

 Tentative resolution from Aug 2010 meeting

 Every destructor/delete op will be noexcept by 

default

– Unless a member or base destructor is noexcept(false)

– can still explicitly override the default with noexcept(false)

– Why is this good?

• Inherently unsafe to use a type with throwing destructor

– Can lead to 2 exceptions in flight, which violates C++ rules, 

leading to immediate terminate

• Could break some code


46 IBM
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Applying noexcept to the Standard Library

 Started applying noexcept liberally to Standard 

library in Nov 2010 meeting

– All empty exception specifications e.g. throw()

– All descriptions with throws nothing

– Analyze all move constructors 

– a little too enthusiastically

– Why?

• How to you test something if it is all noexcept?

47 IBM
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Conservative use of noexcept  N3297

 Liberally application of noexcept was reversed in 

Mar 2011 meeting with this paper

– Hard to test if all functions are not allowed to throw

– Guidelines for marking noexcept

• No library destructor should throw.

• Wide contract is unconditionally noexcept

• If Swap function, move-constructor, move-assignment is 

conditionally-wide, then mark as conditionally noexcept

• Extern “C” functions (atomics) are unconditionally noexcept

– Lead to some controversial points where it was not clear 

whether noexcept should be applied

• See N3269: shared_future(future<R>&& rhs) should be 

allowed to throw

48 IBM
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Implicit deduction of noexcept

template< class T > auto forward_with_side_effect( T& t )

noexcept( noexcept(bar(t)) && noexcept(foo(t)) ) -> decltype(foo(t))

{

bar(t);

return foo(t);

}

 Ease the burden of writing complicated noexcept 

declarations

 Going too far with a relative new feature

 Rejected soundly but may be resurrected with 

more experience
49 IBM
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To move or not to move, that is the question!

 FCD: compilers should implicitly generate move 

constructors and move assignment operators akin 

to the copy constructors and copy assignment 

operators that are currently auto generated.

– N3153: Implicit Move Must Go by Dave Abrahams, and 

N3174: To move or not to move by Bjarne Stroustrup.

– can breakages be limited by restricting the cases in 

which the move members are implicitly generated, or 

whether implicit generation should be abandoned 

altogether?

50 IBM

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3153.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3174.pdf
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Alternatives
 1.Generate move operations unless a user-specified copy, move, or 

destructor is declared (e.g., =default), using the default state as the 

moved-from state

– 1.Details: See the “Moving right along” paper

 2.briefly: generate unless a copy, move, or destructor is declared 

(e.g., =default), using the state resulting from member moves as the 

moved-from state).

– 1.Details: N3174 

– 2.This breaks more invariants than [1] but is simpler to implement.

 3.Generate move operations unless a copy operation is 

declared (e.g., =default).

– 1.This is the FCD status quo which will become the standard unless we see a 

large majority for an alternative 

 4.Generate move operations only if the programmer asks for it 

using =default.

 5.Never generate move operations. 
51 IBM
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Tightened the conditions for generating implicit 
move: N3203 (Option 2)

 Treats copy, move and destruction as a group

– if you specify any of them manually then the compiler 

won't generate any move operations

 if you specify a move operation then the compiler 

won't generate a copy

 would have been nice to prevent implicit 

generation of copy operations under the same 

circumstances, 

– but for backwards compatibility this is still done when it 

would be done under C++03, 

– though this is deprecated if the user specifies a 

destructor or only one of the copy operations.
52 IBM



BoostCon 2011

© 2011 IBM Corporation53

Agenda

 Is this legal C++03 code?

 C++0x/C1x standard

 C++ 0x issues since BoostCon 2010

 Bonus 1: C++ 0x Compiler Support Survey

 Questions?
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C++0x Compilers
 C++0x support publicly available in 110510

– GNU 4.6, Mar 28, 2011

– Intel 12.0 (EDG), Nov 7, 2010

– IBM xlC++ 11.1, Apr 23, 2010

– Microsoft Visual C++ 2010, Apr 12, 2010

– HP aC++ A.06.22  (EDG), Dec, 2008

– Comeau 4.3.10.1 (EDG), Oct 6, 2008

– Borland/CodeGear C++ Builder 2009 Compiler 6.10, 2H 2008

 No C++0x features available publicly as of 100509 on their latest 
compiler, but we do know from their blogs about their future plans

– Sun Studio 12

 Clang/LLVM status

– Language very sparsely supported

– Library 98% done

All information based on publicly available data
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Updated page of C++0x support

 http://wiki.apache.org/stdcxx/C%2B%2B0xCompile

rSupport

– Maintained by Martin Sebor, me, and other compiler 

Tech leads from other company

http://wiki.apache.org/stdcxx/C++0xCompilerSupport
http://wiki.apache.org/stdcxx/C++0xCompilerSupport
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IBM XL C++ and z/OS C++ compiler status (April, 2011)
 Released in XL C/C++ for AIX/Linux 

V10.1 in mid 2008

– -qlanglvl=extended0x option 
(umbrella option for all future 0x 
features)

– long long, 

– sync C99 preprocessor (Empty 
macro arguments, Variadic 
macros, Trailing comma in enum 
definition, Concatenation of mixed-
width string literals)

 In C/C++ for AIX for V11.1, in 2Q 2010 
(include all of above)

– Variadic template

– Auto

– Decltype

– Namespace association

– Delegating constructor

– Static assert

 Supports  Boost 1.40

All information subject to change without notice

in zOS XL C/C++ V1R11

Extern template

Extended friend

-qwarn0x

V1R12

Long long

C99 preprocessor

Auto

Decltype

Variadic template

Namespace association

Delegating constructor

Static assert
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GNU 

 http://gcc.gnu.org/projects/cxx0x.html

 4.3/4.4/4.5/4.6 support:

– http://gcc.gnu.org/gcc-4.3/cxx0x_status.html

– http://gcc.gnu.org/gcc-4.4/cxx0x_status.html

– http://gcc.gnu.org/gcc-4.5/cxx0x_status.html

– http://gcc.gnu.org/gcc-4.6/cxx0x_status.html

 -std=c++0x or -std=gnu++0x 

 GNU will write their own C++0x library, libstdC++, as they have always done:

– http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#id476343

– Possibly the biggest holdback from their completion

 Usually supports latest Boost (Boost 1.46.1)

 Additional Branch

– Concepts

– Lambda

– Delegating constructors

– Raw strings

All information based on publicly available data

http://gcc.gnu.org/projects/cxx0x.html
http://gcc.gnu.org/gcc-4.4/cxx0x_status.html
http://gcc.gnu.org/gcc-4.4/cxx0x_status.html
http://gcc.gnu.org/gcc-4.4/cxx0x_status.html
http://gcc.gnu.org/gcc-4.5/cxx0x_status.html
http://gcc.gnu.org/gcc-4.5/cxx0x_status.html
http://gcc.gnu.org/gcc-4.5/cxx0x_status.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html
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GNU 4.3/4.4/4.5/4.6 (110410)

 4.3: Rvalue Reference, Variadic Template, Static Assert, Decltype, 

Right Angle Bracket, C99 Preprocessor, Extern Templates, 

__func__, Long long

 4.4:Extending variadic template template parameters, Auto, 

multideclarator auto, removing auto as storage-class specifier, new 

function declarator syntax, Propagating exceptions, Strongly-typed 

enums, New character types, Unicode string literals, Standard 

Layout types, Default and deleted functions, Inline namespaces

 4.5:Initializer lists, Lambdas, Explicit conversion, Raw string 

literals, UCN Literals, Extending sizeof, Local and unamed types as 

template arguments

 4.6: null pointer, forward declaration of enums, constexpr, 

unrestricted unions, range-based for, noexcept, move special 

member functions,
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Intel and likely HP/Comeau (use EDG frontend)

 Intel C++ 12.0 has

– -qstd=c++0x (Linux/Mac OS X), /Qstd:c++0x 
(Windows)

– rvalue references

– Standard atomics

– Support of C99 hexadecimal floating point 
constants when in ―Windows C++ mode

– Right angle brackets

– Extended friend declarations

– Mixed string literal concatenations

– Support for long long

– Variadic macros

– Static assertions

– Auto-typed variables

– Extern templates

– __func__ predefined identifier

– Declared type of an expression (decltype)

– Universal character name literals

– Strongly-typed enums

– Lambdas

All information based on publicly available data

• Intel C++ Standard Library is based on 
Microsoft on Windows (uses 
Dinkwumare)  and GNU on Linux 
(uses GNU‟s libstdC++), Boost 1.39

• HP aC++ V6 has been quiet about 
their C++ support, but will likely peggy-
back on EDG as they move to new 
versions, uses STLport 5.1.7 as C++ 
Library,  libstd runtime library matches 
Rogue Wave Version 1.2.1. , libstd_v2 
runtime library matches Rogue Wave 
Version 2.02.01. Boost 1.38

• Comeau is also very active in 
delivering C++0x as soon as EDG 
delivers it to them, runs on multiple 
platforms, uses their own libcomo 36 
based on an old SGI C++ Std Library
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MS VS C++ 2010

 http://blogs.msdn.com/vcblog/archive/2010/04/06/c-0x-
core-language-features-in-vc10-the-table.aspx

• Lambdas

• Auto

• Static_assert

• Rvalue references

• decltype

• Nullptr

• Extern templates

• Right angle brackets

• Local and unamed types as template arguments

• Long long

• Exception_ptr

 Supports Boost 1.40

 Traditionally bought from Dinkumware C++ 
Library

All information based on publicly available data
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Sun Studio (Version 13 and higher?)

 Steve Clamage’s post (080516):

– http://forums.sun.com/thread.jspa?threadID=5296590
– “Right now, we are working on providing binary compatibility with g++ as an option in the next compiler 

release. “

– “We won't release an official (stable, fully-supported) product with C++0X features until the standard is 
final. Until then, any feature could change in unpredictable ways. “ 

– “Beginning some time next year, we expect to have Express releases with some C++0X features. 
Express releases are our way of providing compilers with experimental features that might not be 
stable yet. It gives our customers a chance to try them out and provide feedback before they become 
part of a stable release. “

 No known plans on C++0x Library based on Steve Clamage’s post (070917):

– http://forums.sun.com/thread.jspa?threadID=5165721

– Ships with libCstd, an ancient version of Rogue Wave C++ library from 1999 for binary compatibility

– Ships with STLport 4.5.3 for enhanced performance

– Boost 1.34.1

– Can work with open source Apache C++ Standard Library derived from Rogue Wave 4.1.2

– “A new C++ standard is in progress, planned for completion in 2009. We will release a new compiler, 
C++ 6.0, conforming to the new standard, including a fully-conforming standard library as the default. 
The new library will be shipped as part of Solaris.
We also plan to maintain compatibility with C++ 5.x and libCstd as an option. Details are still in the 
planning stage. “

All information based on publicly available data

http://forums.sun.com/thread.jspa?threadID=5165721
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Borland/CodeGear C++Builder Compiler 6.10 
2009

 http://www.codegear.com/article/38534/images/38534/CBuilder2009Datasheet.pdf

 Rvalue references 

 decltype 

 Variadic templates (in testing) 

 Scoped enumerations 

 static_assert 

 explicit conversion operators 

 Attributes [[final]] and [[noreturn]] 

 alignof 

 Type traits 

 Unicode character types and literals 

 long long 

 variadic macros 

 Dinkumware C++Std Library

 Boost 1.35

All information based on publicly available data

http://www.codegear.com/article/38534/images/38534/CBuilder2009Datasheet.pdf
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Clang/llvm

 Core language:http://clang.llvm.org/cxx_status.html

– Very far from complete, can‟t compile basic tests

– Variadic template, rvalue ref, extern templ, inline namespace, 

long long

 Library:http://libcxx.llvm.org/index.html

 On Mac OS X/i386/x86_64

 Writes its own library libc++.a:

– About 98% complete

– Only missing atomics

http://clang.llvm.org/cxx_status.html
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Food for thought and Q/A

 This is the chance to get a copy before you have to pay for 
it:

– C++ : http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf

– C: http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

 Participate and feedback to Compiler

– What features/libraries interest you or your customers?

– What problem/annoyance you would like the Std to resolve?

– Is Special Math important to you?

– Do you expect 0x features to be used quickly by your customers?

 Talk to me at my blog:

– http://www.ibm.com/software/rational/cafe/blogs/cpp-standard

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
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My blogs and email address

 michaelw@ca.ibm.com

 Rational C/C++ cafe:                                     
http://www.ibm.com/software/rational/cafe/community/ccpp

 My Blogs: 

 C++ Language & Standard                             
http://www.ibm.com/software/rational/cafe/blogs/cpp-standard

 Parallel & Multi-Core Computing                     
http://www.ibm.com/software/rational/cafe/blogs/ccpp-parallel-multicore

 Commercial Computing                                  
http://www.ibm.com/software/rational/cafe/blogs/ccpp-commercial

 Boost test results                                           
http://www.ibm.com/support/docview.wss?rs=2239&context=SSJT9L&uid=swg27006911

 C/C++ Compilers Support Page                      
http://www.ibm.com/software/awdtools/ccompilers/support/

 C/C++ Feature Request Interface                    
http://www.ibm.com/support/docview.wss?uid=swg27005811

 XL Fortran Compiler Support Page                  
http://www.ibm.com/software/awdtools/fortran/xlfortran/support/

 XL Fortran Feature Request Interface              
http://www.ibm.com/support/docview.wss?uid=swg27005812

http://www.ibm.com/software/rational/cafe/blogs/cpp-standard
http://www.ibm.com/software/rational/cafe/blogs/cpp-standard
http://www.ibm.com/software/rational/cafe/blogs/cpp-standard
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