Concepts Lite

Constraining Template Arguments
with Predicates

Andrew Sutton,
Bjarne Stroustrup, Gabriel Dos Reis
Texas A&M University

(c) Andrew Sutton

Quick Update

All concept-related information presented here will be
included in an ISO TS (Technical Specification)

A TS is an extension of the standard
http://isocpp.org/std/iso-iec-jtcl-procedures

Based on WG21 document n3580

Aim to deliver TS at the same time as C++14

Concepts Lite Resources

Information about compilers, libraries, and concepts
related to Concepts-Lite work (under construction)

http://concepts.axiomatics.org/

Implementation:

GCC-4.9 Compiler

Overview

Introduction Notation
Constraining templates Implementation
Defining constraints Programming

Language mechanics

Templates: An |deal

Abstract expression of algorithms, data structures

Integers, Reals, Sequences, Sets, Graphs, etc.

Generality

Not limited to a single model

Fast code

No abstraction penalty
Type-based optimizations

Templates: The Reality

template<typename T>
typename enable if<is integral<T>::value, T>::type
ged(T a, T b)
{
return do_gcd(a, b,
typename is _unsigned<T>::type{});

(c) Andrew Sutton

Templates: Reality Bites

gcd(16.0, 2.0); // Error!

error: In the instantiation of ‘gcd(T, T)’
where T = double
error: In the instantiation of ‘do_gcd(T, T, X)’
where T = double, X = integral constant<bool, false>
error: In the instantiation of feuclid gcd(T, T)°
where T = double
error: no match for operator ‘%’ in ‘a % b’
note: candidates are:
note: operator%(int, int)
note: operator%(long, long)
note:

(c) Andrew Sutton

Concepts Lite: Template Constraints

Improve language support for generic programming

Directly state requirements on template arguments

Check requirements at the point of use
Support overloading and specialization based on constraints
Improve interfaces and enhance diagnostics

Without runtime overhead or long compilation times

Almost completely implemented (twice)

Handles the Standard Library algorithms and their uses

Constraints Are Not Concepts

Only check requirements at the point of use

Does not check template definitions

No dramatic changes to lookup rules

Approach allows incremental adoption/use of concepts
in generic libraries

There is a (language) migration path to concepts

Constraining Template Arguments

Constrain template arguments with predicates

template<Sortable container C»>
void sort(C& container);

Equivalently:

template<typename C»>
requires Sortable container<C>()
void sort(C& container);

Constraints

Are just constexpr function templates

template<typename T>
concept bool Sortable()

{
return ...; // Returns true when T is a
// permutable container whose
// elements can be totally ordered

Constraint Checking

Constraints are checked at the point of use

forward_list<int> 1st { ... };
sort(lst);

See program output

Constraints on Class Templates

Just like function templates

template<Object T, Allocator A>
class vector;

Equivalently:

template<typename T, typename A>

requires Object<T>() && Allocator<A>()
class vector;

Constrained Members

Member functions and constructors can be constrained

template<Object T, Allocator A>
class vector {
vector(const vector& x)
requires Copyable<T>();

void push_back(T&& x)
requires Movable<T>();

}s

Constrained Member Definitions

Out-of-class member definitions are matched to their
declarations by requirements

template<Object T, Allocator A>
void vector<T, A>::push_back(T&& x)
requires Movable<T>()

{
}

Multi-type Constraints

Constraints can be applied to multiple types

template<Sequence S,
Equality comparable<Value type<S>> T>
Iterator_type<S> find(S&& s, const T& value);

Equivalently with a requires:

template<typename S, typename T>
requires Sequence<S>()
&& Equality_comparable<T, Value type<S>>()
Iterator_type<S> find(S&& s, const T& value);

Overloading

Function overloading is extended to include constraints

template<Input iterator I>
void advance(I& iter);

template<Bidirectional iterator I>
void advance(I& iter);

template<Random_access_iterator I>
void advance(I& iter);

Overloading

Compiler selects the most constrained overload

istream_iterator<int> iter(cin);
advance(iter); // Input overload

list<T>::iterator first = lst.begin();
advance(first); // Bidirectional overload

The most constrained is automatically determined by
comparing template constraints

Class Template Specialization

Also extended to support constraints

template<typename T>
class complex; // Undefined primary template

template<Real T»>
class complex<T> { ... }; // Complex number

template<Integer T>
class complex<T> { ..>

}; // Gaussian integer

Specialization arguments

More About Constraints

Discussed in n3580:

Constrained alias templates
Constrained template template parameters
Variadic constraints

Defining Constraints

Writing requirements
Requires expressions

Type requirements

Defining Constraints

A constraint is effectively a constexpr template

Has concept as a decl-specifier instead of constexpr
Can use type traits, call other constexpr functions
Cannot be specialized (by constraints)

Constraints check syntactic requirements

Is this expression valid for objects of type T?
Is the result type of an expression convertible to U?

The meaning of concept

The concept declaration specifier has the following
meaning:

The declaration is constexpr

The declaration may not be specialized or refined
The declaration must have a definition

The declaration name can be used as a type specifier

Constraints: First Pass

Use type traits

template<typename T>
concept bool Equality comparable()

{
return has _eq<T>::value // a ==
&& is convertible<eq type<T>, bool>::value
&& has ne<T>::value // a !I= b
&& is convertible<ne_ type<T>, bool>::value;
}

Many, many downsides

Constraints: Current Design

Invent new syntax for requirements

template<typename T>
concept bool Equality comparable()

{
return requires (T a, T b) {
{a == b} -> bool;
{a != b} -> bool;
}s
}

Constraints: Longhand

Can be equivalently written as

template<typename T>
concept bool Equality comparable()

{
return requires (T a, T b) {
a == b; // Means a == b 1s valid syntax
requires Convertible<decltype(a == b), bool>();
a != b;
requires Convertible<decltype(a != b), bool>();
}s

}

Constraints: Type Requirements

We can also write type requirements

template<typename I>
concept bool User defined_iterator()
{

return requires (I i) {
typename I::iterator_category;
{*¥i} -> const Value_ type<I>&;
¥
}

Constraints: The Language

Constraints: how do they work?

Language primitives
Reduction
Decomposition
Overload resolution

(c) Andrew Sutton 28

Constraint Language

Formally, constraints are defined over a set of atomic
propositions, connected by & and | |

is_lvalue_reference<T>::value && is_const<T>::value

is_integral<T»>::value || is_floating point<T>::value

Atomic Propositions

For the most part, any C++ expression that is not an
&& or | | expression

is_integral<T>::value
lis void<T>::value

N == 2

O < M

is_prime(N)

true

false

Calls to constraints are not atomic

Constraint Reduction

Function calls to constraints are reduced by inlining
them into a requires clause

template<typename T>
concept bool Arithmetic()
{
return is_integral<T>::value
|| is_floating point<T>::value;

Constraint Reduction

Before:

template<typename T>
requires Arithmetic<T>()

T do math(T a, T b);

After:

template<typename T>
requires is_integral<T>::value
|| is_floating point<T>::value

T do math(T a, T b);

Overload Resolution

Find candidates, instantiate templates

Deduce template arguments
Instantiate and check the constraints
Instantiate the declaration

Choose the best candidate

Most specialized
Most constrained

Constraint Satisfaction

How do we determine if constraints are satisfied

Constraints are just constant expressions
Evaluate them!

Most specialized

Compare the types of function arguments of candidate
functions, f1 and f2

Try to substitute argument types of f1 into f2 and vice
versa

If either succeeds than one is more specialized
If neither succeeds, the overload is ambiguous
What if both succeed?

Most Constrained

Given two constraints [and A, I subsumes A iff I
contains all of A’s propositions

Solved as an application of first order logic

Easily thought of as a subset problem

Given two declarations A and B with equivalent type, A
is more constrained than B iff A’s requirements ()
subsume B’s (A)

Unconstrained templates are the least constrained

Constraint Decomposition

Decomposed into sets of propositions through the
application of sequent calculus for first order logic

Lists of atoms Expressions
[LP,QFA [,PFA [LQRQFA
[LPAQRQFA PV QFA
Derivable

Conjunction (&&) Disjunction (| |)

Subsumption

Given a previously decomposed list of atomic
propositions, I, determine if an expression e is valid
(can be derived)

[=P, A [Q,A [P, Q,A

[FPAQ,A [PV QA

Basically, search I for atomsine

Comparing Constraints

template<typename T>
concept bool Advanceable()
{ return requires (T i) { ++i; }; }

template<typename T>
concept bool Incrementable()
{ return requires (T i) { ++i; i++; }; }

Does Advanceable subsume Incrementable?
Does Incrementable subsume Advanceable?
Proofs left to the viewer as an exercise

Notation

Variable Templates

Constraining Generic Lambdas

Constrained Auto

Terse Templates

Variable Templates

New in C++14, allows the variable templates:

template<Number T>
constexpr T min = numeric_limits<T>::min();

cout << min<int> << ‘\n’;
cout << min<unsigned> << ‘\n’;

Variable Templates and Constraints

Can use variable templates to define constraints

template<typename T>

concept bool Equality_comparable =
requires(T a, T b) {

{a == b} -> bool;

{a != b} -> bool;

}s

template<typename T>
requires Equality comparable<T>
void f(T a, T b);

Generic Lambdas
New in C++14, generic lambdas

template<Container C»>
void f(C& c¢)

{

sort(c, [](auto x, auto y) { return x < y });

}

Types of X, y depend on arguments to, instantiation of
sort

Lambda/Concepts Interaction

Eventually, we'd like separate checking of template
definitions
Generic lambdas (as proposed for C++14) are unconstrained

There is some concern that widespread use of generic
lambdas will cause code breakage when we
eventually enable separate checking

Hopefully not a big deal

Constraining Generic Lambdas

We’d like to notation for adding constraints to generic
lambdas

Lambda notation is terse

Constrained lambda notation should also be terse

That notation should be general and consistent

Lambdas are functions. What works for lambdas should also
work for functions

Notation

But template syntax can be verbose

From day #1 some (but not all) people have complained
that the template syntax is verbose

Novices seem to want “loud syntax”, then feel comfortable
having “the new” stand out

Experts tire of repetitive syntax and find it distracting

Notation matters

Optimized for the common case

Absurdly Verbose Constraints

template<typename F1l, typename F2, typename 0>
requires Forward_iterator<F1>()

&& Forward_iterator<F2>()
&& Output_iterator<0>()
&& Assignable<Value_ type<F1l>, Value_ type<0>>()
&& Assignable<Value_type<F2>, Value_ type<0>>()
&& Comparable<Value type<F1l>, Value_type<F2>>()

void merge(F1 f1, F1 11, F2 f2, F2 12, 0 0);

Too verbose for templates, utterly absurd for lambdas

Making the Verbose Terse

Predicate abstraction to the rescue

template<typename F1l, typename F2, typename 0>

requires Mergeable<Fl, F2, 0>
void merge(F1 f1, F1 11, F2 f2, F2 12, 0 0);

Still too verbose for lambdas.

[]<typename F1, typename F2, typename 0>
requires Mergeable<Fl, F2, 0>
(F1 f1, F1 11, F2 f2, F2 12, O o)

Plus it doesn’t work — parsing ambiguity

Introducing Template Parameters

Allow template parameters to be introduced from a
concept definition

template<Mergeable{F1, F2, O}>
void merge(F1 f1, F1 11, F2 f2, F2 12, 0 0);

Probably the best we can do for lambdas.

[]<Mergeable{F1, F2, O}>
(F1 f1, F1 11, F2 f2, F2 12, O o)

If your lambdas really look like this

Introduction Syntax

This:

template<Mergeable{F1l, F2, O}>
void merge(F1 f1, F1 11, F2 f2, F2 12, 0 0);

Is equivalent to writing:

template<typename F1l, typename F2, typename 0>
requires Mergeable<F1l, F2, 0>
void merge(F1 f1, F1 11, F2 f2, F2 12, 0 0);

(c) Andrew Sutton 50

Declarations with Type Concepts

Single-argument concepts (type concepts) are special. For
example:

template<Sortable container C»>
void sort(C& cont);

We can make this even more terse:

void sort(Sortable_container& cont);

Sortable container is a concept that introduces a
named placeholder type

Type Concepts and Lambdas

We can write a lambda like this:
[Xx]<Regular T>(T y) { return x == y; }
Or we can equivalently write:

[Xx](Regular y) { return x == y; }

Et Voilal Tersely constrained lambdas!

The Same-Type Problem

void sort(Random _access_iterator p,
Random_access_iterator q);

Obviously p and g are the same type

Their types have the same spelling

How do we guarantee that p and g are of the same
type?

Same-type Substitution

When a concept is used as a type specifier for a
parameter, all other uses are replaced by an
implementation-defined type name

template<Random_access iterator R>
void sort(R p, R q);

Don’t want this behavior?

Use verbose notation and declare 2 parameters

Implementation

Two implementations:

Initial prototype (GCC-4.8, from September)
GCC Branch (based on 4.9)

Library support (Origin)

https://github.com/asutton/origin
Built against the GCC branch

Compiler Performance

Small test of constraints vs. type traits (emulation) for
similar programs

Tested using initial prototype (GCC-4.8)

Performance gains increase with number of requirements
checked

Observed gains of 13-25% for even small numbers of
requirements

Defining and instantiating type traits is expensive!

Library Support

All constraints for all concepts in Palo Alto TR (n3351)

Equality comparable, Totally ordered, Regular,
Function, Predicate, Relation

Input_iterator, Forward iterator,
Bidirectional iterator, Sortable

Some variations

Programming

Concept design

Fun with language features

Library Design

Concepts arise from common implementation patterns
in concrete, and later abstract algorithms

Libraries should have relatively few concepts
When compared to algorithms + data structures
Why?

Easier to learn and remember

Easier to write concise requirements

Concept Design

Concepts should describe an expressive computational
basis [EoP]

Require semantically related operators (e.g., == and = for
Equality comparable)

Why?

A concept establishes notation for a (mathematical?) domain
Prefer to write in terms of that notation

Fewer constraints on implementations
Leads to fewer concepts

Generating Default Definitions

// In global namespace?
template<typename T>

requires (T a, T b) { {a == b} -> Boolean; }
auto operator!=(T a, T b)

{
}

class Date { ... };
bool operator==(Date, Date) { ... };

return !(a == b);

static_assert(Equality_comparable<Date>(), “”);

An Evolution Problem

Constraining templates can quietly change the results
of overload resolution

void f(double); // #1

template<typename T>
void f(T x); // #2

£(0); // calls #2

An Evolution Problem

Constraining templates can quietly change the results
of overload resolution

void f(double); // #1

template<Character T> // char, wchar t, etc.
void f(T x); // #2

f(0); // calls #1 — not good!

Can we modify the library to ensure that overloads
don’t change unexpectedly?

Unconstrained Templates May Go

Delete the unconstrained template.

void f(double); // #1

template<typename T>
void f(T x) = delete; // #2

template<Character T> // char, wchar t, etc.
void f(T x); // #3

f(e); // Error!

Conclusions

Concepts Lite

enable_ if on steroids
Relies on constexpr, builds on existing features, practice
Rooted in established theories of formal logic, languages

Future Work

Implement terse templates, constrained generic
lambdas

More work on Origin, other libraries

Write the TS

Questions

