
Binary compatibility for
C++ library developers

Thiago Macieira, Qt Core Maintainer
Aspen, May 2013

2

© 2013 Intel

Who am I?

• Open Source developer for 15 years

• C++ developer for 13 years

• Software Architect at Intel’s Open Source Technology
Center (OTC)

• Maintainer of two modules in the Qt Project
‒ QtCore and QtDBus

• MBA and double degree in Engineering

• Previously, led the “Qt Open Governance” project

3

© 2013 Intel

Qt

One major release in 7½ years

• Qt 5.0 was released in December 2012

• Qt 4.0 was released in June 2005
‒ Eight feature releases: 4.1, 4.2, ..., 4.8
‒ 32 patch releases: 4.0.1, 4.1.1-4.1.5, 4.2.1-4.2.3, 4.3.1-4.3.5, 4.4.1-4.4.3,

4.5.1-4.5.3, 4.6.1-4.6.4, 4.7.1-4.7.4, 4.8.1-4.8.4
‒ Latest release (Nov/2012) still is binary compatible with Qt 4.0.0

4

© 2013 Intel

libstdc++.so.6 (libstdc++-v3)

One major release in 9 years

• Last major release:

 GCC 3.4.0 on April 20, 2004

• 3607 symbols as of GCC 4.8.2
‒ 1830 non-weak symbols (51%)
‒ 44% the count of QtCore 4.8.x
‒ 4.5% the count of Qt 4.8.x (excluding QtWebKit)

5

© 2013 Intel

Definitions

• Binary compatibility

• Source compatibility

• Behaviour compatibility

• Bug compatibility

6

© 2013 Intel

Binary compatibility

Two libraries are binary compatible with each other if:

• Programs compiled against one will load and run correctly*
against the other

* by some definition of “correct”

7

© 2013 Intel

Source compatibility

Two libraries are source compatible with each other if:

• Source code written against one will compile without changes
against the other

8

© 2013 Intel

Behaviour and bug compatibility

Two libraries are
behaviour-compatible with
each other if:

• The program will exhibit the
same behaviour with either
library

Two libraries are bug-
compatible with each other
if:

• Expanded version of
behaviour compatibility to
include buggy behaviour

9

© 2013 Intel

Forwards and backwards

Depends on the point of view

• Backwards compatibility:
newer version retains compatibility with older version
‒ You can upgrade the library

• Forwards compatibility:
older version “foreshadows” compatibility with newer version
‒ You can downgrade the library

10

© 2013 Intel

This presentation focuses on

• Backwards binary compatibility

• This depends on the ABI
‒ Totally outside the C++ Standard rules and guarantees

11

© 2013 Intel

Why you should care

Library used by libraries

• They expose your API in their
API

• Their users might want to use
a newer version of your library

Library used by anything

• Upgrading parts of the system

• Large, complex project

12

© 2013 Intel

Dynamically linking and system upgrade

Mod 1

Your lib

Data
exchange

Your lib v2

13

© 2013 Intel

Project with 2 modules, statically linked: initial state

Mod 1 Mod 2

Your lib Your lib

Data
exchange

14

© 2013 Intel

Your lib v2

Lib is upgraded in one module

Mod 1
(recompiled)

Mod 2

Your lib

Data
exchange

Does this still load?

15

© 2013 Intel

Co-existing libraries

Mod 1 Mod 2

Your lib Your lib

Data
exchange

Your lib v2

Does it still work?

16

© 2013 Intel

If you’re developing an application...

• This does not apply to you

• Except if the application has plugins

• Or if it has independent modules
The application has libraries

The details

18

© 2013 Intel

Binary compatibility requires...

• No public¹ symbol be removed

• All public¹ functions retain retain their properties
‒ Which arguments are passed in registers, which are passed on the stack,

implicit arguments, argument count, etc.

• All public¹ structures retain their layout and properties
‒ sizeof, alignof, dsize, nvsize, PODness, order & type of publicly-accessible

members, etc.

1) Symbols intentionally made public as part of the API plus private symbols used in inline
functions

19

© 2013 Intel

No public symbol is removed

• Easy to do

• Do not remove any variables or functions that exist

• Do not change any variable or function in a way that would
cause its external (mangled) name to change

20

© 2013 Intel

All functions retain their properties

• The C++ language helps you

• This requirement is mostly fulfilled by the previous and next
requirements
‒ If the data types retain their properties
‒ And if the mangled name of a function is retained
‒ The function retains its properties

21

© 2013 Intel

All data types retain their properties

• Can be automated with a C++ parser and the compiler

• Best avoided:
‒ Use opaque types / d-pointers / private implementation

• Examples:
‒ Change alignment → user’s structure could add or remove padding
‒ Change non-padded size → the compiler is allowed to use tail-padding
‒ Make non-POD → user’s structure becomes non-POD too

22

© 2013 Intel

Mangled names

IA-64 C++ ABI

• Prefixed by _Z

• Case sensitive

• Doesn’t mangle free variables

• Mangles only what is required
for overloads that can co-exist

Microsoft Visual Studio

• Prefixed by question mark (?)

• Case insensitive

• Mangles free variables

• Mangles everything,
including:
‒ Return type
‒ Struct vs class
‒ Public, protected, private
‒ Near, far, 64-bit pointers
‒ cv-qualifiers

What doesn’t work

24

© 2013 Intel

Declaring that no BC guarantees are provided

• It’s ignoring the problem...

• Prevents your library be used in the contexts I’ve mentioned

25

© 2013 Intel

Don’t change anything, only add new classes

• It’s a solution...

• But it means never providing new features
‒ Or even bug fixes

26

© 2013 Intel

Rename all symbols with macros

• Example: ICU

• Requires renaming the library too (ELF soname)
‒ An OS solution

• Potentially loads more than one library into memory
‒ Increased memory usage

• Does not solve the data exchange problem

• Does not solve the user’s ABI problem
‒ Your mangled names are incorporated into their mangled names

27

© 2013 Intel

Rename symbols with inline namespaces

• Examples: Boost.Filesystem, LLVM’s libc++

• Might not require new library
‒ If both old and new symbols are present (Boost.Filesystem)

• Does not solve the data exchange problem

• Does not solve the user’s ABI problem

28

© 2013 Intel

Rename the library but not the symbols

• Example: Boost.Regex (regex vs regex-mt)

• Potentially loads more than one library into memory
‒ Might crashes at load- or run-time

29

© 2013 Intel

Experimental, public symbols in the same library

• Seems nice to provide your users with experimental features

• Linux distributions will not like you

• It means experimental symbols are off-limits (private)

What works

31

© 2013 Intel

Guidelines

• Don’t expose what you don’t need

• Be conservative in what you change
‒ Follow the “Binary Compatibility with C++”[1] guidebook

• Use automated test tools

[1] http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++

http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++

32

© 2013 Intel

Minimal exported API

• Design a minimal API
‒ If you’re unsure about something, don’t include it (yet)
‒ Limit exports by ELF or Mach-O visibility or __declspec(dllexport)

• Use opaque or simple types
‒ Private implementation, d-pointers

• Use an API based on functions
‒ Avoid exported variables
‒ Avoid returning pointers or references to internal variables

33

© 2013 Intel

Why private implementations and functions?

• Your public types won’t change much or at all
‒ Lowers the risk of changing the type’s properties

• You can freely change the private implementation

• Adding new functions is easier than member variables

34

© 2013 Intel

Changing non-virtual functions (static or not)

You can

• Add a new function

• De-inline an existing function
‒ If it’s acceptable that the old copy

be run

• Change default parameters

• Remove a private function
‒ It cannot have been called in an

inline function, ever

You cannot

• Unexport or remove public
functions

• Inline an existing function

• Change its signature:
‒ Change or add parameters
‒ Change cv-qualifier
‒ Change access rights
‒ Change return type

35

© 2013 Intel

Changing virtual functions

You can

• Override an existing virtual
‒ Only from primary, non-virtual base

• Add a new virtual to a leaf
(final) class

You cannot

• Add or remove a virtual to a
non-final class

• Change the order of the
declarations

• Add a virtual to a class that
had none

36

© 2013 Intel

“Anchoring” the virtual table

• Make sure there’s one non-inline virtual
‒ Preferably the destructor

• Avoid virtuals in template classes

37

© 2013 Intel

Changing non-static member data

You can

• Rename private members¹

• Repurpose private members²

• Add new members to the end,
provided the struct is std-
layout and:
‒ The constructor is private; OR
‒ The struct has a member

containing its size

You cannot

• Reorder members in any way

• Remove members

You should not

• Change member access
privileges

• Add a reference or const or
non-POD member to a struct
without one

1) provided the class has no friends; 2) provided old inline functions still work

38

© 2013 Intel

Testing compliance

• Run automated tests frequently

• Run full tests at least once before the release

• On Windows: use the exports file

• On Unix: use nm, otool (Mac), readelf (ELF systems)

• GCC: use -fdump-class-hierarchy

• Everywhere: use the Linux Foundation’s ABI Compliance
Checker[1]
‒ Confirmed to run on Mac, Windows and FreeBSD

[1] http://ispras.linuxbase.org/index.php/ABI_compliance_checker

http://ispras.linuxbase.org/index.php/ABI_compliance_checker

39

© 2013 Intel

Manual checking before release

• Do a “header diff”

• git diff --diff-filter=M oldtag -- *.h
‒ Manually exclude headers that aren’t installed
‒ Or obtain the list of installed headers from your buildsystem

40

© 2013 Intel

Be careful with false positives

• You probably want a white and black list

• White-list your library’s own API

• Black-list “leaked” symbols from other libraries
‒ Inlines and “unanchored” virtual tables

41

© 2013 Intel

Further: experimental API

• Place it in a separate library

• In fact, place it in a separate source release

42

© 2013 Intel

Further: breaking binary compatibility

• Announce in well in advance

• Keep previous version maintained for longer than usual

• Try to keep source compatibility

• Change your library names (ELF soname)

43

© 2013 Intel

Resources

• Binary compatibility guide in KDE Techbase (for Qt and KDE):
‒ http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++
‒ Examples: http://techbase.kde.org/Policies/Binary_Compatibility_Examples

• Calling convention article (includes MSVC, Sun CC):
‒ http://www.agner.org/optimize/calling_conventions.pdf

• IA-64 / Cross-platform C++ ABI:
‒ http://mentorembedded.github.io/cxx-abi/abi.html
‒ http://refspecs.linux-foundation.org/cxxabi-1.86.html

http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++
http://techbase.kde.org/Policies/Binary_Compatibility_Examples
http://www.agner.org/optimize/calling_conventions.pdf
http://mentorembedded.github.io/cxx-abi/abi.html
http://refspecs.linux-foundation.org/cxxabi-1.86.html

	This is an Example of a Presentation Title Flowing on to Three Lines
	Basic Text
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

