
Metaparse

Compile-time parsing with template metaprogramming

Ábel Sinkovics
Eötvös Loránd University

Dept. of Programming Languages and
Compilers

Budapest, Hungary
abel@elte.hu

Zoltán Porkoláb
Ericsson Hungary

Eötvös Loránd University
Budapest, Hungary

zoltan.porkolab@ericsson.com
gsd@elte.hu

ABSTRACT
Metaparse is a C++ template metaprogramming library
for generating parsers, which are template metaprograms
themselves parsing strings at C++ compile-time. Parsers
built with Metaparse take free-formed strings as input and
parse them at compile-time, thus it is possible to build a
parser and apply it in the same session of compilation. The
C++11 standard provides constexpr, a construct for execut-
ing algorithms at compile-time. We present the connection
between metaprogramming and constexpr and utilise it to
minimise the syntactical overhead of the input processed by
the parsers. Thus Metaparse is capable to solve a wide va-
riety of tasks – from applying syntactical sugars for existing
metaprograms to DSL integrations. An accurate error re-
porting helps Metaparse users to detect parsing errors. All
solutions presented in this paper are implemented as an open
source library and are available for the reader.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tion – C++

General Terms
Languages

Keywords
C++ template metaprogramming, Parsers

1. INTRODUCTION
Since Erwin Unruh demonstrated his famous prime num-
ber generator program [23], the research of C++ Template
Metaprogramming has always been a hot topic among both
academic researchers and software developers [25, 26, 3]. To-
day programmers write metaprograms for various reasons,
like implementing expression templates [24], where runtime
computations can be fine-tuned with compile-time activities
to enhance runtime performance; static interface checking,

which increases the ability of the compiler to check the re-
quirements against template parameters by specifying con-
straints on them [10, 17]; active libraries [27], acting dynam-
ically at compile-time, making decisions and optimisations
based on programming contexts. Other applications involve
embedded domain specific languages as the AraRarat sys-
tem [5] for type-safe SQL interface, Boost.Xpressive [12] for
regular expressions. Foundation techniques for data struc-
tures of template metaprograms have been developed based
on typelists, and implemented in various ways [1, 7].

In this paper the authors present Metaparse, a C++ tem-
plate metaprogram library for generating parsers with the
help of parser combinators. Boost already has two parser
generator libraries: Boost.Spirit and Boost.Proto. The main
difference between Metaparse and Boost.Spirit is that pars-
ers generated by Boost.Spirit run at runtime while parsers
generated by Metaparse run at compile-time. Boost.Proto
parsers work at compile-time processing valid C++ expres-
sions, while parsers built with Metaparse take free-formed
strings as input.

Being able to parse arbitrary text at compile-time can be
useful in many situations. An example is parsing the for-
mat string of printf at compile-time and type-checking
the arguments. We present use-cases from relatively sim-
ple to more complex ones. One can build a wrapper around
Boost.Xpressive enabling the compile-time verification of reg-
ular expressions following the common syntax. Another
use of compile-time parsers is transforming embedded DSL
scripts into native C++ functions at compile-time and ex-
ecuting them at runtime. Our most complex example is
demonstrating how one can implement an embedded DSL
for defining template metafunctions. Metaparse is capable
of generating parsers transforming such DSLs into metafunc-
tions.

The new C++ standard provides constexpr, a construct
for executing algorithms at compile-time. We present the
connection between metaprogramming and constexpr and
utilise it to minimise the syntactical overhead of the input
processed by the parsers. We explain the internals of Meta-
parse, how it works and can be extended. We also present
the accurate error reporting capabilities of the library.

All solutions presented in this paper are implemented as an
open source library and are available for the reader. Meta-



parse and other libraries it is based on are available at:
http://abel.web.elte.hu/mpllibs and
https://github.com/sabel83/mpllibs [18].

The rest of the paper is organised as follows. In Section 2 we
overview of the different approaches to generate parsers with
the help of template metaprograms. Here we also discuss the
new possibilities coming from the generalised constant ex-
pressions of C++11 and how they can be utilised to improve
C++ template metaprogramming. In Section 3 we explain
our approach to implement compile-time parsers. As accu-
rate diagnostic is essential for parsers, in Section 4 we discuss
the error reporting capabilities of Metaparse. In Section 5
we evaluate Metaparse by a number of usage examples. Our
paper concludes in Section 6.

2. APPROACHES
Parsing embedded languages in C++ has been addressed
in several ways. In this section we overview the different
approaches available in Boost and Mpllibs.

2.1 Boost.Proto
Boost.Proto is a framework mainly for building Embedded
Domain-Specific Languages in C++ [13]. It provides tools
for constructing, type-checking, transforming and execut-
ing expression templates. Data structures for representing
the expressions and a mechanism for giving additional be-
haviours and members to them are given.

The Proto parsers make use of the C++ parser of the com-
piler, thus the input of a Proto parser should be in valid
C++ syntax. This could be a serious restriction as – among
others – no C++ keywords or new operator symbols can be
used in the defined DSL. On the other hand no quotations
are required to identify the DSL code.

2.2 Boost.Spirit
Boost.Spirit is a set of C++ libraries for parsing and output
generation that parse at runtime [4]. Spirit uses expres-
sion templates and template metaprogramming techniques
to embed DSL scripts in the C++ source code as string lit-
erals. The embedding process doesn’t introduce syntactical
restrictions on the domain specific language, the C++ com-
piler passes the string literal to the parser as it is, without
trying to interpret it.

The DSL scripts are parsed at runtime, even though they are
available at compile-time. This has several disadvantages.

• The same DSL script has to be parsed every time the
host program is executed. Depending on how the host
program is organised, the same DSL script may be
parsed more than once during the execution of the host
program.

• Errors in the DSL script are not detected until runtime.
The parsing of the scripts may not happen every time
the host program is executed, only in cases when it
is needed. As a result of this optimisation some DSL
scripts may never be compiled during the testing pe-
riod of the software and errors in them are detected by
the end users.

2.3 Generalised constant expressions
C++11 provides new a feature called generalised constant
expressions to extend the earlier practice of constant expres-
sions to simple functions and objects of user-defined types
with simple constructors [16]. Constexpr makes it possible
to execute parts of the C++ code at compile-time. Func-
tions whose body consists of one return statement only in
which they return a constant expression can be marked as
constexpr functions. When such a function is called in an
expression and all of the arguments passed to it are calcu-
lated using constant expressions, the compiler evaluates the
constexpr function at compile-time.

This feature can be used to parse a DSL script at compile-
time. The DSL script can be passed to a constexpr function
as a string literal. The function can do the parsing and re-
turn some result value based on this. Given that the function
is a constexpr function and the argument that is passed to it
– the string literal containing the DSL script – is a constant
expression, parsing happens at compile-time. Invalid DSL
scripts that can not be parsed are detected at compile-time
and the cost of parsing is paid during the compilation of the
host program. It doesn’t introduce runtime costs, however,
it may introduce high compile-time costs which can lead to
issues during development.

The approach to construct optimised code or types as the
result of parsing a DSL script when parsing happens using
constexpr parsers is an open question.

2.4 Template metaprogramming
Template metaprograms can construct constant values, types
or code that the compiler can optimise. Given that tem-
plate metaprogramming is a Turing-complete sub-language
of C++ [26, 3], one can implement parsers as template
metaprograms. Similarly to parsers implemented as const-
expr functions, the ones implemented as template metapro-
grams can process a DSL script at compile-time. The result
of parsing a DSL script can be anything a template metapro-
gram can return, thus using this approach one can con-
struct types or optimised code. Given that higher order tem-
plate metafunctions – template metafunction classes – are
represented by types, these parsers can construct template
metaprograms as the result of parsing. It makes the imple-
mentation of a better syntax for C++ template metapro-
grams possible.

2.5 Combining constexpr and template meta-
programming

Template metaprogramming and generalised constant ex-
pression based parsing can be combined together.

• When a constant expression returns an integral value,
it can be a template argument, thus partial results
produced by constexpr-based parsers can be passed
to template metaprogramming ones.

• When a template metaprogram returns a boxed con-
stexpr value, it can be part of generalised constant
expressions, thus partial results produced by template
metaprogramming-based parsers can be passed to con-
stexpr-based ones.



An example demonstrating the above approaches can be
found in [18]. A combined approach can take advantage
of the easier syntax of constexpr functions and the expres-
siveness of template metaprograms at the same time.

3. PARSERS
Metaparse [18] uses template metaprogramming to imple-
ment parsers. The input of the parsers are strings, thus
we need to be able to represent them as template metapro-
gramming values to be able to do the parsing. Boost.MPL
provides a string implementation we can use. However, the
syntax of embedding strings in the source code is the follow-
ing:

mpl::string<’Hell’,’o Wo’,’rld!’>

It is based on multi-character constants, which allow group-
ing four characters together. However, the embedded string
has to be split into four character chunks which is not con-
venient and is difficult to work with. The following syntax
would be easier to use:

_S("Hello World!")

It can be provided by combining generalised constant expres-
sions and preprocessor metaprograms. "Hello World!" is a
string literal, which becomes a character array. Accessing
a character of it, such as "Hello World!"[2] is a constant
expression. A constant expression can be an argument of a
template, thus we can do the following:

mpl::push_back<
mpl::push_back<
// ...
mpl::push_back<
mpl::string<>,
mpl::char_<"Hello World!"[0]>

>::type,
// ...
mpl::char_<"Hello World!"[10]>

>::type,
mpl::char_<"Hello World!"[11]>

>::type

The above code appends each character of the string lit-
eral "Hello World!" to an empty template metaprogram-
ming string one by one. The above code can be hidden
by a macro. Using preprocessor metaprograms, such as
BOOST_PP_REPEAT from Boost.Preprocessor [9] we can gener-
ate the above code from _S("Hello World!"). The problem
is that we need to know the length of the string in advance,
thus our macro can work with a predefined string length
only. Generating different code based on the length of the
string literal in a preprocessor metaprogram is an open ques-
tion, we need to specify a fixed number of steps we generate
and use that in all cases. During the generated iterations
we need to detect when we reach the end of a string. We
can define a special metafunction that optionally appends a
character to a string:

template <class S, char C, bool EndOfString>
struct append_string :
mpl::push_back<S, mpl::char_<C>>

{};

template <class S, char C>
struct append_string<S, C, true> : S {};

This metafunction takes an extra argument, which is a bool-
ean value indicating if the character really needs to be ap-
pended. To avoid over indexing the string literal, we need a
constexpr function accessing a character of the string:

template <int Len>
constexpr char str_at(const char (&s)[Len], int n)
{
return n >= Len ? 0 : s[n];

}

The above function takes a char array and an index as ar-
guments. It receives the length of the array as a template
argument, thus it can check if the array has been over in-
dexed. When it is over indexed, it returns the ’\0’ charac-
ter. Since it is a constexpr function, its result can be used
as a template argument.

Using all the above, we can construct template metapro-
gramming strings from string literals:

#define s "Hello World!"

append_string<
append_string<
// ...
append_string<
mpl::string<>,
str_at(s, 0),
(0 >= sizeof(s) - 1)

>::type,
// ...
s[10],
(10 >= sizeof(s) - 1)

>::type,
s[11],
(11 >= sizeof(s) - 1)

>::type

The above code uses str_at to access the characters, thus it
is protected against over indexing the array. It uses sizeof
to check the length of the string and append_string to ap-
pend the characters. To each append_string call it passes
a Boolean value indicating if that character is a character of
the string or just a 0 character coming from str_at.

The number of appends we generate from our macro sets an
upper limit on the length of the string. However, we can
use the same technique Boost.MPL uses to provide variadic
metafunctions [6]. The maximum value can come from a
macro, such as MPLLIBS_LIMIT_STRING_SIZE which can be
defined by the user.



We have provided a way to embed DSL code snippets into
C++ source code. We can now deal with how these snippets
can be parsed. Metaparse is based on parser combinators [8].
A parser is a template metafunction taking two arguments:

• A suffix of the input text. This is the text to parse.

• The line and column number of the first character of
this suffix in the original text. This information is
useful for error reporting.

As the result of parsing a parser returns one of the following:

• Some arbitrary value representing the parsing result,
the unprocessed suffix of the input and the line and
column number of the unprocessed suffix. This return
value indicates success.

• A line and column number and a string describing a
parsing error. This return value indicates that the
parsing has failed.

To be able to differentiate between the two cases, Metaparse
provides the is_error metafunction that can tell about a
result if it is an error or not. This decision is based on tag
dispatching. The value returned by a metafunction is either
tagged by accept_tag or fail_tag. A parser is not expected
to consume the entire input. It returns the unconsumed
part.

As an example we present a simple parser that rejects every
input. We call it fail. In general to make passing parsers to
parser combinators easier, we implement them as template
metafunction classes instead of template metafunctions.

struct fail {
// This metafunction is the parser
template <class S, class Pos> struct apply {
// Make it work with lazy metafunctions
typedef apply type;
// Make it work with is_error
typedef fail_tag tag;
// Make the location of the error available for
// error diagnostic
typedef Pos source_position;
// Some error message
typedef _S("Parsing failed") message;

};
};

To be able to give a more meaningful error message than
just Parsing failed, we make fail a template class taking
the error message as a template argument:

template <class Msg> struct fail {
template <class S, class Pos> struct apply {
// ...
typedef Msg message;
// ...

};
};

As another example we implement a parser accepting every-
thing without consuming any input. We call it return_ –
the name is important when we do monadic parsing. We
refer to [21] on monadic parsing using Metaparse. return_
needs a value that will be the result of parsing. We make
return_ a metafunction class and make this result a tem-
plate argument of it.

template <class Result> struct return_ {
// This apply metafunction is the parser
template <class S, class Pos> struct apply {
// Make it work with lazy metafunctions
typedef apply type;
// Make it work with is_error
typedef accept_tag;

// The result of parsing
typedef Result result;
// The unconsumed suffix
typedef S remaining;
// The position of the suffix’s first character
typedef Pos source_position;

};
};

Parser combinators are higher order functions. They take
one or more parsers – which are functions – as arguments and
return a new parser. Using parser combinators one can have
a small number of simple parsers and build more complex
ones out of them.

We build a parser consuming the first character of the in-
put string. The result of parsing is this character. This
parser fails for empty input. As we’ll see, this is the only
parser consuming input – the rest of the parsers use this one
to consume input. We call this parser one_char. We use
return_ and fail to report success or error – we don’t need
to re-implement that logic.

struct one_char {
template <class S, class Pos> struct apply :
mpl::eval_if<
typename mpl::empty<S>::type,
mpl::apply_wrap2<
fail<_S("Unexpected end of input")>,
S, Pos

>
mpl::apply_wrap2<
return_<typename mpl::front<S>::type>,
mpl::front<S>,
// Not covered: calculate the
// next source position
Pos

> > {};
};

This code checks if the input is empty by using mpl::eval_if
and mpl::empty. If it is empty, it reports the error using
fail, otherwise it returns success using return_. How the
next source position can be calculated is out of scope here.
We refer to the implementation of Metaparse [18].



As a simple example for parser combinators we can build
one that takes a parser, applies it on the input and checks
the result of it. In this last checking step it may accept or
reject the result. It can be implemented the following way:

template <class P, class Pred, class Msg>
struct accept_when {
template <class R, class S, class Pos>
struct impl : mpl::eval_if<
typename mpl::apply_wrap1<
Pred,
typename R::type

>::type,
R,
mpl::apply_wrap2<fail<Msg>, S, Pos>

> {};

template <class S, class Pos>
struct apply : mpl::eval_if<
typename is_error<
mpl::apply_wrap2<P, S, Pos>

>::type,
mpl::apply_wrap2<P, S, Pos>,
impl<mpl::apply_wrap2<P, S, Pos>, S, Pos>

> {};
};

This code defines accept_when, which takes 3 template ar-
guments: the parser to transform, a predicate to check the
result of the parser with and an error message that can be
returned when the predicate rejects the result. It applies the
original parser on the input. When it fails, the error mes-
sage is escalated. When it succeeds the result is checked and
either this result or an error with the predefined message is
returned. Because of difficulties with Boost.MPL and lazy
evaluation [19] a helper metafunction, impl is defined.

We don’t present Metaparse and parse combinators in fur-
ther detail here. We refer to earlier publications on the topic
[21, 22, 15].

4. ERROR REPORTS
Parsers often have to deal with invalid input. In such cases,
they are the ones that detect the errors and have to report
it to the developer. In many cases the developer has to find
and fix the problem based on these error reports. Since high
quality error reports can help the developer finding and fix-
ing the problem, they can improve productivity. During the
presentation of Metaparse and its approach, we’ve already
shown where the error reports are coming from. This chap-
ter is about how it can be displayed to the developer.

Parsers built with template metaprogramming are executed
as part of the C++ compilation process. When they detect
errors, they have to report it to the developer in a way that
is easy to understand. The following options are available
for reporting errors from the C++ compilation process.

• Breaking the C++ compilation.

• Generating code that displays the error at runtime [22].

The first approach fits more naturally to the development
process of C++ applications. The developer writes the code
containing the embedded snippets to parse at compile time,
compiles it and gets the errors. However, the error report
coming from the compiler is about the templates and tem-
plate instantiations metaprograms are implemented with,
not about the problem with the embedded script.

The second approach, which generates code displaying the
error message produces easy to read and informative error
messages. Its drawback is that it doesn’t fit that well to the
development process most programmers are used to. The
developer writes the code containing the embedded DSL
snippet. He parses the code and gets some – probably mean-
ingless – error report from the compiler pointing to a DSL
snippet. The developer has to copy that snippet to another
program, compile and run it. As a result of running it,
he can get the error message. Metaparse provides a tool,
debug_parsing_error to support this approach. It is a tem-
plate taking the parser and the invalid input as arguments.
The constructor of the template instance displays the debug
information on the standard output, thus it can be used the
following way:

typedef /* ... */ some_parser;

debug_parsing_error<some_parser, _S("Bad input")>
show_result();

We create an object of type debug_parsing_error<...> to
instantiate and run the constructor that displays the debug
information.

Even though it requires some extra effort from the devel-
oper, the error message it can display is about the DSL and
the embedded snippet. It points to developer to the prob-
lematic location of his DSL code snippet and tells what the
problem is – without any syntactic noise coming from the
C++ compiler.

5. APPLICATIONS
Being able to parse at compile time makes it possible to
embed code snippets implemented in domain-specific lan-
guages. These snippets can implement the following types
of things:

• Generate types. New types can be constructed as the
result of parsing a DSL script and can be passed to
metaprograms or can be instantiated.

• Generate optimised executable code. Template metapro-
grams and parsers implemented using them can gen-
erate executable code by combining small inline func-
tions. This gives the compiler the opportunity to op-
timise the code.

• Generate runtime objects. Metaprograms can generate
code that initialises these objects during static initial-
isation.

• Generate constant values. The result of metaprograms
and parsers implemented as metaprograms can be a
constant expression producing constant values.



• Do compile-time assertions. Metaprograms can op-
tionally break the compilation process based on some
conditions. These conditions can be implemented in a
DSL and parsed at compile-time.

• Generate template metaprograms. Since types can be
generated as the result of parsing a DSL script, tem-
plate metaprograms can be generated as well. This
makes it possible to implement easy to read languages
for template metaprogramming, that work like scripts
interpreted by the C++ compiler.

We highlight three areas where using compile-time parsers
can make a significant difference.

5.1 Interface of libraries
Libraries have their own specific domain with their own com-
mon notations. The more the interface of the library follows
that notation, the easier the experts of that domain can
use it. Many C++ libraries [5, 13] try to follow the syntax
of special problem domains by overloading C++ operators.
Boost provides the Proto library making the development
of such approaches easier. However, this approach has its
constraints: all DSL expressions have to be valid C++ ex-
pressions as well.

Being able to parse DSL snippets at compile-time makes it
possible to provide an interface that follows the notation of
the domain without being constrained by the syntax of C++
expressions.

As an example, one can look at Boost.Xpressive. It provides
an interface for building regular expressions. Assuming that
the regular expression is available at compile-time, the user
of the library can choose one of the following options:

• Embed the regular expression in the C++ code as a
string literal. This is parsed at runtime – parsing has
its own runtime cost and when the regular expression
is invalid, it causes a runtime error, thus, the problem
is not detected until runtime.

• Embed the regular expression in the C++ code as a
C++ expression. Xpressive provides an interface for
that and it follows the logic of regular expressions.
However, the commonly used syntax had to be altered
to make it a valid C++ expression, which makes it dif-
ficult for people not familiar with the syntax of Xpres-
sive to read and understand it.

A third option, offered by compile-time parsers is embedding
the regular expression as a string literal and parsing it at
compile time to build the same structure one could build
with the C++ expression-based interface.

5.2 Template metaprogramming
Since the result of parsing is a type, we can construct tem-
plate metaprograms as the result of parsing an embedded
DSL code snippet. Using this technique we can build an
easy to read language for C++ template metaprograms.
Given the similarities between Haskell and C++ template

metaprogramming [14, 11, 2] the language we are building
will be similar to Haskell. We start with the following simple
language and extend it later.

single_exp ::= int_token | name_token

Using this language we can write simple expression. An ex-
pression is either an integer value or the name of a variable
or function. We parse it into an abstract syntax tree (AST).
In the AST we use the following templates to represent in-
teger values and variable or function references:

template <class Val> struct ast_value;
template <class Name> struct ast_ref;

ast_value represents a value, ast_ref represents a refer-
ence to something. We can construct a parser for the above
grammar.

typedef transform<int_token,
mpl::lambda<ast_value<_1>>::type> int_exp;

typedef transform<name_token,
mpl::lambda<ast_ref<_1>>::type> name_exp;

typedef one_of<int_exp, name_exp> single_exp;

We created a parser parsing integers (int_exp) and one pars-
ing names (name_exp). We get int_token from Metaparse,
but we have to implement name_token ourselves. We don’t
present the details of this here. The _token parsers return
the parsed value which we turn into an AST by using the
transform combinator. Finally, we combine the two parsers
by using the one_of combinator to accept either an integer
or a name.

We extend the above language with function application.
The syntax is the following: <function> <arg1> <arg2>
... where <function> is an expression evaluating to a func-
tion. For example it can be the name of a function, or an
expression evaluating to a function (we present such expres-
sions late). We use the following grammar for function ap-
plication:

application ::= single_exp+

We represent both the function and its arguments as ex-
pressions. We expect the first expression to evaluate to a
function that accepts at least as many arguments, as we ap-
ply on it. Accepting more will not be a problem, because
our language will support currying [19, 20]. Not meeting
this requirement will cause an error during the execution
of the compiled metaprogram. We don’t implement a type
system that could detect these errors ahead of execution.
We represent applications in the AST by instances of the
following template:

template <class F, class Arg>
struct ast_application;



Following the logic of currying, we apply arguments one by
one. Thus by parsing the expression f 1 2 3 we get the
following AST:

ast_application<
ast_application<
ast_application<
ast_ref<mpl::string<’f’>>,
ast_value<int_<1>>>,

ast_value<int_<2>>>,
ast_value<int_<3>>>

The above AST applies the arguments on the function f
one by one. The parser for application can be constructed
from single_exp by using the any1 and transform parser
combinators provided by Metaparse. It can be implemented
in a more efficient way by using the foldl parser combinator
(also provided by Metaparse). We don’t present the details
here. An implementation can be found in [18].

After building the AST, we need to bind the references in
it to metafunctions and values (which are classes in tem-
plate metaprogramming). To be able to do this, we need an
associative container describing the binding rules. We can
use mpl::map for that. The keys are the names, the values
are the values (or metafunctions classes) to bind to. We
can implement a metafunction, bind taking an AST and an
mpl::map as arguments and doing the binding. The result
of this binding is a nullary metafunction. The evaluation
of the expression happens by evaluating that metafunction
(and not when the binding happens). We construct these
nullary metafunction by combining the following templates:

template <class V>
struct lazy_value { typedef V type; }

template <class F, class Arg>
struct lazy_application :
F::type::template apply<Arg>::type {};

We have a template representing values and one represent-
ing function applications. There is no template representing
references, since we construct the nullary metafunctions af-
ter binding. We expect all references to be resolved during
binding. Invalid references are interpreted as errors.

Since we assume that values are evaluated lazily, we need to
enforce the evaluation of the function we apply the argument
on in the implementation of lazy_application.

bind can be implemented based on the above. We don’t
present the details here. An implementation of it can be
found in [18]. We need to be able to construct the mpl::map.
We introduce the following syntax for this:

template <class T> struct f;

typedef meta_hs
::import<_S("some_value"), mpl::int_<13>>::type
::import1<_S("f"), f>::type
::import2<_S("plus"), mpl::plus>::type

sample_map;

meta_hs is a class we implement. It has nested template
classes called import, import1, import2, etc. They take a
name as a template metaprogramming string and the refer-
enced entity. import adds values, while import1, import2,
... add metafunctions to the mpl::map. The latter take regu-
lar metafunctions as their second argument, add currying to
them [19] and add them to the mpl::map. The number after
import is the number of the arguments. We don’t present
their implementation here. They can be found in [18].

We can bind names to regular metafunctions in the expres-
sions. We can extend meta_hs to be able to implement func-
tions in the language we build for template metaprogram-
ming and bind them to names in the mpl::map. The syntax
is be the following:

typedef meta_hs
::define<_S("f x y = ...")>::type

sample_map;

This definition defines a function using the DSL we’re build-
ing and binds it to a name. We store the AST of the expres-
sion in the mpl::map we build and postpone binding it. The
binding happens when the value is looked up, thus it can ref-
erence named that are defined after the current definition.
Since we store ASTs instead of values in the mpl::map, the
values we have stored in it has to be turned into ASTs. We
don’t want to do any binding on them, thus we need to in-
troduce a special AST element, ast_bound that is skipped
by the binding process. We use that for wrapping everything
the import metafunctions add to the mpl::map.

When the mpl::map mapped the references to values, bind-
ing was a simple process: the reference had to be replaced
by the referenced value. Now that we store an AST, we
need to resolve the referenced AST before the substitution.
bind can be extended to support it, we don’t present the
implementation details here.

Now that we can add functions defined in the new DSL
to the mpl::map, we need to extend the DSL to make it
possible to implement such functions in it. So far we can
write expressions. We extend it in a way that we’ll be able
to write function definitions as well:

definition ::= name_token+ define_token application

The definition of a function begins with the name of the
function followed by the names of the arguments. These
are the name_token part of the above rule. It is followed
by define_token, which expects an = character. An expres-
sion (application) describes the body of the function. We
extend the AST to be able to describe function definitions.
We introduce lambda abstractions:



template <class F, class ArgName>
struct ast_lambda;

It describes one lambda argument. A function expecting
multiple arguments can be represented by nested lambda
abstractions. The bind metafunction binding names to val-
ues has to be prepared for lambda abstractions as well. A
lambda abstraction has an argument, ArgName. When a
value is applied to this lambda abstraction, it binds that
value to the name ArgName in the body of the lambda ab-
straction [19, 20]. To implement it, bind has to create tem-
plate metafunctions class from the lambda elements of the
AST. The following metafunction (wrapped into a class) can
be returned by this binding:

template <class ArgValue>
struct apply : bind<
F, typename mpl::insert<
Env, mpl::pair<ArgName, ArgValue>

>::type
>::type {};

Env is the mpl::map describing the mapping of the values
to names. This metafunction maps ArgName, the lambda
argument to the value that the lambda abstraction was ap-
plied on. This mapping happens by calling mpl::insert.
Then this metafunction does the binding of the body of the
lambda abstraction using this new mapping.

When the binding of an AST happens, a lambda abstraction
stores the mapping and keeps the body of the abstraction as
an AST. The binding process continues when the resulting
code is evaluated and the lambda argument is known.

Since we do the binding of the lambda abstractions at the ex-
ecution time of the compiled metaprograms, we assume the
argument to already be bound and we have to avoid binding
it again. We can use ast_bound for this. The bind function
unwraps it and leaves the content unchanged. Using this
new element, we can protect the argument of a lambda ab-
straction to be bound multiple times by calculating the new
environment the following way:

typename mpl::insert<
Env, mpl::pair<ArgName, ast_bound<ArgValue>>

>::type

The above code is almost the same as the one we had before
with the only difference that we map ArgName to ast_bound<
ArgValue> instead of ArgValue. Mapping to ASTs instead
of values introduces another problem as well. Consider the
following example:

meta_hs
::define<_S("x = s")>::type
::define<_S("s = 13")>::type
::define<_S("f s = x")>::type

When we apply something – eg. 11 – on f, the lambda
abstraction does the binding of the body of f, that is the
expression x. x refers to the first definition, its body is the
expression s. Since we store ASTs in the mpl::map, be-
fore substituting the reference x in the body of f we do
the binding of x as well. But in the mpl::map we’re using
in the body of the lambda expression in f the s reference
has been overridden. It refers the value 11 instead 13 now,
thus the result of evaluating f 11 will be 11, while it should
be 13. The problem is that the updated mpl::map we use
inside the lambda abstraction belongs to the body of the
lambda abstraction only. The original mpl::map has to be
used to do the binding of the elements referenced by the
body of the lambda abstraction. To be able to implement
this, the bind metafunction takes two environments as ar-
guments: the original and the current mpl::map. It uses the
current one to do the mapping, but when it does the map-
ping of a referenced AST, it uses the original one. We don’t
present the implementation of it here. It can be found in
sinkovics:mpllibs. We can parse the following function
definitions now:

definition ::= name_token+ define_token application

The first name_token is the name of the function. The rest
of them are the argument names. The application is the
body of the function. Bind builds the AST of the body by
parsing application and construct a lambda abstraction
from it using the rightmost argument as the lambda argu-
ment. The lambda abstraction is an AST itself as well, thus
we can build another lambda abstraction from it by using
the argument before the last one. We can continue until we
have used all of the arguments. The order is important to
make it work with currying correctly. When there are no ar-
guments, we don’t build any lambda abstractions but leave
the body as it is. This way we can define constant values
using this language.

As a result of parsing the above, we get a function name and
an AST describing the body. By doing the above parsing
in a define element, we can bind the resulting function to
the resulting name in the mpl::map meta_hs builds. This
function can be used by other functions we build with the
same meta_hs.

This way, we can build simple functions using our language
for template metaprogramming and we can construct more
complicated ones from them. We get a meta_hs mapping
as the result. We can use regular metafunctions, defined
outside of the meta_hs block by importing them using tech-
niques described above. To be able to construct metafunc-
tions that can be used outside of the meta_hs block, we need
a way to export them. We introduce the following syntax
for exporting metafunctions from meta_hs blocks:

typedef meta_hs
::define<_S("id x = x")>::type
::get<_S("id")>::type

id;



get<_S("...")> exports a metafunction. Its result is a
metafunction class that behaves the same way as any other
metafunction class:

typedef id::apply<int>::type also_int;

define elements bind abstract syntax trees to names. Meta-
functions are constructed when the binding happens. Thus,
get has to do the binding of the AST the name is mapped
to. The mapping get uses is the entire mapping meta_hs has
constructed, thus functions can be referenced before they are
defined – names are resolved when the exporting happens.
For example, the following works:

typedef meta_hs
::define<_S("f x = g x")>::type
::define<_S("g x = x")>::type
::get<_S("f")>::type

f;

In the above code f uses g, which is defined later. But
it works, since f is exported after g has been defined. The
above language can be extended to use operators and brack-
ets. ASTs calling functions with special names can be con-
structed from operator usage. For example 11 + 2 can be
parsed into:

ast_application<
ast_name<_S(".+.")>,
ast_value<mpl::int_<11> >,
ast_value<mpl::int_<2> >

>

The above code turns operator + usage into .+. function
calls.

Half-constructed meta_hs blocks are types, thus one can cre-
ate type aliases for them.

typedef meta_hs
::define<_S("f x = g x")>::type
::define<_S("g x = x")>::type

my_lib;

The above code defined two functions, f and g and creates
a type alias for the result. As its name – my_lib – sug-
gests, one can create template metaprogramming libraries
this way. my_lib can be used the same way as meta_hs for
defining further metafunctions:

typedef my_lib
::define<_S("h x = f f x")>::type
::get<_S("h")>::type

h;

The above code defines a metafunction called h that uses
my_lib and the f function provided by it. When operator
calls, such as operator + are parsed into special function
calls, such as .+., this technique can be used to map those
function names to imported metafunctions implementing the
operator evaluations. For example:

template <class A, class B>
struct lazy_plus :
mpl::plus<typename A::type, typename B::type> {};

typedef meta_hs_base // some base class
::import2<_S(".+."), lazy_plus>::type

meta_hs;

The above code defines a function for .+. in meta_hs.
To be able to do that, it has to use a different name for
the base we’ve called meta_hs so far. This different name
is meta_hs_base. Due to the lack of lazy evaluation in
Boost.MPL [7], we have to define a lazy version of the plus
metafunction. Using import can’t make metafunctions auto-
matically lazy, because it wouldn’t work with metafunctions
that are already lazy.

What we have presented is just a core language. It can be
extended to support further features of the Haskell language,
such as pattern matching, control structures, etc. We leave
it as a future work.

5.3 Interface for itself
Since one can build better syntax for template metapro-
grams using Metaparse and Metaparse itself is a template
metaprogram, one can build a better syntax for Metaparse
using Metaparse. The logic is similar to the one we pre-
sented above for template metaprograms in general. We can
provide a syntax for constructing an mpl::map. This maps
names of non-terminals to parsers. A grammar definition
looks like the following:

typedef grammar<_S("S")>
::import<_S("int"), int_>::type

::rule<_S("S ::= ’-’* int")>::type
integers;

The above code defines a grammar using S as the start sym-
bol. It defines a rule for S expecting any number of ’-’
characters and an integer. The grammar doesn’t define the
rule for parsing integers itself, it imports the int_ parser
provided by Metaparse.

The implementation of this is similar to the implementation
of the Haskell-like language we have presented. Metaparse
has this grammar element, which can be used to implement
parsers. We refer to the implementation of this for further
details.



6. CONCLUSION
In this paper we presented Metaparse, a C++ template
metaprogramming library for generating parsers. Metaparse
functionality exceeds the existing parsers, Boost.Spirit and
Boost.Proto in various ways. The main difference between
Metaparse and Boost.Spirit is that parsers generated by
Boost.Spirit run at runtime while parsers generated by Meta-
parse run at compile-time – possibly in the same compilation
session as the parsers were generated. Boost.Proto parsers
work at compile-time but their input is restricted to syn-
tactically valid C++ expressions, while parsers built with
Metaparse take free-formed strings as input.

Being able to parse arbitrary text at compile-time can be
useful in many situations. One usage area is to write wrap-
pers around existing metaprogram libraries to provide a
more user-friendly syntax. An other example is to extend
type-checking possibilities of C++, like in the case of im-
plementing a type-safe printf. It is also possible to trans-
form embedded DSL scripts into native C++ functions at
compile-time and executing them at runtime. We also demon-
strated how one can implement an embedded DSL for defin-
ing template metafunctions. Metaparse is capable of gener-
ating parsers transforming such DSLs into metafunctions.

7. ACKNOWLEDGEMENTS
The Project is supported by the European Union and co-
financed by the European Social Fund (grant agreement no.
TAMOP 4.2.1./B-09/1/KMR-2010-0003).

8. REFERENCES
[1] A. Alexandrescu. Modern C++ design: generic

programming and design patterns applied.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[2] J.-P. Bernardy, P. Jansson, M. Zalewski, and
S. Schupp. Generic programming with c++ concepts
and haskell type classes: A comparison. J. Funct.
Program., 20:271–302.

[3] K. Czarnecki and U. W. Eisenecker. Generative
programming: methods, tools, and applications. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.

[4] J. de Guzman and H. Kaiser. Boost.Spirit, 2011.
http://boost-spirit.com/home/.

[5] J. Y. Gil and K. Lenz. Simple and safe sql queries
with c++ templates. Sci. Comput. Program.,
75:573–595, July 2010.

[6] D. Gregor and J. Järvi. Variadic templates for c++0x.
Journal of Object Technology, 7(2):31–51, 2008.

[7] A. Gurtovoy and D. Abrahams. Boost.Mpl, 2004.
http://www.boost.org/doc/libs/1 47 0/libs/mpl/
doc/index.html.

[8] G. Hutton and E. Meijer. Monadic Parser
Combinators. Technical Report NOTTCS-TR-96-4,
Department of Computer Science, University of
Nottingham, 1996.

[9] V. Karvonen and P. Mensonides. Boost.Preprocessor,
2010. http://www.boost.org/doc/libs/1 47 0/libs/
preprocessor/doc.

[10] B. McNamara and Y. Smaragdakis. Static interfaces
in C++. In C++ Template Programming Workshop,

Oct. 2000.
[11] B. Milewski. What does haskell have to do with c++?,

2009.
http://bartoszmilewski.wordpress.com/2009/10/21/
what-does-haskell-have-to-do-with-c/.

[12] E. Niebler. Boost.Xpressive, 2007.
http://www.boost.org/doc/libs/1 47 0/doc/html/
xpressive.html.

[13] E. Niebler. Boost.Proto, 2011.
http://www.boost.org/doc/libs/1 49 0/doc/html/
proto.html.

[14] B. O’Sullivan, J. Goerzen, and D. Stewart. Real World
Haskell. O’Reilly Media, Inc., 1st edition, 2008.

[15] Z. Porkoláb and Á. Sinkovics. Domain-specific
language integration with compile-time parser
generator library. In E. Visser and J. Järvi, editors,
GPCE, pages 137–146. ACM, 2010.

[16] G. D. Reis, B. Stroustrup, and J. Maurer. Generalized
constant expressions (revision 5). Technical Report
N2235=07-0095, ISO/IEC JTC 1, Information
Technology, Subcommittee 22, Programming
Language C++, Apr. 2007.

[17] J. G. Siek and A. Lumsdaine. Concept checking:
Binding parametric polymorphism in C++. In
Proceedings of the First Workshop on C++ Template
Programming, Erfurt, Germany, Oct. 2000.

[18] Á. Sinkovics. The source code of mpllibs, 2012.
Available as http://github.com/sabel83/mpllibs.

[19] Á. Sinkovics. Functional extensions to the boost
metaprogram library. Electr. Notes Theor. Comput.
Sci., 264(5):85–101, 2010.

[20] Á. Sinkovics and Z. Porkoláb. Expressing c++
template metaprograms as lamda expressions. In
Z. Horváth, R. Plasmeijer, and V. Zsók, editors,
CEFP, volume 6299 of Lecture Notes in Computer
Science, pages 97–111. Springer, 2009.

[21] Á. Sinkovics and Z. Porkoláb. Implementing monads
for c++ template metaprograms. Technical Report
TR-01/2011, Eötvös Loránd University, Sept. 2011.
http://plcportal.inf.elte.hu/en/publications/
TechnicalReports/monad-tr.pdf.

[22] Á. Sinkovics, E. Sajó, and Z. Porkoláb. Towards more
reliable c++ template metaprograms. In J. Penjam,
editor, SPLST’11, pages 260–271. TUT Press, 2011.

[23] E. Unruh. Prime number computation, 1994.
[24] T. Veldhuizen. Expression templates. C++ Report,

7:26–31, 1995.
[25] T. Veldhuizen. Using C++ template metaprograms,

pages 459–473. SIGS Publications, Inc., New York,
NY, USA, 1996.

[26] T. L. Veldhuizen. C++ templates are turing complete.
Technical report, 2003.

[27] T. L. Veldhuizen and D. Gannon. Active libraries:
Rethinking the roles of compilers and libraries. In In
Proceedings of the SIAM Workshop on Object
Oriented Methods for Inter-operable Scientific and
Engineering Computing OO’98. SIAM Press, 1998.


