
Large Code Base Change Ripple Management in C++

My thoughts on how a new Boost C++ Library could help

Niall Douglas
Waterloo Institute for Complexity and Innovation (WICI)

University of Waterloo
Ontario, Canada

http://www.nedprod.com/

ABSTRACT
C++ 98/03 already has a reputation for overwhelming com-
plexity compared to other programming languages. The raft
of new features in C++ 11/14 suggests that the complexity
in the next generation of C++ code bases will overwhelm
still further. The planned C++ 17 will probably worsen
matters in ways difficult to presently imagine.

Countervailing against this rise in software complexity is
the hard de-exponentialisation of computer hardware capac-
ity growth expected no later than 2020, and which will have
even harder to imagine consequences on all computer soft-
ware. WG21 C++ 17 study groups SG2 (Modules), SG7
(Reflection), SG8 (Concepts), and to a lesser extent SG10
(Feature Test) and SG12 (Undefined Behaviour), are all fun-
damentally about significantly improving complexity man-
agement in C++ 17, yet WG21’s significant work on im-
proving C++ complexity management is rarely mentioned
explicitly.

This presentation pitches a novel implementation solution
for some of these complexity scaling problems, tying together
SG2 and SG7 with parts of SG3 (Filesystem): a standard-
ised but very lightweight transactional graph database based
on Boost.ASIO, Boost.AFIO and Boost.Graph at the very
core of the C++ runtime, making future C++ codebases
considerably more tractable and affordable to all users of
C++.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems; D.2.2
[Software Engineering]: Design Tools and Techniques—
Modules and interfaces, Software libraries; D.2.3 [Software
Engineering]: Coding Tools and Techniques—Object-
oriented programming, Standards; D.2.4 [Software En-
gineering]: Software/Program Verification—Model check-
ing, Programming by contract ; D.2.8 [Software Engineer-
ing]: Metrics—Complexity measures; D.2.8 [Software En-
gineering]: Management—Productivity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the C++ Now 2014 Conference Aspen, Colorado, USA.
Copyright 2014 Niall Douglas.

Keywords
ISO WG21, C++, C++ 11, C++ 14, C++ 17, Modules,
Reflection, Boost, ASIO, AFIO, Graph, Database, Compo-
nents, Persistence

1. INTRODUCTION
This paper ended up growing to become thrice the size

originally planned, and it has become rather unfortunately
information dense, as each of the paper’s reviewers asked
for additional supporting evidence in the wide field of topics
touched upon – extraordinary claims require extraordinary
evidence after all. It does not do justice to each of those
topics, and I may split it next year into two or three separate
papers depending on reception at C++ Now.

For now, be aware that I am proposing a new Boost li-
brary which provides a generic, freeform set of low level
content-addressable database-ish layers which use a similar
storage algorithm to git. These can be combined in vari-
ous ways to create any combination of as much or as little
‘database’ as needed for an optimal solution, including mak-
ing the database active and self-bootstrapping which I then
propose as a good way of extending SG2 Modules and SG7
Reflection in C++ 17 to their maximal potentials, specifi-
cally to make possible ‘as if all code is compiled header only’
including non-C++ code in a post-C++ 17 language imple-
mentation. This paper will – fairly laboriously – go through,
with rationales, all the parts of large scale C++ usage both
now and my estimations of during the next decade which
would be, in my opinion, transformed greatly for the better,
in an attempt to persuade you that supporting the devel-
opment of such a new Boost library would be valuable to
all users of C and C++, especially those programming lan-
guages which still refuse to move from C to C++ due to
C++’s continuing scalability problems. Donations of time,
money, equipment or design reviewing eyeballs are all wel-
comed, and you will find more details on exactly what is
needed in the Conclusion.

Contents

1 Introduction 1

2 What makes code changes ripple differently in
C++ to other languages? 2

3 Why hasn’t C++ replaced C in most newly
written code? 3

1

http://www.nedprod.com/

4 What does this mean for C++ a decade from
now? 4

5 What C++ 17 is doing about complexity man-
agement 6
5.1 WG21 SG2 (Modules) 6
5.2 WG21 SG7 (Reflection) 7
5.3 WG21 SG8 (Concepts) 7

6 What C++ 17 is leaving well alone until later:
Type Export 8
6.1 What ought to be done (in my opinion) about

this ‘hidden Export problem’ 10

7 What I am pitching: An embedded graph
database at the core of the C++ runtime 12
7.1 A quick overview of the git content-

addressable storage algorithm 14
7.2 How the git algorithm applies to the proposed

graph database 15

8 First potential killer application for a C++
graph database: Object Components in C++ 15
8.1 A review of Microsoft COM 16
8.2 An example design for modern C++ compo-

nent objects 17
8.3 Notes on implementing Object Components

under an ‘as if everything header only’ model 21

9 Second potential killer application for a C++
Graph database: Filesystem 21

10 Conclusions 22

11 Acknowledgements 23

12 About the author 23

13 References 23

2. WHAT MAKES CODE CHANGES RIP-
PLE DIFFERENTLY IN C++ TO OTHER
LANGUAGES?

How difficult is writing code in C++ compared to the
other major programming languages? A quick search of
Google shows that this is a surprisingly often asked ques-
tion: most answers say it is about as hard as Java, to which
probably most at this conference will chortle loudly. How-
ever, probably for the vast majority of C++ programmers
who never stray much beyond Qt-level mid-1990s C++ (let
us call this ‘traditional C++’ from now on), that complex-
ity of C++ is about par with a similar depth into Java, or
for that matter Smalltalk, C# or any object-orientated pro-
gramming language. As a human language analogy, from a
skin deep level object-orientated languages look just as sim-
ilar as Spanish, French, Italian and Latin do on first glance.

Yet with experience traditional C++ programmers start
to notice some odd things about C++ once you start writing
and maintaining some moderately large C++ code bases as
compared to writing and maintaining moderately large code
bases written in Java – and I’ll rank these in an order of
increasing severity according to my personal opinion:

1. Undefined behaviours: unlike Java which has a
canonical implementation, the majority, but not all,
of C++ is specified by an ISO standard which is im-
plemented, with varying quirks and bugs (‘dialects’),
by many vendors. Which vendor’s implementation is
superior isn’t as relevant in practice as which C++ di-
alect is compatible with the libraries you’re going to
be using, and it’s not unheard of for some commercial
libraries to quite literally only compile with one very
specific compiler and version of that compiler. This
is fine, of course, until you try to mash up one set of
libraries which require specific compiler and runtime
A with another set of libraries which require specific
compiler and runtime B, which can result in having
to write wrapper thunk functions in C for every API
mashed up (fun!).

2. The fragile binary interface problem i.e. mix-
ing up into the same process space binaries of dif-
ferent versions of libraries, or binaries compiled with
non-identical STLs is dangerous: while compiler ven-
dors go to great lengths to ensure version Y of their
compiler will understand binaries compiled by ver-
sion X of their compiler (where X<Y), the same is
not so true for the standard library runtimes supplied
across compiler versions e.g. woe betide you should
you try linking against a library compiled against lib-
stdc++.so.5 into a runtime using libstdc++.so.6 –
similarly, bringing a DLL linked against MSVCRT80.DLL
into a process full of MSVCRT100.DLL linked DLLs is
likely to not be entirely reliable1. The unavoidability
of mixing library versions in a single process is at its
worst with the STL as it’s the most commonly used
C++ library of all, but it is a problem with any com-
monly used C++ library due to the inability to control
what your dependant libraries do, which affects every-
thing from Qt to Boost.

3. The fragile base class problem: Java’s ABI is quite
brittle compared to other languages such that it is too
easy to accidentally break binary compatibility when
you change a library API – well, the C++ ABI is far
more brittle again due to (i) using caller rather than
callee class instantiation, thus making all class-using
code hardwired to the definition of that class and (ii)
using offset based addressing rather than signatures
for both virtual member functions and object instance
data layouts, which let you too easily break binary
compatibility without having any idea you have done
so until your application suddenly starts to randomly
segfault. The PIMPL idiom of hiding data layouts in a
private class and defining all public classes to have an
identical data layout (a single pointer to the opaque
implementation class) is usually recommended at this
stage (and is heavily used by Qt and Qt-like code-
bases), but PIMPL has significant hard performance
overheads: it brings in lots of totally unnecessary calls
to the memory allocator for stack allocated objects,
and it actively gets in the way of code optimisation

1Though plenty of people do it anyway of course, and then
code such as this evil in PostgreSQL becomes necessary
(http://git.postgresql.org/gitweb/?p=postgresql.
git;a=blob;f=src/port/win32env.c;hb=HEAD).

2

http://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/port/win32env.c;hb=HEAD
http://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/port/win32env.c;hb=HEAD

and reflection. More importantly for this paper’s pur-
poses, PIMPL does not work well with the idioms and
constructs made possible by C++11/14 and later –
think to yourself how you would go about assembling
a PIMPL idiom with template metaprogramming for
example2?

4. Memory corruption: a single piece of bad code
buried in some minor library hidden away in some de-
pendency representing a fraction of a percentage of
total line count can utterly ruin the quality and relia-
bility of everything else in that process address space.
I think this ‘feature’ of C++ (and to a lesser extent,
C) is probably unique to C++ out of all modern pro-
gramming languages actually – it is certainly unknown
to Java programmers, most of whom become very un-
stuck if transferred to work in large scale C++ devel-
opment with insufficient training. Some may not think
this too much of a problem: however, it is a huge prob-
lem if you are forced to use third party supplied binary
blobs which you know are corrupting memory, and the
vendor in question refuses to do anything about it even
after you have incontrovertibly proved the problem. I
personally have not yet worked in a corporate position
where this has not happened with third party supplied
binary blobs, sadly it is amazingly common.

5. State corruption: worse than memory corruption
is state corruption which is generally, but not always,
caused uniquely in C++ rather than in other languages
by two main causes: (i) race conditions generated by
more than one thread of code modifying memory with-
out being written to handle it correctly (this includes
the direct use of condition variables without wait pred-
icates, which is scarily common despite that very lit-
tle such code is race free3) and (ii) exceptions being
thrown up the call stack through C++ which is not
exception safe (even if written to be exception safe).
The reason that state corruption is worse than mem-
ory corruption is because memory corruption detection
tools such as valgrind will not detect state corruption
for you. State corruption due to thread race conditions
can be detected using tools such as the clang/GCC
ThreadSanitizer or helgrind/DRD tools in valgrind,
however you are quite on your own when trying to
debug exception safety breakages, and there I sadly
know of no better tool than the venerable printf().
As much as state corruption is a serious issue in any
of the modern non-functional programming languages,
most have not retrofitted threading and structured ex-
ception handling to the language long after there were
already many tens of million line C++ projects in exis-
tence – and then gone on to witness widely used C++
codebases and libraries to intentionally and deliber-
ately not retrofit their code to support either excep-
tions (still surprisingly common) nor threading (less
common), which has led to incommensurability prob-
lems in C++ codebases.

2To a limited extent it can be done with lots of hoop jumping
– for example proposed Boost.AFIO does so.
3See the new Boost permit object for a safe drop-in replace-
ment for unsafe condition variable usage.

Incommensurability is a term borrowed from post-
structuralism, but I mean it in the same sense as
Kuhn’s seminal 1962 book [9]. An illustrative exam-
ple might be when people use the STL in Qt code:
what happens if STL code throws an exception in a
Qt slot implementation? Answer: Qt fatal exits the
process because state has become undefinable. Given
that operator new is technically part of the STL, does
this not mean that all Qt-based modern C++ cannot
be considered to have well defined state if it is ever
possible for the system to run out of memory? An-
swer: correct, because you cannot allow any situation
where an exception might enter Qt code, otherwise
known state is permanently lost. What therefore hap-
pens when you mix exception safe code and exception
unsafe code? Answer: all code must now be consid-
ered exception unsafe – just one line of exception un-
safe code is enough to theoretically taint the exception
safety of every other line of code in the process, which
is a pretty extreme outcome.

All these C++-peculiar issues have turned up through-
out my career, and I would assume that the same issues are
very familiar to those at this conference as well. As much as
they are irritating in a moderately large codebase, they are
usually not too fatal because there is one almighty hack to
work around most of their manifestations: always recom-
pile everything potentially affected by a source code
change, with the further reification of make all imple-
mentation possible header-only i.e. always recompile
everything per-compiland which is of course a favourite of
Boost where ten minute per compiland compile times are
entirely possible. That eliminates versioning and ABI brit-
tleness problems by definition, and therefore lets you use all
the modern C++ idioms and techniques you like without
having to worry about the terrible consequences on binary
stability.

I think it self-evident to all at this conference that the
use of those modern techniques lets you substantially drive
down the amount of memory corruption and the cost of fix-
ing memory corruption, and I suspect it has highly posi-
tive effects on state corruption as well, not least that newer
code is invariably better tested and better designed to han-
dle threads and exceptions than older code was at the same
stage of maturity. The costs are mainly on the skill level re-
quired by the engineers and the very ample CPU resources
required to repeatedly compile so much code.

3. WHY HASN’T C++ REPLACED C IN
MOST NEWLY WRITTEN CODE?

Given that Objective C and C++ are the two most suc-
cessful attempts at creating a better C whilst remaining
compatible with C, I am going to ask a question rarely asked
nowadays: why is it that in 2014 there is still more new code
written in C than C++4?

In Figures 1 & 2 you will see the number of open source
commits and developers per month working in the program-
ming languages C, C++, Objective C with Java and Python

4Chandler Carruth last night raised the question with me:
what do I mean here by ‘new code’? By new code I mean
code newly altered, so that includes bug fixes in old code
bases as well as greenfield code.

3

Figure 1: Monthly commits to open source projects
tracked by Ohloh.net by programming language
2004-2014.

Figure 2: Monthly contributors to open source
projects tracked by Ohloh.net by programming lan-
guage as percentage of total 2004-2014.

thrown in for good measure, with the effects of the recent
economic downturn very plain to see. While the choice of
programming language in open source code is probably not
representative of the entire industry, it is probably not far
off, and it illustrates some very interesting things.

Firstly, the continuing popularity of C for new code is
quite remarkable (assuming that Ohloh’s parsers are good
at distinguishing C from C++ and Objective C). Java did,
for about a year around 2009, perhaps surpass it to become
the most popular language for new open source code, but the
2010 acquisition of Sun Microsystems by Oracle had a rapid
chilling effect, and Java has been slowly trending downwards
since.

Secondly, Python’s growth appears to be unstoppable,
and is now or shortly will be the most popular programming
language for new open source code apart from Javascript.
You’ll see me mention Python a lot during the rest of this
paper, mainly because I expect it will be the mainstream
applications and services programming language of the next
decade, and in my opinion C++ needs to start accommo-
dating that explicitly.

Thirdly, now is a very unusual time in that all the major
programming languages have about equal shares on all met-
rics, where it is in number of commits, number of developers
or number of active projects. I am not aware of this hav-
ing ever occurred before in history, so even if just confined
to new open source code, I think it safe to say a structural
transition is occurring.

Which then begs the question: why hasn’t C++ com-
pletely supplanted C for new code as was once expect-
ed/hoped for? Why is it that many C codebases (SQlite3,
OpenSSL and GCC all pop into mind) choose to extend C
with macro implementations of some C++ features instead
of using C++ (note that GCC now allows C++ in its source
code)? Why is it that many C codebases have virulently
anti-C++ policies?

Some of it can be explained by language taste: Linus Tor-
valds is but one of many who dislike C++ as a language for
example, but even a strong personal dislike usually doesn’t
forbid a whole language being used in some submodule some-
where. I think, personally, that what happens in practice is
that there are several showstoppers for C++ in really large
mixed language code bases:

• C++ extensively pollutes the C symbol namespace
with lots of mangled symbols. As much as the man-
gling avoids any conflicts, it slows down linking con-
siderably, looks messy, and generally provides evidence
that C++ has conspicuously failed to provide formal
facilities for ABI management.

• PIMPL is in fact the state of the art in ABI manage-
ment techniques, but it is an anti-optimisation, anti-
transparency, anti-inspection technique which has sig-
nificant hard runtime costs (especially on the memory
allocator) associated with it. Looked at from outside
C++, it looks like a temporary hack to workaround a
failure to deal properly with ABI management.

• I don’t think it helps that all the recent action in
new C++ features have been highly introverted and
navel-gazing – if you examine C++ 11/14’s new fea-
tures which are not also replicated in C11, they are all
about dealing with C++ problems caused unto C++
by C++ itself. They do not a jot for those looking to
use C++ with other languages.

Let me sum up this section as follows: if you are a Python
runtime engineer and you look at what C++ 11/14 gives
you which C11 does not, I don’t think you will find any-
thing at all which would make you reconsider C++ as a
choice for the Python interpreter. C++ 11/14 adds a ton
of great stuff, but did any of it persuade someone like Li-
nus that C++ might be tolerable in the Linux kernel? Do
the Python/Ruby/Lua/PHP interpreter guys look at C++
11/14 and go ‘wow that transforms our use case for C++
over C’?

There is of course nothing wrong with looking inwards for
a standards release, but I most definitely think you need to
flip that focus for the next standards release, or else risk
becoming a niche programming language for specialist uses
instead of the end all and be all systems programming lan-
guage which C++ has always aspired to be: a truly superior
C, one where there can be no doubt that it is the superior
choice for any new systems project under any metric.

4. WHAT DOES THIS MEAN FOR C++ A
DECADE FROM NOW?

What I’m going to talk about next is necessarily some-
what speculative given that no one knows what C++ 17 will
eventually define, or even how C++ 11/14 will end up be-
coming used by the wider practicing community. I am going

4

Figure 3: The graph from the famous ‘The Free
Lunch is Over’ paper by Sutter (2005; this graph
updated to 2009) [10]. Note how growth in clock
speed went linear around 2003, but growth in tran-
sistor density remains exponential for now.

to make the assumption though that we are currently living
in a very unusual golden age made only possible by Moore’s
Law having different logistic growth curves for clock speed
and transistor densities as you’ll see in Figure 3. What this
means is that because build systems can parallelise com-
pilation across available processors, compiling code is still
seeing exponential year-on-year improvements per currency
unit expended. Similarly, we are able to offload a lot of test-
ing onto continuous integration servers, which similarly see
exponentially falling costs per unit of testing.

I’ll be frank in saying that I very much doubt that this
unusual disparity will persist for many years longer with
transistor density growth also going linear in the next few
years (see Figure 4), and with it will pass the unique condi-
tions which let us lazily throw ever more C++ source code
into per-compiland consideration. Combined with this de-
exponentialisation in growth of transistor density will be the
continuing exponential growth in data storage capacity (see
Figure 5), which means linearly improving CPUs will have to
deal with exponentially rising quantities of data, something
anyone who has cloned a hard drive knows all about (storage
access rate growth went linear two decades ago, so copying
a hard drive can take the best part of a day nowadays).

Put more simply, right now we can freely add additional
C++ complexity to a codebase knowing that the costs of ad-
ditions are likely to be soaked up by the exponential growth
in transistor density. Come 2017-2020 however, for every
one unit of additional C++ complexity added, at least one
unit of additional build time and testing time will be added.
This profoundly changes the complexity economics of com-
puter software.

Figure 4: Historical comparison of advertised pro-
cess size (red line) to transistor gate length (yel-
low line) and the metal one half pitch (orange line)
which is a measure of wiring density. Note how the
latest 14 nm process actually uses the same one half
pitch as the 22 nm process, the transistor density
improvements came from extending transistors into
three dimensions and reorganising circuitry layouts,
both of which can only buy you a few more process
shrinks [7].

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

1980 1985 1990 1995 2000 2005 2010 2015 2020

LO
G

(b
yt

e
s

p
er

 r
e

al
 U

S$
)

Magnetic vs Flash Storage Capacity per
Inflation-adjusted Dollar 1980-2014

Magnetic Hard Drives Solid State Drives

Model Magnetic Hard Drives Model Solid State Drives

R2 = 0.996816

R2 = 0.998549

Figure 5: Historical comparison of Magnetic to
Flash Storage capacity per inflation-adjusted dol-
lar. Data compiled and regressed by myself. Excel
spreadsheet containing raw data can be found at [4].

I am therefore going to assert, given the trends illustrated
above, that by around 2017-2020 and if we are still using
present generation C++ toolsets, we’re going to see us stop
including as much source code as possible via header only
techniques, and not long after we’re going to have to stop re-
compiling all potentially rather than actually affected source
code5 every time we make a single change too. On top of
that, executable and dataset sizes have little impetus to stop

5i.e. the source files that the build tool thinks could poten-
tially be affected by a change. This is usually considerably
more than is actually needed.

5

growing as storage capacity remains growing exponentially,
so we’re going to keep piling on more lines of code and exe-
cutables are going to keep growing BUT less will be compiled
in a given compiland, and more linking of more compiled ob-
jects will be happening. In other words, I am going to pre-
dict that by around 2020, and assuming that present trends
continue and that C++ 17 looks reasonably like what has
been already proposed for it, C++ development in the 2020s
is going to look a bit more like C++ development was in the
1990s where linking your object files into an executable was
a real chore, except all those fancy new metaprogrammed
features are going to stomp all over your organisation’s pro-
ductivity as our hack of recompiling everything every com-
pile run becomes no longer feasible. Oh, and you’ll probably
be doing all this with a lot of Python code standing not too
far away from your APIs and ABIs.

Of course, so far I’ve only been talking about moderately
large code bases as these are the majority. Very large C++
code bases (i.e. the ones which take a day or more to recom-
pile with hundreds of CPUs working on the problem) already
have these problems – Microsoft, Google and BlackBerry all
place very substantial restrictions on the extent to which
their engineers can use cutting edge C++ techniques across
ABI boundaries (as in, use no C++ features which weren’t
common before year 2000), with extensive automated check-
ing of each code commit for ABI breakages. In fact, all three
internally recommend that you don’t even throw exceptions
across an ABI boundary, and exceptions entered the ISO
C++ standard back in 1998! Certainly while I worked at
BlackBerry including anything from Boost in a public API
was highly frowned upon as Boost does not attempt to pre-
serve a stable ABI over time, and I would doubt there is
any difference at any of the other software majors. Imag-
ine then to yourself how ABI stable capturing lambdas with
their unique, and intentionally unknowable type6 and there-
fore unknowable ABI are, and now consider how you would
write ABI stability rules for a language feature like captur-
ing lambdas? The answer is obvious: the only option with
current technologies is to ban capturing lambdas going any-
where near an ABI boundary7.

You can, in fact, rinse and repeat this thought exercise
with many, if not most of the new language and standard
library additions to the 2011 C++ standard: variadic tem-
plates are by definition anti-ABI-stability, as is anything
based on them like poor friendly std::tuple<> which is also
best banned from going near an ABI boundary.

This raises an unpleasant spectre: that an ever increasing
share of C++ language features added since the mid-1990s
are going to be permanently unavailable to large C++ code
bases as time moves forward, with a trickle down as Moore’s
Law progresses into linearity into more medium sized code
bases. In short, ladies and gentlemen, we are facing into
what the complex systems literature would call a medium
term C++ complexity scaling exigency.

6Unlike non-capturing lambdas which can decay to a C-style
function pointer, capturing lambdas have some unique but
unknown type which implements the call operator.
7An obvious workaround is to type erase the capturing
lambda type into a std::function<>, and have the ABI
accept only one of those as the sole means of transporting
a callable type. This, however, loses information i.e. in-
formation is erased by the ABI boundary, plus introduces
overhead.

5. WHAT C++ 17 IS DOING ABOUT COM-
PLEXITY MANAGEMENT

None of the above problems have passed over the WG21
committee of course: WG21 C++ 17 study groups SG2
(Modules), SG7 (Reflection), SG8 (Concepts), and to a
lesser extent SG10 (Feature Test) and SG12 (Undefined Be-
haviour), are all fundamentally about significantly improv-
ing code complexity understanding and/or management in
C++ 17, albeit to my understanding from a still C++-
centric perspective (rather than from say the perspective
of the Python interpreter). It’s worth having a quick look
at some of those efforts, and what ‘wicked hard’ problems
C++ 17 has explicitly put off the table already as issues
better tackled in an even later standard.

5.1 WG21 SG2 (Modules)
Right now in C++ the standard doesn’t say much about

binary object encapsulation: basically the standard is writ-
ten around the unspoken assumption that you are able (even
if you don’t) to compile all code entering a process’ space
which is probably an untenable assumption given how large
the STL has become in C++ 118. This has led to some
proprietary vendor innovations, of which three have become
dominant in C++: (i) the ELF shared object approach (ii)
the Mach O/PE dynamically linked library (DLL) approach
and (iii) the Microsoft Component Object Model (COM)
approach.

The ELF shared object approach tries to be as thin an
abstraction from a collection of object files produced after
compiling as possible i.e. pretend you’re just linking a very
large single program, so keep a single global symbol table
and if collisions happen, so be it; the Mach O/PE DLL ap-
proach where symbol tables are kept per-DLL, thus avoid-
ing most but not all problems caused by collisions; while
the COM approach is to eliminate as much C++ complex-
ity as possible (only virtual member functions allowed, and
no exceptions, only return codes), and provide the absolute
minimum information layer to permit as loose a binding as
possible, which while effective for very large scale C++ de-
velopment, it also removes almost all of C++ from the ABI
boundary. Note that of those three proprietary innovations,
the first two are actually for C code, while the third is 100%
compatible with C code. All three are very simple in theory
– perhaps why they have been so successful – and all three
are hideously complex when you start pushing the envelope,
which is why you can find books wholly dedicated to just
each topic.

The SG2 Modules proposal (rev. 6) N3347 [13], and the
only implementation of it that I am aware of which is in
clang [2] where it is a very partial implementation for C++,
presently goes nowhere near binary object encapsulation
for reasons I’ll explain shortly. What C++ Modules, as
presently planned is as follows:

• Delay-optimised precompiled library objects are stan-
dardised and can be imported at the precompiled bi-
nary level (i.e. as GIMPLE for GCC, or as clang-
enhanced LLVM for clang) rather than at the un-
compiled source inclusion level like #include requires.

8By this I mean that it was doable to include a header im-
plementation of most of a C++ 03 STL with every source
file compiled. This is definitely not possible with most of a
C++ 11 STL, the compiler would surely run out of memory.

6

These are basically an enhanced form of precompiled
headers, plus they are C++ namespace aware unlike
the C preprocessor which enforces a completely sepa-
rate C macro namespace and doesn’t understand the
code it is working with.

And that actually, is it: proposed Modules simply do away
with much of the boilerplate made necessary by the C pre-
processor header file ‘hack’ used up until now to both ex-
port and import library API definitions, though note that
you will still have to write header files because they are
the source file used to compile a C++ Module interface file
which itself is merely rarified auto-generated C++. Note
especially that proposed Modules provide no standardised
ability to distribute precompiled encapsulated binary ob-
jects. Note also that proposed C++ Modules have adopted
the same module-local symbol namespace used by the Mach
O/ELF approach (which it calls ‘module partitions’), so
while ELF shared objects/Mach O and PE DLLs/COM ob-
jects all continue to be strictly speaking necessary, with some
extensions one could probably do away with ELF shared ob-
jects, potentially even DLLs, if and only if the vendor can
decide on a stable binary format i.e. it’s like asking for pre-
compiled header outputs to work correctly over major com-
piler revisions, plus be small enough to distribute efficiently.

Note, for later, that a collection of precompiled source
code objects (i.e. what C++ 17 Modules proposes) which
the compiler can make sense of during compilation and link
is in fact a dynamic on-disc graph database of AST
blobs9. No one is claiming that that database will be re-
quired to be externally usable in C++ 17 – but I am claim-
ing that compiler vendors will almost certainly have to im-
plement an internal graph database of precompiled module
objects for the compiler to examine during source code com-
pilation.

Note also, for later, that a certain amount of link time code
generation would probably occur in a world of C++ Modules
as it already optionally does in the three main compilers. To
what extent one regenerates code during link is where things
get very interesting, and to which I will return.

5.2 WG21 SG7 (Reflection)
The ability for code to examine other code at the point

of compilation entered C++ via template specialisation
with the very first standard, and has been constantly im-
proved since then with useful library support in the form of
type_traits and many others. In fact, I would say with
some confidence that one of the singular features which sep-
arates modern C++ from traditional C++ and all other
major object orientated languages is the programmer think-
ing in terms of programming the compiler, not programming
the program. Unfortunately the ability for code to examine
other code previously compiled (rather than at the point of
compilation) has languished somewhat of late, and in the
standard that has not advanced past RTTI which lets you
only figure out very little about code not known to the cur-
rent compilation unit.

There have been many proprietary solutions here, with
some of the more interesting ones being CERN Reflex [1],
Boost.Mirror [3] and Google’s Rich Pointers [5], none of

9For correctness’ sake, note that Microsoft’s compiler is not
AST based, though it has been recently gaining AST based
parts.

which I think it is safe to say cover all the corner cases
which can emerge in reflection and for which reason SG7 is
initially concentrating on compile-time reflection only (cur-
rently I believe they have in mind a C macro-like interface
for asking the compiler things about itself which is then ex-
posed via a set of template aliases in a std::reflect names-
pace, though this situation is still fluid). I’ll confess my own
involvement here: I tried arguing on the SG7 reflector for
having the compiler make available its current internal state
into a magic C++ namespace, and then push the problem
of dealing with converting that internal compiler state into
a reflection API portable across compilers onto third party
libraries such as Boost. I basically asserted that design-
ing reflection into the language was too hard, so why not
then evolve a library based solution through survival of the
fittest? I think it safe to say that this proposal of mine –
which I entitled ‘Reflection Lite’ – did not see much trac-
tion.10

What I had in mind was easy interoperation with what
implementing C++ Modules will already demand from com-
piler vendors. If to implement C++ Modules the compiler
must be able to parse a graph database of precompiled
source files at the point of compile, then you already have the
machinery in place to export what is needed to implement a
reasonable initial stab at both compile-time and runtime Re-
flection – the only hard part now is deciding how to make
available that C++ Module machinery as a Reflection API
(my preference) or C++ language feature (probably the con-
sensus preference). I also personally rather like how the ex-
act same solution also works as easily for both compile-time
and runtime reflection – plus, because it’s a library based so-
lution, it is very amenable to other programming languages
directly interacting with the graph database of modules as-
is rather than having to go through bindings to the C++
reflection language feature.

5.3 WG21 SG8 (Concepts)
Anyone who has used a heavily metaprogrammed C++ li-

brary like some of those in Boost will know well the unpleas-
antness of figuring out what pages of obtuse compiler error
message might mean, plus just how easy it is to cause the
compiler to spew such errors for what ought to have been
a trivial change. Another big issue with heavily metapro-
grammed C++ libraries is compile times – I remember well
a project I worked on in BlackBerry which took seven min-
utes per compilation unit, and that duration is both just too
long and too short to be anything but highly frustrating,
trust me. Such brittleness and long feedback loops during
debugging makes using heavily metaprogrammed libraries
into a very steep learning curve exercise, and quite the te-
dious chore, for even those highly familiar with the tech-
niques employed. Such are the high fixed initial costs of
coming to grips with these libraries that I usually categor-
ically recommend against their use to C++ engineers who
seek my opinion, and I find that a real shame, especially
as apart from these I would rarely advise against using any
Boost library.

Original Concepts i.e. the ones proposed for C++ 11 were
supposed to let library writers do something about the prob-

10You can read the discussion for yourself at
https://groups.google.com/a/isocpp.org/d/msg/
reflection/bG52LgeOeGM/NaT1bV4SVaAJ.

7

https://groups.google.com/a/isocpp.org/d/msg/reflection/bG52LgeOeGM/NaT1bV4SVaAJ
https://groups.google.com/a/isocpp.org/d/msg/reflection/bG52LgeOeGM/NaT1bV4SVaAJ

lems caused by heavy use of metaprogramming mainly by
replacing the need for metaprogramming, but they were re-
moved from the 2011 proposed standard as they hadn’t been
fully thought through. For the 2017 proposed standard, an
alternative to Concepts called ‘Concepts Lite’ (its TS is be-
fore the committee [12], so some form of it will almost cer-
tainly be in C++ 17) has been formulated instead, which has
seen much wider acceptance probably due to their novelty
being in their lack of novelty.

So what are Concepts as they will enter C++ 17? Well,
any substantial changes between now and 2017 notwith-
standing, all they do is to let the programmer (and usually
actually the library writer) specify, without as much bend-
ing over backwards as is normally necessary, constraints on
template argument types. Everyone is familiar with the use
of class and typename typed template arguments:

Program 1: Pre-Concepts template arguments

template<typename T, . . . > s t r u c t Foo . . .
template<c l a s s T, . . . > s t r u c t Foo . . .
template<template<c l a s s , . . . > T, . . . > s t r u c t Foo

. . .
// And so on . . .

Well, with Concepts you now get new template argument
types, with class and typename simply now meaning ‘un-
constrained’ and anything not class nor typename meaning
‘constrained’:

Program 2: Post-Concepts template arguments

template<addable T, . . . > s t r u c t Foo . . .
template<comparable T, . . . > s t r u c t Foo . . .
template<template<addable , comparable , . . . > T,

. . . > s t r u c t Foo . . .
// And so on . . .

And, of course, you can tell the compiler that an addable
type needs to implement operator+, a comparable type
needs to implement operator== and so on simply by declar-
ing the appropriate constexpr template predicate functions
which return an appropriate boolean. All very straightfor-
ward.

So how does this help with compile times? Well, con-
straints are rather like SFINAE except they are much less
work for the compiler: because you provide static rules as
to what subset of the graph of available types to consider,
the compiler can prune the graph of items being consid-
ered very considerably. This radically transforms the many
O(log n) or worse searches a compiler must do, and therefore
ought to have substantial improvements on compile times for
concepts-using C++.

How this could help with metaprogramming brittleness is
far less clear, at least to me personally. I can see that in the
näıve case you will get a much more direct compiler error
message when you supply a non-addable type to a template
requiring an addable. I don’t see, however, that this is much
use in a large metaprogrammed library unless the library
author is very careful to ensure that the concepts are ap-
plied as close to user code as possible such that the concept
violations make sense to the library user e.g. by the user
facing class and all its APIs being individually implemented
by a collection of concept checked implementation classes,
thus applying appropriate concept checks to each API use
at the point of use, all of which sounds rather cumbersome

to write. Even with that, I personally think always-useful
compile error reporting isn’t feasible at least some of the
time, and then users are back to stepping through obtuse
library internals to figure out what they’ve done wrong.

In fact, when I raised this sentiment with Andrew Sutton,
who is the main person behind Concepts Lite, in a private
correspondence he said this:

I have serious doubts that concepts will help with
the brittleness of metaprogramming for the sim-
ple fact that metaprogramming is brittle. It was
never the goal of Concepts Lite to improve that
aspect of C++ usage. A major goal is to lessen,
if not eliminate, the need for metaprogramming
to express template requirements. We want pro-
grammers to spend less time programming the
compiler and more time programming programs
(to use your own words... although that sounds
very, very much like something I’ve said before).

Andrew is right that metaprogramming is brittle, and I
would assume it will remain so given that you are misusing a
template syntax not designed for what you are using it, and
constexpr is not much better in also using the wrong kind of
syntax for functional programming. However, upon further
reflection it occurs to me that it is the brittleness of the end
use of metaprogramming which is actually the complexity
management and scalability problem in C++ i.e. the library
users, not so much the library writers. As much as I would
like help with writing metaprogramming, what I actually
need is for a library like Boost.Spirit to produce useful error
messages telling you exactly what is wrong with your gram-
mar, and that alone would absolutely transform the use of
metaprogrammed libraries – rather than metaprogramming
itself – into something which could be categorically recom-
mended to all.

It seems to me that it must be feasible to use concepts with
other facilities to make automated generation of metapro-
gramming tractable, and thus skip the end user ever having
to debug pages of metaprogramming induced compiler er-
rors. To take Boost.Spirit again, instead of the user writing
a pseudo-EBNF grammar in C++ which is brittle and te-
dious, have them write real EBNF which is then converted
into however many tens of thousands of automatically gen-
erated template classes needed, all strung together with con-
cepts. This wouldn’t have been feasible in C++ 03 certainly
because of compiler limits, and I suspect even in C++ 14 it
would internal error the compiler for a grammar of any com-
plexity due to heavy use of SFINAE. With concepts though,
much of the complexity imposed on the compiler goes away,
and perhaps this much more user friendly way of implement-
ing Boost.Spirit becomes possible.

I guess we shall see, but even if not, there is absolutely no
doubt that C++ with concepts is a far better complexity-
tamed beast than C++ without concepts. I welcome them
unreservedly.

6. WHAT C++ 17 IS LEAVING WELL
ALONE UNTIL LATER: TYPE EXPORT

I ought to raise at this point the demons made manifest
by that infamous 2003 paper N1426 ‘Why we can’t afford
export’ [11] which has been so incredibly influential – you
can see that much of what makes the clang compiler very

8

different in design from all other compilers is a reaction to
what N1426 so clearly illustrates as to the can of worms one
opens when you allow compilation units to see, at compile
time, implementation in other compilation units. One Def-
inition Rule (ODR) violations are prohibited by the C++
standard and are automatic undefined behaviour territory,
yet they are widespread in any C++ codebase of any size
whether hidden via static storage, anonymous namespaces
or DLL symbol visibility boundaries, because the inclusion
model of type definition (this is where you use #include to
import externally implemented code) makes it far too easy
to allow ODR violations, indeed even to intentionally use
them to save time and effort (for example, ELF and DLL
shared library binaries naturally follow from the inclusion
model). I have many times heard claims that ‘my code has
no ODR violations’, to which I answer ‘have you read ev-
ery source code line of every library which enters your pro-
cess?’ and if they answer yes, you can then hit them with
‘well what about libraries your users decide to load into a
process without telling you?’ to which they now normally
answer something about that being the user’s problem.

I personally think that passes the buck: it should be easy
to write code in C++ which works sanely in any ODR vio-
lating scenario without all the hoop jumping and brittleness
currently induced, and in my experience this is a huge part of
why large code bases such as the Linux kernel or the Python
interpreter continue to refuse to use C++, and stick with C,
because looking in from outside it looks like we cannot put
our own house in order. By to date ignoring the ODR prob-
lems raised by exported templates in C++, it is my opinion
that we are holding back the conclusion of replacing
C with C++, with all the productivity consequences to
the wider software industry therein.

One of the most common cases of unintentional ODR vi-
olations in real world large scale C++ codebases is version
mismatches in loaded dependencies, with those dependen-
cies often buried so deep down in other dependencies that
no one has noticed the mismatch. Let us look at a contrived
example:

Program 3: In C++ Module Foo v1.0 which is a dependency
of Module A

// I n t e r f a c e code
namespace Foo {

c l a s s s t r i n g ; // s t r i n g i s opaque
extern const s t r i n g &ge tS t r i ng () ;
extern void p r i n tS t r i n g (const s t r i n g &) ;

}
// In t e rna l implementation
c l a s s s t r i n g
{

s i z e t l ength ; // l ength be f o r e s to rage
char ∗ s to rage ;

} ;

You probably will look at this contrived example and
think it could not possibly happen much in the real world –
well, let me give you a real world example which isn’t under
an NDA. In the Python programming language you are able
to create loadable Python modules which can be written in
C, C++ or anything else which can meet the Python mod-
ule ABI requirements. Boost.Python is a very useful C++
framework to save Python module writers a great deal of
work when writing in C++, but imagine to yourself what
happens if a Python program loads module A which was

Program 4: In C++ Module Foo v1.1 which is a dependency
of Module B

// I n t e r f a c e code
namespace Foo {

c l a s s s t r i n g ; // s t r i n g i s opaque
extern const s t r i n g &ge tS t r i ng () ;
extern void p r i n tS t r i n g (const s t r i n g &) ;

}
// In t e rna l implementation
c l a s s s t r i n g
{

char ∗ s to rage ; // s to rage be f o r e l ength
s i z e t l ength ;

} ;

Program 5: In Module A

// I n t e r f a c e code
import Foo ; // the v1 . 0 Foo

namespace A {
extern const Foo : : s t r i n g &what () ;

}

Program 6: In Module B

// I n t e r f a c e code
import Foo ; // the v1 . 1 Foo

namespace B {
extern void log (const Foo : : s t r i n g &) ;

}

Program 7: In C++ program which imports Modules A and
B

import A, B;

B : : l og (A : : what ()) ;

linked against Boost.Python v2.0 and module B which was
linked against Boost.Python v2.1? What will happen now is
one of these three outcomes: (i) the interpreter will segfault
at the point of loading module B (ii) you’ll successfully im-
port both modules okay and two slightly different versions of
the Boost.Python DLL will enter the Python interpreter’s
process space with two sets of runtime state (iii) the first
Boost.Python DLL loaded will enter the process BUT the
second module will have a different understanding of that
runtime’s layout than what is actually the case, but not
enough to segfault during load.

So far so good, even if a bit of memory corruption may
have happened for outcome (iii) above. But imagine things
from the perspective of the näıve Python programmer. He
sees that A.what() returns a Foo.string, and quite rea-
sonably thinks that can be passed as-is into B.log() which
also takes a Foo.string. What will happen now is one of
another three outcomes: (i) one copy of Boost.Python will
refuse to recognise objects coming from the second copy of
Boost.Python because they don’t share runtimes, leading to
some confusion for the Python programmer (ii) the inter-
preter segfaults from overwhelming state corruption due to
mismatch of runtime data layouts (iii) the operation appears
to work, but actually has corrupted memory just a little bit
further.

One might begin to see now why Python uses C instead
of C++ to implement its interpreter, just as most other in-
terpreted languages do, despite that writing C++ is vastly

9

more efficient. The problem is the maintenance costs in en-
vironments allowing third party loadable modules compiled
by that third party, and this is a cost where C beats C++
hands down.

Of course there are many mitigation strategies here, ev-
erything from library versioning through to better documen-
tation, and of course better design will always solve more
corner cases. But that isn’t the point: the point is that it is
very, very easy for multiple versions of – let’s say the Boost
library – to slip unnoticed into very large C++ code bases.
In fact, the Boost C++ Libraries are a particularly good
example of this problem because most of the libraries are
header-only, so a team can bundle in some version of Boost
and no one can tell that they have simply by examining the
exported API/ABI. As different teams cycle the versions of
their particular Boost at different speeds, voilà, instant un-
known and unknowable ODR violation.

This problem with coping well with resolving ODR viola-
tion is what sank the now deprecated ‘exported template’
feature of C++ 98, and upon whose difficulty of imple-
mentation in the Comeau/EDG compiler N1426 expounds
in depth. Export required the compiler to implement a
new type instantiation model which N1426 calls the ‘ex-
port model’ whereby clusters of interacting (template) types
were assigned into compilation units which had nothing to
do with traditional source code based compilation units, and
then a set of complex and occasionally contradictory rules
translated between two quite dimorphic type instantiation
models, such that what the programmer intended (the in-
clusion model) was emulated by the export model. Some
interesting consequences were that in order to save on disc
space, every time you changed the use of a template type, all
uses and the original implementation of that template type
had to be recompiled, which of course was exactly opposite
to the original mandate for having exported templates in the
language at all. It was therefore rather slow.

So we dropped Export, and made that whole can of worms
go away. However from the perspective of non-C++ users
– for example the Python interpreter above – all of C++
looks just as exported templates did to the rest of C++: one
giant failure to deal with ODR violation e.g. by replacing
the need for the one definition rule, or indeed the inclusion
model, with something less primitive.

That, however, was over a decade ago, and we now have
clang, whose design is far better suited for implementing ex-
ported templates. The top of the range CPU at the time
of implementing Export is considerably slower than a first
generation Intel Atom – and slower than the CPU in your
smart phone. We easily have sixteen times the RAM, twenty
times the storage and low latency SSDs in a PC, even in a
smartphone we have ten times the RAM. In order words,
we can probably not worry about storage consumption any-
more, and therefore relax the need for clustering type in-
stantiation in an Export implementation.

Not – let me be clear – that I actually think that origi-
nally proposed exported templates is worth implementing.
For one thing, the world has moved a lot onwards since; sec-
ondly the feature wasn’t and still isn’t particularly valuable
in practice, because as I mentioned earlier in the section on
ELF shared objects, having a global symbol namespace al-
ways creates more problems than it solves, and besides the
C++ Module partitions mentioned earlier are a clear inter-
face contract with module users: type export must stop at

the partition, which rather eliminates their purpose. More-
over, why would you bother trying to pseudo-hide template
implementation anyway?

However, there is a far more valuable feature closely re-
lated to the issues surrounding exported templates: code
change ripple management. This is because if you
change type Foo in some source file, the ripple effects of the
consequences of that change can be calculated if you had a
full ODR violation resolution machinery in place, noting for
later that the direction of such a machinery acts exactly op-
posite to the machinery which EDG employed to implement
exported templates. And that potentially enables some very
exciting features, to which I shall return in the next section.

For now though, no one is currently planning to substan-
tially deal with the wider questions nor the wider issues sur-
rounding exported templates for the 2017 standard, despite
their dire impact on external users considering the choice of
C++ over other language options. We all know why we can’t
afford Export, but if you look closely, we have started to
subconsciously avoid even going near the problems raised by
Export when thinking about the future of C++, which I will
call ‘the hidden Export problem’. This phenomenon is
in my opinion ever more frequently raising itself as showstop-
pers for all sorts of things we could really do with in C++,
most especially improved tools, methods and processes for
dealing with C++ complexity. They are, in my opinion,
particularly getting in the way of Modules, Reflection and
Concepts, and the 2017 standard will have in my opinion
impoverished implementations of all three features because
we don’t want to go further until we have good solutions for
the problems raised by N1426 over a decade ago.

6.1 What ought to be done (in my opinion)
about this ‘hidden Export problem’

Note that the sledgehammer of versioning every lump of
code such that Foo v1.1 claims ABI compatibility with Foo
v1.2 is certainly one way of doing this, despite the well-
known ‘DLL hell’ brittleness which results. However I think
we can do a lot better, especially as C++ Modules needs to
dump the AST blobs onto disc anyway, so we really ought
to leverage those AST blobs properly.

And here is where things start to become exciting. If you
bring together everything I have talked about in this pa-
per so far: how hardware growth is going to become linear,
how that implies that there will be a big return to systems
programming languages to eke out more performance, how
C++ 17 will hopefully gain Modules, Reflection and Con-
cepts, how Type Export and ODR violation is so known to
be verboten we have started mentally skipping over their re-
lated issues without realising, and how that laziness appears
to external users considering the use of C++ over other op-
tions as we can’t put our own house in order, some awfully
interesting thoughts begin to circulate.

For example, what if all C++ were compiled as if
every bit of C++ were header only?

Let’s go further: what if all C++ were compiled as if all
code which could interact with that C++ were header only?
That includes Python, PHP, Lua, C#, whatever.

Let’s go even further: what if all C++ were compiled as
if all code including that in related processes which could
interact with that C++ were header only? As in, including
processes which talk to your process via some form of IPC,
such that the system could correctly figure out that all inter-

10

mediate code correctly adapted to your change, over the IPC
transport and serialisation connection, and only when into
the other process’ code it realises that your change would
break something?

Think of the advantages. It would mean that at the point
of compile you would get an error message from the compiler
if your change broke some bit of Python code running in a
process which talks to your process via a RESTful HTTP
interface. That’s right: as you write code, the compiler
can calculate – in a finite time – the consequences of your
changes on every single bit of code your change touches. In
one fell swoop, unintentional ABI breakage goes away for-
ever – and C++ would finally have a sane ABI management
solution, and moreover one which very strongly recommends
it to all other programming languages because C++ has just
become the foremost solution for managing change ripples in
large code bases.

Now, I’ll be honest here – this idea of making a post-2017
C++ treat all code as header-only came about during exten-
sive email discussions regarding an early draft of this paper
with Andrew Sutton and Stephan T. Lavavej in quite liter-
ally the five days preceding this conferences, thus sparking a
very hasty refactoring of the talk and this paper – in fact, it
was Stephan who articulated it first almost as a semi-serious
reductio ad absurdum distillation of his opinion on my early
draft. As the days went by and the idea bounced around my
head, it began to occur to me that that was in fact exactly
what I was driving at in trying to explain why an embedded
graph database needs to be done now in preparation for the
future.

What you would need to do to implement ‘as if everything
header only’ is to break up compilation into per-type units,
so let’s say I declare a type template<class T> struct

Foo. Perhaps some parts of Foo are type invariant, so you
might output a bit of AST and clang-LLVM for those, per-
haps even as a mini-C++ Module. Then for every use of
Foo<T> you would output another AST and implementation
in clang-LLVM, dumping all of these little bits of precom-
piled implementation and ASTs into a graph database with
vertices connecting up their relationships, perhaps also as
fully formed mini C++ Modules where possible.

I would imagine that this way of compiling C++ is very
similar to how GLSL shaders are compiled on demand into
the right opcodes for your local video card, and I would point
out that such a task is very amenable to being assisted by
a cloud compute resource or a CI server – it certainly is
embarrassingly parallel.

Think of it this way: Facebook provides a ‘Social Graph’
which connects up the relationships between billions of indi-
viduals. You’re doing exactly the same thing here, but with
modules of implementation of C++ types, so the node rep-
resenting the definition of template<class T> struct Foo

is connected to the nodes representing all partial and con-
crete instantiations of Foo such that the consequences of a
change to one part can be calculated on the wider graph.
Incidentally, a C++ compiler already does most of this as
part of converting a compiland’s AST into optimised output,
just it’s an in-memory database rather than being stored to
disc. I don’t underestimate the refactoring which could be
involved here – right now compilers can perform the graph
reductions part of the optimisation passes on an in-memory
database, whereas what I propose probably requires doing
so with an on-disc database instead, which probably means

a lot of new code11.
The hard part of course is designing the ODR violation

resolution machinery, just as it was for Export. We have
some advantages over Export though: firstly, we aren’t try-
ing to adhere to a design written in stone before anyone had
tried an implementation. Secondly, we have a ton more ex-
isting complex C++ codebases out there to test against, so
instead of having to worry about what someone might po-
tentially do with the standard (remember Export was being
implemented before the C++ 03 standard), we now have
a fairly good idea. Thirdly, Export defined an additional
method of making template types visible outside their im-
plementation which meant that things like Koenig lookup
had to start traversing compilands, whereas here we aren’t
doing that: the inclusion model is always respected, so if you
define twenty incompatible implementations of type Foo in
twenty separate source files, and then try to use multiple im-
plementations at a single point, we will quite rightly refuse
to compile instead of trying to jury rig Koenig lookup to
work. Fourthly, we now have a working definition of C++
Modules to hand, and while I can see some potential incom-
mensurability problems with making every fragment of type
instantiation its own C++ Module, I don’t think they are
insurmountable.

I appreciate that that last paragraph rather glides over
important detail, but I am going to bail out early – besides,
I have no idea if anyone else likes this proposition (I am self
employed and live in a country far removed from the cen-
tres of software excellence, so who knows what the compiler
vendors think). I will say a little more on how to go about
managing the ripples of change though, because sometimes
you don’t want them to simply propagate unhindered.

It occurs to me that how you would implement change rip-
ple management is through ‘Concept checks for the ABI’, so
the embedded graph database I am proposing is not only the
repository where you store the little fragments of object file
outputs, but also where you articulate the rules governing
what to do with code ripples. Do you propagate them on-
wards, figuring out what code needs to be recompiled until
the full extent of the consequences of a single code change is
made manifest? Or does a preconfigured fixed ABI bounce
incompatible changes back to the programmer – for exam-
ple, Microsoft or BlackBerry provide SDKs to end users, and
for those you might store each SDK release as a fixed ABI,
thus ensuring the programmer cannot accidentally break a
SDK during a bug fix?

The possibilities are vast, but given the newness of the
idea to me, I am unfortunately going to stop with the above
description. Perhaps I can expand at next year’s C++ Now.
What I will say though is that a feasible implementation im-
plies that you can’t do a full recompile of all affected code at
the point of compile. What we really need here is two things:
(i) reduce the search space and (ii) the ability to push the
hard graft onto a batch pass, probably done by some cloud
resource somewhere, which periodically runs over the binary
AST blobs spat out by each compilation unit, and generates
indices of things to look for during individual compiles. The
compiler or linker can then massively reduce the amount of
work that checking for the consequences of changes would

11As a v1.0 implementation though, we could probably ac-
cept unoptimised code for this feature i.e. it only works
when writing code being compiled as debug.

11

require, thus making my proposal tractable. The runtime
linker might also coalesce regularly non-changing binary out-
puts into ELF or DLL shared libraries, and thus avoid du-
plication of code in each process – something greatly helped
by the fact that the proposed graph database keeps its first
tier content as an ordinary file which can be mmapped etc.
like any other.

Once again, we are looking at the need for a graph
database which can store this sort of metadata, and re-
member that you’re going to have to push a certain amount
of this database with programs which need to load third
party supplied extension modules, so this is a distribution
issue as well, something I’ve accounted for in the proposed
graph database as it can shard bits of itself over a network
transport.

Coming back to the Boost.Python example mentioned in
the previous section, Boost.Python is very much limited in
flexibility by the lack of Reflection in C++ – basically you
must laboriously tell Boost.Python how to make each C++
object available to Python, or more likely, you use a bind-
ings generating tool such as Pyste which statically imple-
ments Reflection through parsing your C++ interface files
using GCC-XML. If Boost.Python could have the compiler
do the static Reflection – or even more exciting, do dynamic
Reflection of some arbitrary precompiled C++ Module like
you can in Managed .NET C++ – it would hugely ease the
complexity of implementation, the difficulty of generating
high quality bindings, and generally substantially improve
C++’s usefulness to other programming languages, and fi-
nally persuade them to leave C.

If it isn’t obvious by now, the very same graph database
sitting at the very core of the C++ runtime can provide
your repository of linkable and dynamically loadable mod-
ules, the ASTs and debug infos which were generated during
compilation for Reflection and Concepts synthesis, and the
timestamping/versioning of all the previous so you can easily
figure out what relates to what and when.

All this also goes a huge way to letting build systems
become far more optimal than at present, as instead of a
make tool recompiling all dependencies of a changed file, we
could rebuild on the basis of actual consequence of a change
i.e. if you change something which has no consequence on
external type dependencies, nothing gets rebuilt. This ought
to let C++ scale up nicely into ever larger code bases for at
least another decade, despite the linear growth of CPU and
RAM capacities.

7. WHAT I AM PITCHING: AN EMBED-
DED GRAPH DATABASE AT THE CORE
OF THE C++ RUNTIME

Back when I first began to ponder solving information
complexity management at an industry-wide scale in the
1990s (and ended up unknowingly reinventing Plan 9 to solve
it12), I placed at the very heart of my next-generation plat-
form design a shard of a distributed global active object
database, rather similarly to how Plan 9 did by making ev-
erything in the distributed system a file. Everything – every
file potentially loadable into a program, every possible in-
terpretation of that file (e.g. text as paragraphs), view and
conversion (e.g. PNG as a JPEG) of every possible piece of

12http://www.tnrev.org/

data, and the history of what you did as well as everyone
else did (which was part of the capability token-based se-
curity model) – all appeared in that object database shard
which was lazily evaluated, so diving into some subdirec-
tory was equivalent to constructing a lazy demand-executed
operation. I ended up making only a bite into that imple-
mentation in the three full time years I invested into it, but
I have been very glad to watch ‘the Web 2.0 cloud’ manifest
most of that solution before all our eyes. What surprises
me continuously however, is how the internet of graph con-
nected information, which anyone can so easily tap into with
a RESTful HTTP API request, is absolutely absent from
local devices, even to the software developer. The closest
thing I can think of which approximates an ubiquitous local
database is probably SQLite3, which while a superb piece of
software I have made much use of over the past decade and a
bit, is not a graph database, even with an ORM translation
layer mounted atop.

I find this situation to both be rather curious as well as a
bit of a shame: for example, if C++’s shared library loader
could construct a graph of load ordering dependencies, it
could load independent graphs simultaneously using multi-
ple CPU cores. As the serialised nature of process initial-
isation is a very significant limiter of process initialisation
speeds in large C++ codebases with many shared libraries,
this could make feasible micro-shared libraries – as in, con-
sisting of one or two very small, very specialised and very
reusable class implementations somewhat resembling the in-
stantiation clusters of EDG’s implementation of Export –
with future C++ applications loading thousands, or tens of
thousands of these tiny shared libraries into a process space.
Obviously the granularity of the system page size (usually
4KB) is a factor here, but one could see that an ‘as if ev-
erything header only’ implementation could simply spit out
lots of little shared libraries, and let a runtime linker figure
out which subset is the right subset for the current process.

Anyway, if having established how useful an embedded
graph database in C++ would be, you then proceed to look
around for an embedded graph database implementation,
you will be perhaps surprised to hear that I could find pre-
cisely one: UnQLite13, which happens to come from the
same stable as SQLite, and it is one very impressive and
useful piece of software. However, in my opinion I don’t
think it can substitute in the same wide ranging use cases
as SQLite, and here are my reasons why:

1. UnQLite does too much: it comes with a custom
scripting language which is compiled into a byte-
code, pluggable storage engines, ACID transactions,
a HTTP request engine, plus some funky C idioms
to extend C with desirable C++ features. I have no
problem with any of that, and it makes substituting
UnQLite for a big iron commercial graph database far
easier, but if there is anything which I have learned
from writing open source libraries, it is that people far
prefer small, flexible, reusable bits of implementation
rather than anything approaching a complete imple-
mentation. My most popular open source code by far
is nedtries followed distantly by nedmalloc, which be-
tween them make up only hundreds of lines of code
compared to the 50k+ lines of open source of mine out
there.

13http://unqlite.org/

12

http://www.tnrev.org/
http://unqlite.org/

Table 1: What non-trivially reconstructible data can you lose if power is suddenly lost for various popular

filing systems?1

Newly
created file

content
corrupt-

able after
close2

File data
content
rewrite
corrupt-

able after
close2

Cosmic
ray

bitrot
corrupt-

able

Can
‘punch

holes’ into
physical

storage of
files3

Default
maximum
seconds of
reordering
writes of

newly
created files

Default
maximum4

seconds of
writes

loseable

Measures
necessary to

safeguard data
even after waiting

max seconds of
writes loseable

FAT32 Yes Yes Yes No ? ?

(i) Parity data
(ii) fsync dir

(iii) fsync data
(iv) vanishing/du-
plicate file entries

check
ext2 Yes Yes Yes No 305 355 As above

ext3/4
data=writeback

Yes Yes Yes ext4 only 305 355 As above

ext3/4
data=ordered

(default)
No Yes Yes ext4 only 305 355 (i) Parity data

(ii) fsync rewrites

UFS + soft
updates

No Yes Yes No6 30 30
(i) Parity data

(ii) fsync rewrites
HFS+ No Yes Yes Yes ? ? ?

NTFS No Yes Yes Yes
idle/

write limit
idle/

write limit
(i) Parity data

(ii) fsync rewrites
ext3/4

data=journal
No No Yes ext4 only 55 55 (i) Parity data

BTRFS No No No Yes 30 30

ZFS No No No
compress

only
57 30

1 I should stress that this table has been constructed by me through a lot of ‘best guesses’ and examining implementation
source code where available. I am not at all confident in its accuracy. Note the complete lack of information about
Apple’s HFS+ filing system, other than its metadata being journaled there is very little information out there. I also
could not find much which is concrete about Microsoft’s NTFS filing system – we know it will pace writes after RAM
buffers exceed some amount, and we know it will early flush RAM buffers if the device is considered idle, past that I
couldn’t find out much more.

2 ‘closed’ is a very important qualification: only a few filing systems guarantee (rather than ‘just happens’) anything
about writes to files without all file handles closed.

3 This is where a filing system permits you to deallocate the physical storage of a region of a file, so a file claiming to
occupy 8Mb could be reduced to 1Mb of actual storage consumption. This may sound like sparse file support, but
transparent compression support also counts as it would reduce a region written with all zeros to nearly zero physical
storage.

4 This is the maximum time before the system will start to try writing dirty data out to storage. It may start to write
the data sooner e.g. if a large amount of dirty data has not yet been written. It also may take a considerable period of
time before the dirty data actually reaches storage.

5 The ext2/3/4 filing systems commit their metadata by default every five seconds, however ext3/4 will not commit
metadata for file data not yet allocated and ext4 may significantly delay allocating storage. This, in practice, means
that ext3 may take dirty_writeback_centiseconds (default=5s) to start writing out dirty pages, whilst ext4 may take
dirty_expire_centisecs (default=30s) before allocating space for written file data, which then gets written out the
same as ext3.

6 UFS itself supports sparse files, yet I could not find an API with which you can punch holes for arbitrary regions.
7 The chances are that the ZFS write throttle is going to get replaced once again, so the fixed five second per transaction

group which limits write reordering to five second chunks is going away. See http://dtrace.org/blogs/ahl/2014/02/
10/the-openzfs-write-throttle/.

2. UnQLite enforces the key-value model on you. There
is nothing wrong with that, it is very popular, but I
suspect that many developers will want to use what-
ever arbitrary custom graph layout they feel like – or
even more likely, to end up evolving some graph lay-
out which fits their needs over time. My point is that
an embedded graph database really shouldn’t impose

anything like a data model on you because it’s so low
level: you should be free to model and index as you
want.

3. UnQLite stores its data in a single file in a custom
format. I suspect that many developers will prefer in
an embedded graph database to directly open a file
containing the right data on the hard drive, and really

13

http://dtrace.org/blogs/ahl/2014/02/10/the-openzfs-write-throttle/
http://dtrace.org/blogs/ahl/2014/02/10/the-openzfs-write-throttle/

all a read-only embedded graph database should do is
to tell you what the path of that file is.

4. UnQLite doesn’t appear to natively version your data
for you such that you can rewind history, nor let you
easily recover from bit errors caused by cosmic ray bi-
trot (something surely very valuable in an embedded
database!). Closely tied to lack of versioning is the lack
of secure modification auditing whereby any attempt
to change history will rewrite all subsequent history,
something very useful for a multitude of uses.

5. UnQLite doesn’t easily merge shards of databases over
unreliable links (or if it does, I didn’t find such facility).
I’m thinking something like ‘git push’ and ‘git pull’
would be very useful for sending bits of graph database
around the place, copying only those parts not in the
destination database.

6. UnQLite’s design doesn’t take advantage of useful fil-
ing system specific features – for example, consider
the power loss safety matrix in Table 1 which shows
what non-trivially reconstructible data can you lose if
power is suddenly lost for various filing systems. With
a proper design, if your graph database were residing
on a ZFS volume which makes very strong guarantees
about data integrity and write ordering, then you could
safely completely skip fsync() without risking data in-
tegrity of some past complete history of versioned data
and only risking the last thirty to maybe sixty seconds
of data written. If ZFS sounds a bit exotic, consider
that you can eliminate fsync() completely on an ext4
partition mounted with data=journal if you are will-
ing to risk losing the last five and a bit seconds of data
written, and do bear in mind that one can absolutely
keep your graph database in a specially mounted ext4
partition.

7. Like most key-value document stores, UnQLite does
let you make database objects active via its scripting
language, but you are limited by the features of that
scripting language – which is of course not C++.

So here is what I am thinking instead: why not reuse the
same content-addressable object storage algorithm as used
by git to implement a very low-level transaction-capable
data persistence library, and then allow users to bolt some
arbitrary per-graph or per-tree indexing implementation on
top to implement the lookup indices (one of course includes
Boost.Graph here, but one could certainly include a git im-
plementation and SQL table implementation too)? Such a
graph database would not be particularly quick as it would
be entirely based on files in directories on the filing system,
but it would be extremely low-level and I should imagine
could still achieve no less than 50 transaction commits per
second on a magnetic hard drive which ought to be plenty
for many applications. What users do with such a low-level
graph database is entirely up to them: don’t want transac-
tions? No problem. Don’t want Boost.Graph? Also not a
problem. Don’t even want versioning? Well, we can do even
that too.

7.1 A quick overview of the git content-
addressable storage algorithm

The git source control tool has become known to most
software developers, and of course this year Boost moved
onto git which was a huge achievement. What is less famil-
iar to most users of git is how cleverly stupid the git imple-
mentation is (which is why Linus named it ‘git’ incidentally,
a git is an annoying stupid person in British English), so a
quick overview is in order.

Most know that git works exclusively with SHAs, these
being a 160 bit long number which are the SHA-1 of the
content in question, with the assumption that these never
clash and so that number is a unique identifier of the con-
tent in question. Content is then stored inside the git repo
under .git/objects/ab/xxxx where ab is the first two let-
ters of its SHA in hexadecimal, and xxxx is the remaining
38 characters of the SHA in hexadecimal.

Directories of files and their metadata such as timestamps
are simply made up of a list of leafnames and metadata and
the SHAs of the content of those files. These are stored in
a structure called a tree object, which itself is SHAed and
stored alongside the content as just another blob of content.
A directory entry in a tree object of course refers to another
tree object, thus you get the standard directory hierarchy.

Commits consist of a linked list of commit objects, where
a commit object is simply the SHA of the appropriate
tree object, preceding commit object and commit message.
Branches, which are simply a reference to some commit,
are quite literally a file in .git/refs/heads named after the
branch solely containing the SHA of the commit in question.

Using just the information above, you can now write a
fully functional git implementation which will be under-
stood by any other git implementation (though other git
implementations will almost certainly convert your repo into
something you can’t understand due to an extra feature
called packfiles, but these aren’t germane to this discussion).

The especially clever part about git starts to become clear
when you start thinking about pushes and pulls and other
sorts of atomic concurrent updating by multiple processes.
When pushing, all git does is to send a list of SHAs making
up the commits of the branch being pushed. The remote git
compares the SHAs in the list to see which ones it already
has simply by testing for file existence, and it acks with the
list of the SHAs it doesn’t have, thus only transferring the
minimum delta of data necessary. Pulls (really fetch) simply
do the same thing in reverse. Note a very useful property:
if the transfer of missing SHA blobs gets interrupted, you
get for free resumable transfers.

This then raises an interesting question: what happens
to orphaned SHAs i.e. those which were part of a failed
transfer, or orphaned due to a branch being deleted? Well
git solves that using garbage collection which it runs peri-
odically: it simply makes a list of all SHAs in all branches,
commits and trees still being used, and deletes all those file
entries in objects it finds on the filing system not in that
list. This is why in git even if you forcibly trash a month’s
worth of other people’s work by doing git push -f as some
are too fond of doing, all your content is still in there and
very easily retrieved e.g. simply reset the branch HEAD to
whatever SHA it was before and yes, it just works so long
as no garbage collection has happened since.

Even more clever again in this very stupid design is how
git handles concurrent writes by multiple processes. Because

14

content is uniquely named according to contents, if two pro-
cesses write the same filename you are guaranteed that it is
the same data – all you need to do when writing new con-
tent objects is to open using O_EXCL and you’re good. Rather
more interestingly of course is that simultaneous writes to
dissimilar content generally proceed in parallel so long as no
one writes the same content (with reads completely unhin-
dered), and even there you simply push the failure to exclu-
sively open an item to the end of the list to check again to
see if it’s finished. In fact, the only time you actually need
to serialise at all is when writing concurrently to the same
branch: there commits must be sequential, so some commit
must come first – even in this case, you can safely let the
two commits write their content in parallel and if you later
realise you need to recalculate one of the commits, you get
partial resumption of that recalculated commit, writing only
the data recalculated.

7.2 How the git algorithm applies to the pro-
posed graph database

You’re probably beginning to understand how more or
less the same algorithm – albeit somewhat less hardcoded
– would make for a pretty handy ACID-compliant transac-
tional database. Instead of branches, think named graphs,
and instead of storing a single hash in the graph HEAD
file, keep a list of hashes in a hole-punched file opened as
append-only14 which brings you versioning. If you want to
atomically update more than one graph at once in a single
transaction, you can use the same optimistic parallel write
scheme with lazy recalculation of ordering induced changes.
If you suddenly lost power, you can figure out the last known
good state very easily by parsing all the trees referred to by
hashes starting from the end of the HEAD file going back-
wards and finding (on those filing systems requiring it, see
Table 1) which was the most recent version to have a per-
fectly uncorrupted state15.

There are, of course, still many unresolved implementa-
tion questions: How do you safely prune the version history
from the append-only graph HEAD files on filing systems
without hole punching support whilst being heavily used by
multiple processes without incurring writer starvation? Do
you allow users doing i/o on the graphstore using network
filing systems such as NFS and Samba, and if so how do you
downgrade machine-local processes to use the right NFS and
Samba safe locking scheme instead of a shared memory re-
gion? Indeed, how do you get Windows and POSIX to lock
files in a portable way, as the two schemes are quite incom-
mensurate?

Also, what about all those files being written onto the
filing system? What about cluster wastage (this is where a
very small file will still consume the cluster size e.g. 4Kb
on some filing systems)? What about hitting inode limits
(some filing systems ‘run out’ of total files possible on a
filing system)? How atomic and power loss-safe are file and
directory renames really?

14Files opened append-only are guaranteed to be updated
atomically across all open file handles on all major operating
systems. The hole punching lets you prevent all physical
storage from being consumed by a constantly ‘growing’ file.
It may yet be an implementation option for reasonably fast
transaction locking over networked filing systems.

15A good question remaining is whether a write journal might
be superior – it may well be over networked filing systems.

What about performance? Performance won’t be in the
league of big iron graph databases by any stretch, but I
can see 10,000 transactions written per second to different
graphs as being very possible on a modern non-Windows16

filing system if you are willing to lose recent writes by turn-
ing off fsync. ZFS on inexpensive hardware with a fast write
intent log device will let you do 30,000 synchronous (as in,
fsynced) file creations per second until the intent log device
fills up, so somewhere between two and five orders of magni-
tude slower than the big iron databases might be expected
for copy-on-write filing systems whilst retaining perfect data
persistence.

To round off this position paper, I’ll move onto a non-
hand-wavy concrete technical proposal as a demonstration
of just one of the many useful things C++ could do with
an active graph database in its core runtime: object compo-
nents.

Useful additional reading about persisting and locking
data reliably and portably:

• https://www.sqlite.org/lockingv3.html

• https://www.sqlite.org/wal.html

• http://www.westnet.com/~gsmith/content/

postgresql/TuningPGWAL.htm

• http://www.postgresql.org/docs/9.1/static/

runtime-config-wal.html

8. FIRST POTENTIAL KILLER APPLICA-
TION FOR A C++ GRAPH DATABASE:
OBJECT COMPONENTS IN C++

One of the reasons I have repeatedly dwelt on C++ Mod-
ules during the previous discussions is that I believe we can
not only do better than Modules, I believe we can transcend
Modules at a not too hideous a cost to the industry, and I
believe that one of the ways of really taming large code base
change ripple management in C++ is via componentisa-
tion of the C++ binary stack. Let me quote Tony Williams,
one of the chief architects of Microsoft’s Component Object
Model, who was trying to persuade Microsoft in the late
1980s to write code resilient to unpredicted change:

Our software represents a major capital resource.
We need the ability to maintain and evolve our
software without destroying its strength ... we
need the ability to replace parts of the cellular
structure with new ones. Where new meets old,
we need well defined shapes for them to join. It
will become increasingly hard to remain competi-
tive if we have to dismember the ... structure into
its component cells, and rebuild most of those
pieces just in order to put them back together.
[14]

How much the dominance of Microsoft over software in
the 1990s and 2000s had to do with this approach is hard to

16Microsoft Windows currently has an approx. 30,000 maxi-
mum file handle opens per second limit on a quad core ma-
chine, which is several thousand times slower than any other
operating system.

15

https://www.sqlite.org/lockingv3.html
https://www.sqlite.org/wal.html
http://www.westnet.com/~gsmith/content/postgresql/TuningPGWAL.htm
http://www.westnet.com/~gsmith/content/postgresql/TuningPGWAL.htm
http://www.postgresql.org/docs/9.1/static/runtime-config-wal.html
http://www.postgresql.org/docs/9.1/static/runtime-config-wal.html

say, but Microsoft itself thinks it was a key factor17.
It has been such a long time since software components

were the zeitgeist in the 1990s that I will probably have to
explain, for the benefit of younger readers, what a software
component actually is and why it is definitely not a Mod-
ule nor a DLL/shared object. I should also caveat in the
following description that no one entirely agrees on what
a software component is, but the following should be close
enough:

• Components declare [compatibility with] some sort of
event processing model as part of their interface con-
tract.

• Components often declare a sort of what we would
nowadays call a service orientated architecture (SOA),
a bit like a proto-web service.

• Components should never need to be recompiled just
because external code using them has changed. In fact,
any header files used to interface with them ought to be
generatable solely from their precompiled binary blob
(note the implied need for an additional information
layer separate from the implementation).

• Components are generally designed with an awareness
that they will be put to unforeseen uses to a much
greater extent than traditional libraries.

• Components are therefore highly reusable by being
very loosely coupled with the code using them.

• Components are usually so highly reusable in fact that
languages other than that of their implementation can
use them easily.

• Components (for the purposes of this paper) are
NEVER connected by a data transport e.g. a pipe, or
a socket. That I would call ‘distributed components’
and might take the form of D-Bus, DCOM, CORBA
and so on. The kind of components referred to here
are always in-process i.e. executable code implement-
ing a majority of the component is loaded directly into
the process space where it is consumed.

To younger engineers, these sound vaguely familiar in a
‘I’m not sure why’ kind of way: the reason why is because
they are so utterly ubiquitous in proprietary vendor imple-
mentations they have faded from conscious consideration.
One of the most ubiquitous of all is Microsoft’s Component
Object Model, better known as COM, which has been re-
cently refreshed into a new enhanced iteration better known
as WinRT, with the more modern C++ interface to WinRT
being called C++/CX. However Microsoft’s implementation
is hardly the only ubiquitous component implementation,
in fact OS X’s component object model – which in many
respects is the raison d’être behind the features of Objec-
tive C extending C – was originally designed by NeXT as
their component object broker architecture in the very early
1990s, and whose design has remained (apart from the ad-
dition of threading) pretty much untouched since then for
some twenty-five years now (and still going strong).

17http://www.microsoft.com/about/
technicalrecognition/com-team.aspx

As to which component objects implementation is the
more ubiquitous, I am unsure, but we are talking billions
of installations for both. And note that outside of the
Android/Linux/GNU ecosystem which remains steadfastly
components-free at the systems level, between Microsoft’s
and Apple’s proprietary components implementation a good
chunk of the world’s systems language written software is
componentised. In short, object components have been a
huge success everywhere outside of the open source software
ecosystem, mainly because they enable software to scale, yet
they have not and are not currently intended to be stan-
dardised in C++.

8.1 A review of Microsoft COM
As Microsoft COM is regularly used by C++ and Ap-

ple’s is not, I shall restrict myself henceforth to discussing
Microsoft COM. Microsoft COM was very intentionally de-
signed at the time to NOT use C++ or any feature of C++
[6, 14] because taming the C++ complexity (of the 1990s)
was seen as the primary goal. Influenced strongly by DEC
VMS’s interface definition language IDL (the next-gen DEC
VMS kernel became the NT kernel), object inheritance was
split into two categories: (i) implementation inheritance and
(ii) interface inheritance, with COM intentionally only im-
plementing the latter kind and specifically not the former.
A component’s interface could be written up in IDL (which
in practice is auto-generated for you by the toolset), that
IDL compiled into a binary interface description and linked
into a standard DLL and voilà, you have yourself a COM
object.

To illustrate how COM works in terms of code, consider
that the C++ code in Program 8 would ‘expand into’ an
effectively identical C code in Program 9 when compiled,
this being due to the fact that a good chunk of C++ of that
era was still being compiled into C by a tool called ‘CFront’.

Program 8: Example C++ code

c l a s s Foo {
i n t a ;
v i r t u a l i n t func () { re turn a ; }

} ;

i n t main (void) {
Foo n ;
re turn 0 ;

}

Microsoft COM adopted the C++ vtable layout as the
same for COM, so C++ classes could be easily wrapped
up as COM objects i.e. the pointer to the statically stored
read-only struct __vtable_Foo_s in Program 9 is directly
exported as-is. Note as made clear above that the C++
class vtable is simply a C struct of function pointers, so C
code or anything which can speak C code has no problem
calling into the COM object implementation, in fact that is
exactly what the COM IDL outputs for COM C bindings.

Microsoft COM is, in fact, remarkably simple considering
how hideously difficult it was considered to be back in the
1990s (and vital to master if one wanted to preserve one’s
career back then). The only thing COM exports from a
C++ class is the class vtable i.e. its list of virtual func-
tions. And that’s it – no data, no non-virtual functions,
certainly nothing resembling a template nor is any form

16

http://www.microsoft.com/about/technicalrecognition/com-team.aspx
http://www.microsoft.com/about/technicalrecognition/com-team.aspx

Program 9: Equivalent to Program 8 in pseudo-C

s t r u c t Foo ;
s t r u c t v t ab l e Foo s {

const s i z e t b a s e c l a s s o f f s e t ;
const t yp e i n f o ∗ r t t i ;
const void (∗ byIndex) (Foo ∗) [1] ;

} ;
i n t Foo func (Foo ∗ t h i s) { re turn th i s−>a ; }
/∗ We’ l l l e ave out the t yp e i n f o i n i t f o r b r ev i ty

∗/
s t a t i c const t yp e i n f o Foo RTTI ;
s t a t i c const s t r u c t v t ab l e Foo s v tab l e Foo

={0, &Foo RTTI , &Foo func } ;

s t r u c t Foo {
const s t r u c t v t ab l e Foo s ∗ v f p t r [1] ;
i n t a ;

} ;

i n t main (void) {
s t r u c t Foo n={& vtab l e Foo } ;
r e turn 0 ;

}

of structured exception passing supported18. Rather more
germane to the wider point I am making, you are not al-
lowed anything from C++ which is compile-time i.e. most
of the additions to C++ since the 1990s, so if you’d like to
pass a std::tuple<...> as a parameter to a C++/CX ob-
ject member function without adding a vtable and reference
counting to std::tuple<..> (i.e. removing its compile-time
nature by forcing it into a concrete implementation, which
kinda defeats much of its purpose), you’re out of luck.

There are two more items I should mention about Mi-
crosoft COM before moving on: the first is the COM event
model, mainly because it is a good example of what needs to
be avoided in any future C++ components implementation.
Reading the Microsoft white papers and books on COM of
the time, it is clear that no one deeply considered the ‘other
half’ of COM which is its event processing model until quite
some years later when serious problems such as the inability
to avoid threading deadlocks began to emerge. It didn’t also
help that COM had grafted onto it after its design a thread-
ing model, a distributed execution model, and then of course
all of .NET which still had to remain COM-compatible.

One of the most major enhancements of COM imple-
mented by WinRT is a proper, well designed, asynchronous
event model which uses a system-determined mix of kernel
threads and fibres (i.e. cooperative rather than pre-emptive
task switching) to rid multithreaded programming of COM
of most of its historical weirdnesses and quirks for newly
written code (for which this author is immensely grateful to
Microsoft). Some would even say that WinRT is in many
ways mostly a substantial upgrade of the very same COM
which has been powering the Microsoft software ecosystem
for two decades now.

The second thing I should quickly mention is how COM
implements its registration database: each COM object gets
assigned at least one randomised UUID which is a 128-bit
number to uniquely identify it (further UUIDs indicate ver-
sion). This number is registered with the list of available
COM components by writing that UUID along with other
information into various special locations within the Win-

18C++/CX, a.k.a. ‘WinRT C++’ has mangled in a way of
pushing exceptions across a COM boundary, but COM itself
still returns a simple C style integer error code.

dows registry which is a non-referential key-value database.
Even though the Windows registry implementation has be-
come quite resilient to damage in the past decade, the funda-
mental lack of referential integrity is a leading cause of Win-
dows installations becoming unreliable over time [8]. This
is another good example of what needs to be avoided in any
future C++ components implementation.

8.2 An example design for modern C++ com-
ponent objects

[This section was written before the ‘as if everything
header only’ concept was reached, and I didn’t have the time
before the conference to refactor it. Consider it for histori-
cal interest only, but I have added a set of quick notes at the
end]

I don’t claim in the following example to have thought
through everything, nor does the following example design
support as much as I believe would be possible once we
have C++ Modules. In other words, the following exam-
ple is intended to be a purely illustrative solution show-
ing how object components might work in a C++ graph
database, and it in fact is quite similar to John Ban-
dela’s CppComponents framework (https://github.com/
jbandela/cppcomponents) except that I don’t require a
vtable as Microsoft COM and CppComponents does, plus
his only implements the ABI part of components with op-
tional COM-compatible memory management, and no event
model.

I should also make an important point clarifying Intel-
lectual Property very clear before I begin: I delivered as
part of my employment a functioning demonstration pro-
totype implementing some of this example design whilst I
was working for BlackBerry 2012-2013, but the design, and
a majority of the code making up that demonstration proto-
type, actually came from my next-generation platform which
I mentioned earlier. I was given exactly one calendar month

Program 10: How we mark up a C++ class as a component
(backwards compatible)

// Type being componentised
namespace Boo {

c l a s s Foo {
i n t a ;
Foo (i n t a) : a (a) { }
v i r t u a l i n t func () { re turn a ; }

} ;
}

// The component export metaprogramming dec la r ed
at i n t e r f a c e l e v e l e . g . v ia a
EXPORTLEGACYCOMPONENT(
EXPORTCOMPONENTNAMESPACE(Boo , Foo) , : : Boo : :
Foo)

namespace component export {
namespace Boo {

c l a s s Foo : pub l i c
component export machinery : :

exported component < : :Boo : : Foo , f a l s e> {
s t a t i c const char ∗ l o c a t i o n f i l e () {

re turn FILE ; }
s t a t i c s i z e t l o c a t i o n l i n e n o () { re turn

LINE ; }
component export machinery : :

exported component < : :Boo : : Foo , f a l s e>
operator=(const Foo &) ;

} ;
}

}

17

https://github.com/jbandela/cppcomponents
https://github.com/jbandela/cppcomponents

to deliver that demonstration prototype which weighed in at
some 12,000 lines of code, and to deliver such a large project
in such a short time I had to reuse a lot of old code writ-
ten back in 2002-2004, which actually turned largely into
an interesting exercise in porting legacy code to C++ 11
and Boost. Given the balance between old and new works
involved here strongly favouring the pre-BlackBerry IP, I
should consider everything I am about to say as originat-
ing solely from my next-generation platform, and having
nothing to do with my work at BlackBerry – nevertheless,
I should consider the following example design potentially
tainted, which is why it is an example design and not a pro-
posed design – any actual implementation ought to utilise a
different design to avoid any possible IP problems later.

The first part is a little bit of metaprogramming to have
the compiler tag classes as components to the link stage with
metadata only known to the compiler, and it takes the form
as shown in Program 10.

You might be surprised to learn that that is quite literally
it for the vast majority of C++ classes – as is obvious, you
don’t even need to recompile a library as all you normally
need is the header file. The reason we use operator=() is
because the compiler will automatically spit out a default
implementation anyway, so you might as well halve your
symbol counts by reusing it, though note the covariant re-
turn type of its base class which is a useful parsing shortcut
for later.

The markup in Program 10 is actually the convenience
version intended purely for retrofitting legacy codebases.
New code really ought to use the markup in Program 11
instead which requires componentised classes to be placed
into some internal namespace, then the act of marking up
the class as a component will define the componentised ver-
sion of the class for use by the rest of the component’s code.
There are very significant advantages to doing it this way
round instead.

You’re probably now wondering what magic lives in
__component_export_machinery__::exported_component,
well it’s nothing special, and you can see a condensed
version in Program 12.

To export, we simply encode via template parameters into
the tag type exported_component the size of the data oc-
cupied by the exported type, plus how many vptrs it has
(if it has virtual functions, you’d get one vptr, if you have
virtual inheritance you’d get two, and so on). Note that
__component_export__::<type> gets the same symbol visi-
bility as what it exports, so it appears in any DLL or shared
object list of exported symbols. Note also if we’re using the
non-legacy method, we pad both the member variable and
vtable with extra space.

The second part is a component linker program which you
use to link your DLL/shared object instead of the standard
linker: the component linker simply iterates the exported
symbols list looking for any in the __component_export__

namespace. For each of those, it examines the return type
of the operator=(), or if none, any __signature() declared
by that type by parsing the symbol mangling into a partial
AST, thus extracting the original type being componentised,
its size, whether it has virtual functions and inheritance and
its declaration source file and line number for useful error
printing. It then proceeds to generate a bindings declara-
tion and implementation which is simply a chunk of auto-
matically generated C (not C++) code which lists out each

Program 11: How we mark up a C++ class as a component
(non-legacy)

// Type being componentised
namespace i n t e r n a l {

namespace Boo {
c l a s s Foo {

i n t a ;
Foo (i n t a) : a (a) { }
v i r t u a l i n t func () { re turn a ; }

} ;
}

}

// The component export metaprogramming dec la r ed
at i n t e r f a c e l e v e l e . g . v ia a EXPORTCOMPONENT
(EXPORTCOMPONENTNAMESPACE(Boo , Foo) ,
i n t e r n a l : : Boo : : Foo)

namespace component export {
namespace Boo {

c l a s s Foo : pub l i c
component export machinery : :

exported component<i n t e r n a l : : Boo : : Foo , true>
{

s t a t i c const char ∗ l o c a t i o n f i l e () {
re turn FILE ; }

s t a t i c s i z e t l o c a t i o n l i n e n o () { re turn
LINE ; }

s t a t i c component export machinery : :
exported component<i n t e r n a l : : Boo : : Foo ,
true> s i g n a t u r e () ;

pub l i c :
us ing i n t e r n a l : : Boo : : Foo : : Foo ;

} ;
}

}
namespace Boo {

typede f component export : : Boo : : Foo Foo ;
}

Program 12: Metadata stored by exported_component

namespace component export machinery {
template<typename T, bool r e s i l i e n t , s i z e t

d a t a s i z e=s i z e o f (T) , s i z e t v p t r s s i z e=
d e t a i l : : s i z e o f v p t r s <T> : : value> c l a s s
exported component {

v i r t u a l void e nd o f v t a b l e () {}
} ;
template<typename T, bool r e s i l e n t , s i z e t

da ta s i z e> c l a s s exported component<T,
r e s i l i e n t , s i z e o f (T) , 0> {

} ;
template<typename T, s i z e t da ta s i z e , s i z e t

vp t r s s i z e> c l a s s exported component<T, true
, s i z e o f (T) , d e t a i l : : s i z e o f v p t r s <T> : : value>
{

char padding0 [d a t a s i z e / 5] ;
v i r t u a l void padding1 () { throw std : :

inva l id argument (”Not implemented ”) ; }
v i r t u a l void padding2 () { throw std : :

inva l id argument (”Not implemented ”) ; }
v i r t u a l void padding3 () { throw std : :

inva l id argument (”Not implemented ”) ; }
v i r t u a l void padding4 () { throw std : :

inva l id argument (”Not implemented ”) ; }
v i r t u a l void padding5 () { throw std : :

inva l id argument (”Not implemented ”) ; }
} ;
template<typename T, bool r e s i l e n t , s i z e t

da ta s i z e> c l a s s exported component<T,
r e s i l i e n t , s i z e o f (T) , 0> {

} ;
template<typename T, bool r e s i l e n t , s i z e t

da ta s i z e> c l a s s exported component<T, true ,
s i z e o f (T) , 0> {

char padding0 [d a t a s i z e / 5] ;
} ;

}

18

of the member functions available from the componentised
type with suitable C-compatible call stubs named after the
MD5 of the signature of the symbol and type being exported,
plus the order of declaration of the virtual member functions
(which can be deduced by comparing the vtable contents to
exported symbols, knowing that each component boundary’s
vtable will end with either a __end_of_vtable or padding
entry), plus the signatures of the exported functions (which
again can be parsed out from their mangled symbols), with
the stubs file compiled and linked into the shared library bi-
nary. Interestingly, the parameters of all exported functions
are actually composed into input and output structures, this
lets you easily work around vendor-specific weirdnesses in
inverting calling conventions (I’m looking at you MSVC on
x86!), plus allowing GCC with its Itanium ABI to call into
the MSVC ABI and vice versa on Windows, plus it lets C++
metaprogramming entirely skip the C thunking layer and to
inline direct calls into linked components where safe e.g. on
ARM, where all compilers always use the same ABI. Upon
generation of the shared library which is now also a com-
ponent, it can be imported into the graph database where
the graph of API relationships can be reconstituted through
examination of the component ABI metadata earlier bound
into the shared library19.

You now have a set of C-compatible bindings which let any
C program instantiate any C++ object and use it – why C-
compatible? Because that is what almost every interpreted
language uses e.g. Python, PHP, Lua etc. You’ll note that
the system employed is basically the same as that of COM,
albeit somewhat modernised and more C++-specific. Un-
like COM, we don’t place any arbitrary restrictions on what
kinds of C++ you can and can’t let near the component ABI
boundary – rather, we let the link stage refuse to link if the
underlying graph database says that some code modifica-
tion will break the component’s interface contract. This is,
in my opinion, a better way of avoiding problems caused by
implementation inheritance which was banned by Microsoft
COM as being dangerous.

The third part of the example design deviates strongly
from Microsoft COM, and this I call resilience wrapping
which very significantly mitigates the fragile base class and
fragile binary interface problems mentioned earlier – this
works via the padding added by the metaprogramming to
the member variable and vtable spaces. You can see how
they work better through code than through English, so
have a look at Program 13 which shows how we go about
importing a component’s interface for use.

This looks awfully similar to the exported component case,
and that is because it is – the reason why is because it is
intended and expected that the same header file used to
mark up a component for export is also used for import,
so the idea is that very little changes just because you are
importing – in particular, everything looks the same in terms
of namespace layouts, just that exported_component is now
an imported_component such that the component linker can
tell the difference between them.

This ‘resilience slosh factor’ added to the member variable
and vtable spaces is to enable the component linker to ‘cheat’

19Basically, a set of hidden functions are exposed which will
return whatever metadata you want from the component.
This allows easy versioning, plus lets you override those
hidden functions with something customised for more spe-
cialised uses.

Program 13: Component import

namespace component import machinery {
template<typename T, s i z e t d a t a s i z e=s i z e o f (T) ,

s i z e t v p t r s s i z e=d e t a i l : : s i z e o f v p t r s <T> : :
value> c l a s s imported component : pub l i c T {

char padding0 [d a t a s i z e / 5] ;
v i r t u a l void padding1 () { throw std : :

inva l id argument (”Not implemented ”) ; }
v i r t u a l void padding2 () { throw std : :

inva l id argument (”Not implemented ”) ; }
v i r t u a l void padding3 () { throw std : :

inva l id argument (”Not implemented ”) ; }
v i r t u a l void padding4 () { throw std : :

inva l id argument (”Not implemented ”) ; }
v i r t u a l void padding5 () { throw std : :

inva l id argument (”Not implemented ”) ; }
pub l i c :

us ing T : :T;
} ;
template<typename T, s i z e t da ta s i z e> c l a s s

imported component<T, s i z e o f (T) , 0> : pub l i c
T {

char padding0 [d a t a s i z e / 5] ;
pub l i c :

us ing T : :T;
} ;

}

namespace i n t e r n a l {
namespace Boo {

c l a s s Foo {
i n t a ;
Foo (i n t a) : a (a) { }

} ;
}

}
namespace Boo {

typede f component import machinery : :
imported component<i n t e r n a l : : Boo : : Foo> Foo ;

}

when linking up slightly mismatching implementations with
client code expecting a slightly different implementation. As
much as you might think it would be fraught with dragons,
that is exactly why the graph database is so essential: you
can bundle into the graph (which can be updated from some
central repository) which slight variations C++ component
implementations are safe with which patterns of use code.
The default rules are exceptionally conservative, but in fact
the rules generation is very easy to automate with a bit of
clang AST parsing (explained a little bit more next para-
graph), so generally it all ‘just works’.

Unfortunately due to the need for brevity, the two remain-
ing parts of the example design are those I’ll describe least;
the first, being how the link stage works, is very simple: the
DLL/shared object is output just as before, and it still pro-
vides all the same shared library symbols it would as normal
– in other words, you can optionally link to a component as if
it were a normal shared library using the normal linker. This
is done for backwards compatibility. If, however, you link
using the component linker, those symbols which would link
into implementation in an external shared library are instead
linked to a delay resolving stub. This stub is able to ask the
graph database during process bootstrap for the appropri-
ate external component matching what the local component
was compiled against, and if the hashes of their APIs match
(i.e. it’s a one to one match) a very fastpath link can be
performed. If however they do not exactly match, one can
parse through the exported component metadata, making
use of the fact that member variable and vtables have been
padded to allow a certain amount of slosh factor when link-

19

ing up slightly incompatible components. If the slosh factor
gets exceeded, or a breaking ABI change which cannot be re-
solved occurs, there are a number of interesting things which
could be done: (i) the graph database could query an online
master repo looking for a component adapter which adapts
one component’s ABI into an older ABI (ii) is it possible
that some ABI mismatches be safely worked around by auto-
generating a component adapter which simply exposes the
available component’s API to the old component’s use pat-
terns and if the standard C++ rules allow the compile (e.g. a
programmer added a defaulted argument to the newer com-
ponent, something which normally causes an ABI break but
which is very easy to automatically resolve), simply insert
the auto-generated component adapter between old and new
versions (iii) for some really funky fun, one could even shim
a thunk component built against some ancient implemen-
tation into a complete reimplementation of that component
by doing on-the-spot type conversion as calls traverse the
ABI layer20. John Bandela’s CppComponents implements
exactly these incommensurate type implementation thunks
for std::string, std::vector, std::pair and std::tuple

such that one can mix libstdc++ from MinGW into a pro-
cess using the Dinkumware STL from MSVC.

The last remaining part of the example design is how
the event model is implemented, and I will say even less
than about the link stage: the event model is fundamen-
tally Boost.ASIO’s asynchronous event dispatch and han-
dling framework, with all other event models (e.g. Qt’s
event system) adapted into ASIO’s using some unfortunately
hacky code (I did always mean to get the component linker
to patch out the use of the X11 or Win32 event model in
component code with emulations written against ASIO, but
I never got round to it as hacking Qt’s source code was eas-
ier). I will say this though: given the popularity, flexibility
and efficiency of ASIO’s event handling model, it almost
certainly would be the event model of choice of any future
C++ object components implementation, and indeed the
graph database design is entirely ASIO based.

Astute readers will have noticed that the link stage of this
example can detect most kinds of interface break: reorder-
ing or modifying virtual functions, modifying non-virtual
functions or any other form of signature breakage, adding
or removing member variables. Note the one glaring excep-
tion: we cannot currently detect, neither via metaprogram-
ming nor via examination of compiled objects, reordering21

of member variables nor reordering base classes for classes
without vtables. For those fragility and nasty surprises re-
main, until we can replace metaprogramming and mangled
symbol parsing with a purely AST based solution (a hint as
to a better, non-IP-tainted design for C++ object compo-
nents!).

The key point being made in this example is that the
graph database makes full fat C++ object components
tractable – while you could build a C++ component im-
plementation without a graph database (and I have built
one more than once now), you’ll find that the thing getting
in the way of scaling out such a solution to a standards-

20I tested one of these translating some toy classes like
std::string between two totally incompatible STL imple-
mentations, and it worked better than expected.

21By reordering I also include any changes which do not affect
footprint i.e. sizeof().

level global C++ industry-wide scale is the lack of a reliable,
ACID-compliant, graph database which is low level enough
to work at the process bootstrap level, because without a
graph database the logic you must encode into the compo-
nent loader to resolve all possible mismatches in component
being loaded versus component compiled against is simply
intractable, or at least it is without making the component
objects implementation very brittle which defeats its pur-
pose.

If you need more convincing and/or my word isn’t good
enough for you, try as a thought exercise building out an
object components implementation using only SQLite3, re-
membering to include versioning, compatibility and shim
adapters, avoiding any DLL hells, keeping performance good
on copy-on-write filing systems, and coping sanely with
ODR violation handling in a C++ modularised reflection-
capable world. Oh, and you are doing this with just the C
library and the STL before any shared libraries have been
loaded, and it has to work right during early system boot-
strap! Don’t get me wrong: it can be done fairly straight-
forwardly with an ORM layer atop the SQL, but it’s a lot
harder, less flexible, and more brittle than with a freeform
graph database, and I have first-hand knowledge that per-
formance is not good. Besides, an embedded low level graph
database is useful for storage and access of any kind of struc-
ture of many bits of data, not just component objects, as we
will see in the next section on Filesystem.

The dependency of graph databases on a component
object implementation goes partially the other way, too:
the potential of a graph database as proposed ear-
lier can only be maximised if componentisation is avail-
able. This is because the proposed graph database is
self bootstrapping i.e. the code implementing the graph
database is stored, versioned and loaded by the same
graph database. When a process which uses the graph
database first boots up, the component(s) implementing
the graph database engine can be found by looking for the
object with hash id 0x00000000000000000000000000000000
00000000000000000000000000000001 (hereafter ::1) which
will index a sequence of shared library implementations,
architectures and versions which implement the graph
database. Each one can be asked to examine the graph
database to discover the correct engine version to use, thus
bootstrapping the correct implementation for some given
database, toolset, and architecture into memory. Upgrading
the database is therefore a matter of successfully transacting
a write of a new version of the engine binaries, kicking out all
other readers and writers, unloading the old engine, loading
in the new engine and asking it to perform the upgrade.

Similarly, the per-graph indexers such as Boost.Graph
would also be best implemented exactly the same way: the
component indexer which has hash id ::1 might have the
Boost.Graph indexer at hash id ::2, the remote fetcher of
indexers from the internet indexer at hash id ::3, and so
on. Something I haven’t detailed here at all is the graph
database security model such that graphs can have arbitrary
per-graph security models, well for that you would very def-
initely need a components implementation. My ideal out-
come is that the proposed graph database is merely the first
step in eventually actualising that shard of a distributed
global active object database from my aforementioned next-
generation platform, but that is several decades away yet at
the current pace of work.

20

And C++ object components are but one of the many
things a standardised core C++ graph database makes pos-
sible – let us turn quickly to transcending Filesystem.

8.3 Notes on implementing Object Compo-
nents under an ‘as if everything header
only’ model

Clearly object components in C++ have three main parts:
(i) a rigid but loosely coupled ABI (ii) a memory man-
agement/lifetime management model and (iii) an (asyn-
chronous) event model. As mentioned in the previous dis-
cussion, the form of the latter two are fairly obvious for
C++ object components, but a GLSL shader-esque per-type
source compilation model which potentially outputs lots of
little C++ Modules is quite different.

I think that such a vision actually makes an even stronger
case for object components in C++, because you’re going to
need some method of corralling so many C++ Modules into
change resilient groups, and I don’t think Module partitions
go far enough, especially as for very large code bases you
need to draw hard boundaries to contain the change ripple
detection mechanism going nuts as you try to compile code.
Basically, you need a mechanism for saying that ‘this bunch
of code is to be treated for as-if header only purposes as a
single opaque block providing the following rigid unchanging
ABI. Any change ripples landing here are to be reflected back
at the sender’.

One thing is for sure though: with a change ripple man-
agement mechanism in place, object components look utterly
different than to traditional software components. In partic-
ular, I think that the ABI of such software components must
be active i.e. they can be programmed to actively respond
to incoming change ripples in some bespoke fashion rather
than necessarily imposing a fixed ABI. The idea here would
be to still further loosen the coupling between components
in a way not possible before.

As I hinted at earlier, the ‘Concept checks for the ABI’ are
ideal for programmatically implementing a software compo-
nent’s rigid but loosely coupled ABI, and I could see it being
possible that ‘components’ are merely a database-enforced
abstraction that has no basis outside the database making
it so.

As for the remaining parts of lifetime management and
event model, well the proposed graph database will need to
implement those anyway as part of being implementation
self-bootstrapping as earlier described. My current expecta-
tion is to use John Bandela’s CppComponents for that part,
but with additional requirements.

9. SECOND POTENTIAL KILLER AP-
PLICATION FOR A C++ GRAPH
DATABASE: FILESYSTEM

I did mention at the very outset in the abstract that I
would be proposing to tie together SG2 Modules and SG7
Reflection with SG3 Filesystem, so what did I mean by tying
in Filesystem?

I left this to last because I find it an ongoing amazement
how hard it is in 2014 to write to more than one file from
more than one process in a reliable way (i.e. power loss and
race condition safe) – in fact, we have actually gone back-
wards compared to the systems of the 1970s in writing code
which reliably shepherds program state over long periods of

time, and I think a lot of why this has happened was due to
the highly visible failures of next generation filing systems
which were supposed to have given us a database filing sys-
tem on every computing system some years ago. With such
visible cancellations22, I think database filing systems were
marked down as being ‘too hard’, and R&D budgets were
allocated elsewhere.

We now know that filing systems aren’t going to signifi-
cantly exceed the copy-on-write B-tree designs used by ZFS,
Btrfs and Microsoft’s ReFS – and don’t get me wrong, they
are an enormous improvement over the present universally
available design which are journaling filesystems, but they
are still no database.

And nor, do I think, should they attempt to be one. A lot
of users of filing systems have zero interest in even persist-
ing the data written to files – the filing system is basically
being used as a global namespace through which processes
coordinate. Somewhere inbetween are files which you’d like
to keep around for a while, but aren’t terribly important –
scratch files, anything which can be regenerated easily, that
sort of thing. After that comes files which are extremely im-
portant and must not be lost, but can tolerate an occasional
bit flip (video, music etc). And finally there are files where
a single bit flip is serious: any executable file, or perhaps
your company accounts or the sole copy of your SSH master
private key for example.

The point here is that we use one filing system for many
things and using the wrong filing system for the task at hand
is suboptimal, which is probably why database filing systems
withered on the vine. What is proposed by this position pa-
per is therefore rather exciting: the ability to apply as much
or as little ‘database’ to a filing system as needed depending
on the use case.

Because the proposed design is capable of operating
at process bootstrap level, you can just go ahead and
build it straight into a post-C++ 17 std::filesystem

API as a pseudo-filing system namespace. Some months
ago an interesting proposal by Alexander Lamaison came
onto boost-devs about making Filesystem generic: you can
see the proposal at http://alamaison.github.io/2014/

01/09/proposal-generic-filesystem/ and the boost-devs
discussion at http://goo.gl/Qzry4c. Generic Filesystem
was intended mainly for allowing things like ZIP archives
to be treatable as just another filesystem space just as you
would take for granted in Python et al, but the system pro-
posed could be very useful for overlaying different amounts
of ‘database-ness’ onto the filing system using the proposed
graph database.

For example, let us say that a software project keeps three
types of data: (i) runtime logs (ii) personally identifying and
private information of a kind you must steward carefully due
to legislation e.g. personal health information and (iii) secu-
rity audit logs for whom accesses what and when – you could

22Microsoft’s third major attempt at a database filing sys-
tem after a decade of failures was called WinFS and it suc-
ceeded the prior attempts Object Filing System and Rela-
tional Filing System. WinFS is probably the most famous
example of a ‘failed’ database filing system because it ac-
tually worked, but it imposed performance consequences on
certain work loads which were at the time considered a show-
stopper. Much of WinFS ended up being folded into SQL
Server, which shows that people want database features in
databases, not in filing systems.

21

http://alamaison.github.io/2014/01/09/proposal-generic-filesystem/
http://alamaison.github.io/2014/01/09/proposal-generic-filesystem/
http://goo.gl/Qzry4c

imagine a health insurance application might do this for ex-
ample. A contemporary design might store the runtime logs
in some logs directory in /tmp and the personal health infor-
mation and security audit logs in a SQLite3 database, and
such a design would probably be considered minimally suf-
ficient. But consider a design based on the proposed graph
database: firstly, all three types of information now live in
the same graph store, but the logs graph is marked as not
particularly important, the personal information graph is
stored as tier 2 data encrypted with each person’s records
being only accessible through an active database object com-
ponent which tags and iterates the version of the personal
data with every access, thus making every access to personal
data permanently recorded both as part of the personal data
graph and the global access graph. Because the graph store
uses content hashes to encode history just as the git algo-
rithm does, now the only way of deleting the fact someone
accessed some person’s records is to delete all history back
to just before the access, and with that the design is now at
the state of the art in security and resilience with very little
work on the part of the C++ developer.

Best of all, the database of personal information can ap-
pear to C++ code using Filesystem as just another set of
files living in directories, or even as a set of emulated SQL
tables such that the previous SQLite3 code can be mostly
reused without modification – you could update the data
via either route and whichever view is always up to date. I
think this vision is very compelling myself.

10. CONCLUSIONS
I have hopefully shown fairly uncontroversially how some

of C++’s greatest strengths impose unique consequences on
C++ programmers. We have seen how I believe that the
era of free lunching on throwing ever more C++ code into
each compilation unit as a way of working around many of
those unique-to-C++ issues will shortly taper out on present
toolset architectures, and we will in my opinion once again
face managing large numbers of separately compiled bits of
C++ in a way more reminiscent of the 1990s than the past
two decades. Because we have evolved so few new methods
and processes of managing C++ ABI since the late 1990s, we
are facing a possibility that most of the advances in C++
of the past twenty years will not be available to us when
approaching ABI boundaries, something already taken for
granted as being true by almost any very large scale C++
user.

In reviewing these scalability and complexity management
problems, I have tried to show how C++ compiler vendors
will almost certainly have to implement their own graph
databases and/or extensions to the graph databases they
are already using. I proposed that instead of each com-
piler vendor reinventing the wheel, the Boost C++ libraries
could gain an implementation of a very generic, very ex-
tensible and very low level lightweight graph database with
per-graph indexing implementations (e.g. Boost.Graph or
SQLite3 could be specified as the index implementation for
some graphs, but not others). I then went on to demon-
strate some of the interesting things you could do with such
a graph store at the core of the C++ runtime, including
C++ as if everything were being compiled header only, ac-
tive database objects/C++ components, multiple Filesys-
tem spaces of differing qualities, and a central, portable and
common process for coordinating the outputs from any C++

Modules and Reflection implementations.
For most readers, the final question will surely be ‘how

feasible is all of this?’ To implement the generic ACID-
capable transactional content-addressable persistence layer
alone (and on top of which you could fairly easily add arbi-
trary per-graph indexers), you need the following prerequi-
sites:

1. A method of parallel hashing many pieces of content
simultaneously. If you examine the simplified git al-
gorithm described earlier, you will notice that even a
single byte modification of a data item requires hash-
ing at least two files and writing at least three files,
with transactions potentially increasing the number of
hashings by between O(N) and O(N log N) where N is
the number of files modified in a transaction.

2. A platform abstraction layer to enable portable asyn-
chronous file i/o. As everything happens in files, we
will read and write an awful lot of separate files at
once during our normal course of operation. There-
fore, the ability to execute batches of asynchronous
file i/o would be a huge help.

3. A platform abstraction layer to enable portable asyn-
chronous file locking23 and copy-on-write delta file
copies24.

That is, of course, a minimal set of prerequisites – one
could improve performance hugely if you could use a shared
memory region instead of lock files for example, but all that
can be added later and besides, as I mentioned earlier, I
don’t think that write transaction performance is actually
all that important compared to the other major benefits.

Well, I can tell you that progress on the prerequisites is go-
ing well: for Google Summer of Code 2013 myself and Paul
Kirth (who is also presenting at this conference) successfully
submitted Boost.AFIO, a portability layer for asynchronous
file i/o based on Boost.ASIO, for Boost peer review. I am
about half way through a SIMD threaded content hasher
which can execute sixteen SHA-256’s in parallel on a quad
core Intel or ARMv7 CPU, yielding already a 1.2 cycle per
byte average on Intel which is phenomenal. I am not happy
with the design of the present implementation however, I
believe much more of it could be metaprogrammed with op-
timisation hints as the current design defeats all C++ com-
piler optimisers. Once this conference is done, I am entirely
intending to dedicate what spare time I get to finishing the
content hasher, and once done to move onto the portability
layer for asynchronous file locking.

Of course, one can only do so much in one’s free time, so if
any of the above excites you, here are some options available
to help out the effort:

• I have a sore need for comprehensive functional testing
of exception safety in proposed Boost.AFIO – it is the
only part not properly unit tested to destruction, yet
handling errors perfectly is paramount for any code

23Getting this right is unfortunately very hard on POSIX –
see http://0pointer.de/blog/projects/locking.html for
how badly broken file locks are.

24The copy-on-write filing systems usually allow you to make
cheap copies of files, storing only the extents which you mod-
ify.

22

http://0pointer.de/blog/projects/locking.html

handling people’s data. I am fairly confident it is ex-
ception safe, but I know it can leak resources some-
times in some exception throw routes, and all those
need to be found and fixed with an exception safety
test framework needed for the CI server to run per-
commit to ensure exception safety remains perfect.

A decent exception safety unit test framework for
Boost would actually be a great project in and of itself
– Boost.Test doesn’t do much for exception safety test-
ing (or at least to my knowledge), especially if it could
hook in with valgrind (or whatever) to also track re-
source leaks.

• The amount of testing involved in writing a cross-
platform, network filing system aware, asynchronous
file locking library for Boost is immense, especially get-
ting a Jenkins CI configured with all the possible use
case scenarios e.g. BSD NFS talking to Linux NFS
which exports a Windows Samba share. I think that
the writing of such a library is probably not that hard,
but the testing will be the main time consumer. While
the code is not written at the time of writing this pa-
per, maybe by the time you are reading this now it
is, if so I could do with help configuring test scenarios
and getting all those hooked into a CI for per-commit
testing as well.

• Paul Kirth is still working on a fast, scalable portable
asynchronous directory change monitor which we’ll
need for implementing concurrent database transac-
tions and garbage collection, and I am sure he would
appreciate some help. It actually is far harder than
you might think – he’ll talk during his presentation at
this conference on just how hard it is.

• Proposed Boost.AFIO remains in the community re-
view queue, and I would expect it will need several
rounds of peer review before it could be recommended
for acceptance into Boost. A review manager willing to
invest the work involved would be hugely appreciated.

• Financial sponsorship would make a huge difference
to rate of progress as it would enable me (I have my
own consulting firm) and other members of the Boost
community to spend more hours on writing, testing
and documenting the prerequisites for an embedded
C++ graph database instead of being consumed by
other revenue generating work. If you think any of
the proposed features described above would be really
useful to your employer, please do hook me up with
them!

11. ACKNOWLEDGEMENTS
I am particularly indebted to Bjorn Reese who has given

so freely of his time in reviewing proposed Boost.AFIO for
various warts and omitted pieces. AFIO is considerably a
better library for it. He also pointed out an entire miss-
ing section in a draft of this paper which I also somehow
had mentally omitted, and which required another thousand
words to fix – I am terribly grateful.

Particular thanks go to reviewers Andrew Sutton and
Stephan T. Lavavej for their insights and corrections, and
without whose dialogue I would not have realised that I was
actually asking for a C++ toolset where all code is compiled

as if it were header only. Thanks are also due to Antony
Polukhin who wrote no less than three sets of notes on a
draft of this paper, as well as to Fraser Hutchison whose ea-
gle eyes spotted a remarkable number of typos considering
how many revisions this paper had already undergone. My
thanks to Paul Kirth for working so hard during GSoC 2013
to bring AFIO into a state fit to enter the Boost peer review
queue, I couldn’t have done it without you.

Finally, I am especially grateful to my significant other,
Megan, who has tolerated with surprising good humour the
non-stop sixty plus hour weeks caused by these outside of
work side projects. Such a life is particularly hard on family
and loved ones.

12. ABOUT THE AUTHOR
Niall Douglas is one of the authors of proposed

Boost.AFIO and is currently the primary Google Summer of
Code administrator for Boost. He is an Affiliate Researcher
with the Waterloo Research Institute for Complexity and In-
novation at the University of Waterloo, Canada, and holds
postgraduate qualifications in Business Information Systems
and Educational and Social Research as well as a second un-
dergraduate degree double majoring in Economics and Man-
agement. He has been using Boost since 2002 and was the
ISO SC22 (Programming Languages) mirror convenor for
the Republic of Ireland 2011-2012. He formerly worked for
BlackBerry 2012-2013 in their Platform Development group,
and was formerly the Chief Software Architect of the Fuel
and Hydraulic Test Benches of the EuroFighter defence air-
craft. He is a published author in the field of Economics
and Power Relations, is the Social Media Coordinator for
the World Economics Association and his particular inter-
est lies in productivity, the causes of productivity and the
organisational scaling constraints which inhibit productivity.

13. REFERENCES
[1] Cern reflex.

http://root.cern.ch/drupal/content/reflex.

[2] clang modules documentation.
http://clang.llvm.org/docs/Modules.html.

[3] Proposed boost.mirror. http://kifri.fri.uniza.sk/
~chochlik/mirror-lib/html/.

[4] Ssds vs hard drives 1980-2014 raw data. http:
//nedprod.com/studystuff/SSDsVsHardDrives.xlsx.

[5] D. M. Berris, M. Austern, and L. Crowl. N3340: Rich
pointers. Proceedings of the ISO JTC1/SC22/WG21
The C++ Programming Language committee, 2012.
http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2012/n3340.pdf.

[6] D. Box. Essential Com. Addison-Wesley Professional,
1998.

[7] R. Courtland. The status of moore’s law: It’s
complicated. IEEE Spectrum, 2013. http:
//spectrum.ieee.org/semiconductors/devices/

the-status-of-moores-law-its-complicated.

[8] A. Ganapathi, Y.-M. Wang, N. Lao, and J.-R. Wen.
Why pcs are fragile and what we can do about it: A
study of windows registry problems. In Dependable
Systems and Networks, 2004 International Conference
on, pages 561–566. IEEE, 2004.
https://www.cs.cmu.edu/~nlao/publication/

older/ganapathia_DSN_registry.pdf.

23

http://root.cern.ch/drupal/content/reflex
http://clang.llvm.org/docs/Modules.html
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/
http://kifri.fri.uniza.sk/~chochlik/mirror-lib/html/
http://nedprod.com/studystuff/SSDsVsHardDrives.xlsx
http://nedprod.com/studystuff/SSDsVsHardDrives.xlsx
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3340.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3340.pdf
http://spectrum.ieee.org/semiconductors/devices/the-status-of-moores-law-its-complicated
http://spectrum.ieee.org/semiconductors/devices/the-status-of-moores-law-its-complicated
http://spectrum.ieee.org/semiconductors/devices/the-status-of-moores-law-its-complicated
https://www.cs.cmu.edu/~nlao/publication/older/ganapathia_DSN_registry.pdf
https://www.cs.cmu.edu/~nlao/publication/older/ganapathia_DSN_registry.pdf

[9] T. S. Kuhn. The structure of scientific revolutions.
University of Chicago press, 1962.

[10] H. Sutter. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal,
30(3):202–210, 2005.
http://www.mscs.mu.edu/~rge/cosc2200/

homework-fall2013/Readings/FreeLunchIsOver.pdf;
2009 updated edition http:

//www.gotw.ca/publications/concurrency-ddj.htm.

[11] H. Sutter and T. Plum. N1426: Why we can’t afford
export. Proceedings of the ISO JTC1/SC22/WG21
The C++ Programming Language committee, 2003.
http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2003/n1426.pdf.

[12] A. Sutton. N3889: Concepts lite technical specification
(early draft). Proceedings of the ISO
JTC1/SC22/WG21 The C++ Programming Language
committee, 2014. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2014/n3889.pdf.

[13] D. Vandevoorde. N3347: Modules in c++ (revision 6).
Proceedings of the ISO JTC1/SC22/WG21 The C++
Programming Language committee, 2012.
http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2012/n3347.pdf.

[14] T. Williams. On inheritance, what it means and how
to use it. Draft, Applications Architecture Group,
Microsoft Research, 1990.

24

http://www.mscs.mu.edu/~rge/cosc2200/homework-fall2013/Readings/FreeLunchIsOver.pdf
http://www.mscs.mu.edu/~rge/cosc2200/homework-fall2013/Readings/FreeLunchIsOver.pdf
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1426.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1426.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3889.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3889.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3347.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3347.pdf

	Introduction
	What makes code changes ripple differently in C++ to other languages?
	Why hasn't C++ replaced C in most newly written code?
	What does this mean for C++ a decade from now?
	What C++ 17 is doing about complexity management
	WG21 SG2 (Modules)
	WG21 SG7 (Reflection)
	WG21 SG8 (Concepts)

	What C++ 17 is leaving well alone until later: Type Export
	What ought to be done (in my opinion) about this `hidden Export problem'

	What I am pitching: An embedded graph database at the core of the C++ runtime
	A quick overview of the git content-addressable storage algorithm
	How the git algorithm applies to the proposed graph database

	First potential killer application for a C++ graph database: Object Components in C++
	A review of Microsoft COM
	An example design for modern C++ component objects
	Notes on implementing Object Components under an `as if everything header only' model

	Second potential killer application for a C++ Graph database: Filesystem
	Conclusions
	Acknowledgements
	About the author
	References

