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Who am I?

• Open Source developer for 15 years

• C++ developer for 13 years

• Software Architect at Intel’s Open Source Technology 
Center (OTC)

• Maintainer of two modules in the Qt Project
‒ QtCore and QtDBus

• MBA and double degree in Engineering

• Previously, led the “Qt Open Governance” project
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Qt

One major release in 7½ years

• Qt 5.0 was released in December 2012

• Qt 4.0 was released in June 2005
‒ Eight feature releases: 4.1, 4.2, ..., 4.8
‒ 32 patch releases: 4.0.1, 4.1.1-4.1.5, 4.2.1-4.2.3, 4.3.1-4.3.5, 4.4.1-4.4.3, 

4.5.1-4.5.3, 4.6.1-4.6.4, 4.7.1-4.7.4, 4.8.1-4.8.4
‒ Latest release (Nov/2012) still is binary compatible with Qt 4.0.0
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libstdc++.so.6 (libstdc++-v3)

One major release in 9 years

• Last major release: 

 GCC 3.4.0 on April 20, 2004

• 3607 symbols as of GCC 4.8.2
‒ 1830 non-weak symbols (51%)
‒ 44% the count of QtCore 4.8.x
‒ 4.5% the count of Qt 4.8.x (excluding QtWebKit)



5

© 2013 Intel

Definitions

• Binary compatibility

• Source compatibility

• Behaviour compatibility

• Bug compatibility
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Binary compatibility

Two libraries are binary compatible with each other if:

• Programs compiled against one will load and run correctly* 
against the other

* by some definition of “correct”
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Source compatibility

Two libraries are source compatible with each other if:

• Source code written against one will compile without changes 
against the other
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Behaviour and bug compatibility

Two libraries are 
behaviour-compatible with 
each other if:

• The program will exhibit the 
same behaviour with either 
library

Two libraries are bug-
compatible with each other 
if:

• Expanded version of 
behaviour compatibility to 
include buggy behaviour
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Forwards and backwards

Depends on the point of view

• Backwards compatibility: 
newer version retains compatibility with older version
‒ You can upgrade the library

• Forwards compatibility: 
older version “foreshadows” compatibility with newer version
‒ You can downgrade the library
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This presentation focuses on

• Backwards binary compatibility

• This depends on the ABI
‒ Totally outside the C++ Standard rules and guarantees
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Why you should care

Library used by libraries

• They expose your API in their 
API

• Their users might want to use 
a newer version of your library

Library used by anything

• Upgrading parts of the system

• Large, complex project
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Dynamically linking and system upgrade

Mod 1

Your lib

Data
exchange

Your lib v2
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Project with 2 modules, statically linked: initial state

Mod 1 Mod 2

Your lib Your lib

Data
exchange



14

© 2013 Intel

Your lib v2

Lib is upgraded in one module

Mod 1
(recompiled)

Mod 2

Your lib

Data
exchange

Does this still load?



15

© 2013 Intel

Co-existing libraries

Mod 1 Mod 2

Your lib Your lib

Data
exchange

Your lib v2

Does it still work?
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If you’re developing an application...

• This does not apply to you

• Except if the application has plugins

• Or if it has independent modules
The application has libraries



The details
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Binary compatibility requires...

• No public¹ symbol be removed

• All public¹ functions retain retain their properties
‒ Which arguments are passed in registers, which are passed on the stack, 

implicit arguments, argument count, etc.

• All public¹ structures retain their layout and properties
‒ sizeof, alignof, dsize, nvsize, PODness, order & type of publicly-accessible 

members, etc.

1) Symbols intentionally made public as part of the API plus private symbols used in inline 
functions
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No public symbol is removed

• Easy to do

• Do not remove any variables or functions that exist

• Do not change any variable or function in a way that would 
cause its external (mangled) name to change
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All functions retain their properties

• The C++ language helps you

• This requirement is mostly fulfilled by the previous and next 
requirements
‒ If the data types retain their properties
‒ And if the mangled name of a function is retained
‒ The function retains its properties 
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All data types retain their properties

• Can be automated with a C++ parser and the compiler

• Best avoided:
‒ Use opaque types / d-pointers / private implementation

• Examples:
‒ Change alignment → user’s structure could add or remove padding
‒ Change non-padded size → the compiler is allowed to use tail-padding
‒ Make non-POD → user’s structure becomes non-POD too
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Mangled names

IA-64 C++ ABI

• Prefixed by _Z

• Case sensitive

• Doesn’t mangle free variables

• Mangles only what is required 
for overloads that can co-exist

Microsoft Visual Studio

• Prefixed by question mark (?)

• Case insensitive

• Mangles free variables

• Mangles everything, 
including:
‒ Return type
‒ Struct vs class
‒ Public, protected, private
‒ Near, far, 64-bit pointers
‒ cv-qualifiers 



What doesn’t work



24

© 2013 Intel

Declaring that no BC guarantees are provided

• It’s ignoring the problem...

• Prevents your library be used in the contexts I’ve mentioned
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Don’t change anything, only add new classes

• It’s a solution...

• But it means never providing new features
‒ Or even bug fixes
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Rename all symbols with macros

• Example: ICU

• Requires renaming the library too (ELF soname)
‒ An OS solution

• Potentially loads more than one library into memory
‒ Increased memory usage

• Does not solve the data exchange problem

• Does not solve the user’s ABI problem
‒ Your mangled names are incorporated into their mangled names
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Rename symbols with inline namespaces

• Examples: Boost.Filesystem, LLVM’s libc++

• Might not require new library
‒ If both old and new symbols are present (Boost.Filesystem)

• Does not solve the data exchange problem

• Does not solve the user’s ABI problem
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Rename the library but not the symbols

• Example: Boost.Regex (regex vs regex-mt)

• Potentially loads more than one library into memory
‒ Might crashes at load- or run-time
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Experimental, public symbols in the same library

• Seems nice to provide your users with experimental features

• Linux distributions will not like you

• It means experimental symbols are off-limits (private)



What works
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Guidelines

• Don’t expose what you don’t need

• Be conservative in what you change
‒ Follow the “Binary Compatibility with C++”[1] guidebook

• Use automated test tools

[1] http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++

http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++
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Minimal exported API

• Design a minimal API
‒ If you’re unsure about something, don’t include it (yet)
‒ Limit exports by ELF or Mach-O visibility or __declspec(dllexport)

• Use opaque or simple types
‒ Private implementation, d-pointers

• Use an API based on functions
‒ Avoid exported variables
‒ Avoid returning pointers or references to internal variables
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Why private implementations and functions?

• Your public types won’t change much or at all
‒ Lowers the risk of changing the type’s properties

• You can freely change the private implementation

• Adding new functions is easier than member variables
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Changing non-virtual functions (static or not)

You can

• Add a new function

• De-inline an existing function
‒ If it’s acceptable that the old copy 

be run

• Change default parameters

• Remove a private function
‒ It cannot have been called in an 

inline function, ever

You cannot

• Unexport or remove public 
functions

• Inline an existing function

• Change its signature:
‒ Change or add parameters
‒ Change cv-qualifier
‒ Change access rights
‒ Change return type
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Changing virtual functions

You can

• Override an existing virtual 
‒ Only from primary, non-virtual base

• Add a new virtual to a leaf 
(final) class

You cannot

• Add or remove a virtual to a 
non-final class

• Change the order of the 
declarations

• Add a virtual to a class that 
had none
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“Anchoring” the virtual table

• Make sure there’s one non-inline virtual
‒ Preferably the destructor

• Avoid virtuals in template classes
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Changing non-static member data

You can

• Rename private members¹

• Repurpose private members²

• Add new members to the end, 
provided the struct is std-
layout and:
‒ The constructor is private; OR
‒ The struct has a member 

containing its size

You cannot

• Reorder members in any way

• Remove members

You should not

• Change member access 
privileges

• Add a reference or const or 
non-POD member to a struct 
without one

1) provided the class has no friends; 2) provided old inline functions still work
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Testing compliance

• Run automated tests frequently

• Run full tests at least once before the release

• On Windows: use the exports file

• On Unix: use nm, otool (Mac), readelf (ELF systems)

• GCC: use -fdump-class-hierarchy

• Everywhere: use the Linux Foundation’s ABI Compliance 
Checker[1]
‒ Confirmed to run on Mac, Windows and FreeBSD

[1] http://ispras.linuxbase.org/index.php/ABI_compliance_checker

http://ispras.linuxbase.org/index.php/ABI_compliance_checker
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Manual checking before release

• Do a “header diff”

• git diff --diff-filter=M oldtag -- \*.h
‒ Manually exclude headers that aren’t installed
‒ Or obtain the list of installed headers from your buildsystem
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Be careful with false positives

• You probably want a white and black list

• White-list your library’s own API

• Black-list “leaked” symbols from other libraries
‒ Inlines and “unanchored” virtual tables
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Further: experimental API

• Place it in a separate library

• In fact, place it in a separate source release
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Further: breaking binary compatibility

• Announce in well in advance

• Keep previous version maintained for longer than usual

• Try to keep source compatibility

• Change your library names (ELF soname)
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Resources

• Binary compatibility guide in KDE Techbase (for Qt and KDE):
‒ http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++
‒ Examples: http://techbase.kde.org/Policies/Binary_Compatibility_Examples

• Calling convention article (includes MSVC, Sun CC):
‒ http://www.agner.org/optimize/calling_conventions.pdf

• IA-64 / Cross-platform C++ ABI:
‒ http://mentorembedded.github.io/cxx-abi/abi.html
‒ http://refspecs.linux-foundation.org/cxxabi-1.86.html

http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++
http://techbase.kde.org/Policies/Binary_Compatibility_Examples
http://www.agner.org/optimize/calling_conventions.pdf
http://mentorembedded.github.io/cxx-abi/abi.html
http://refspecs.linux-foundation.org/cxxabi-1.86.html
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