Expand Up
@@ -34,34 +34,34 @@ namespace boost
typename DFSParentEdgeMap, typename SizeType>
struct planar_dfs_visitor : public dfs_visitor <>
{
planar_dfs_visitor (LowPointMap lpm, DFSParentMap dfs_p,
planar_dfs_visitor (LowPointMap lpm, DFSParentMap dfs_p,
DFSNumberMap dfs_n, LeastAncestorMap lam,
DFSParentEdgeMap dfs_edge)
DFSParentEdgeMap dfs_edge)
: low(lpm),
parent (dfs_p),
df_number(dfs_n),
least_ancestor(lam),
df_edge(dfs_edge),
count(0 )
count(0 )
{}
template <typename Vertex, typename Graph>
void start_vertex (const Vertex& u, Graph&)
{
put (parent, u, u);
put (least_ancestor, u, count);
}
template <typename Vertex, typename Graph>
void discover_vertex (const Vertex& u, Graph&)
{
put (low, u, count);
put (df_number, u, count);
++count;
}
template <typename Edge, typename Graph>
void tree_edge (const Edge& e, Graph& g)
{
Expand All
@@ -73,13 +73,13 @@ namespace boost
put (df_edge, t, e);
put (least_ancestor, t, get (df_number, s));
}
template <typename Edge, typename Graph>
void back_edge (const Edge& e, Graph& g)
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t ;
typedef typename graph_traits<Graph>::vertices_size_type v_size_t ;
vertex_t s (source (e,g));
vertex_t t (target (e,g));
BOOST_USING_STD_MIN ();
Expand All
@@ -89,20 +89,20 @@ namespace boost
v_size_t t_df_number = get (df_number, t);
v_size_t s_least_ancestor_df_number = get (least_ancestor, s);
put (low, s,
put (low, s,
min BOOST_PREVENT_MACRO_SUBSTITUTION (s_low_df_number,
t_df_number)
);
put (least_ancestor, s,
min BOOST_PREVENT_MACRO_SUBSTITUTION (s_least_ancestor_df_number,
put (least_ancestor, s,
min BOOST_PREVENT_MACRO_SUBSTITUTION (s_least_ancestor_df_number,
t_df_number
)
);
}
}
template <typename Vertex, typename Graph>
void finish_vertex (const Vertex& u, Graph&)
{
Expand All
@@ -115,21 +115,21 @@ namespace boost
if (u_parent != u)
{
put (low, u_parent,
min BOOST_PREVENT_MACRO_SUBSTITUTION (u_lowpoint,
put (low, u_parent,
min BOOST_PREVENT_MACRO_SUBSTITUTION (u_lowpoint,
u_parent_lowpoint
)
);
}
}
LowPointMap low;
DFSParentMap parent;
DFSNumberMap df_number;
LeastAncestorMap least_ancestor;
DFSParentEdgeMap df_edge;
SizeType count;
};
Expand All
@@ -150,7 +150,7 @@ namespace boost
typedef typename graph_traits<Graph>::edge_descriptor edge_t ;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t ;
typedef typename graph_traits<Graph>::edge_iterator edge_iterator_t ;
typedef typename graph_traits<Graph>::out_edge_iterator
typedef typename graph_traits<Graph>::out_edge_iterator
out_edge_iterator_t ;
typedef graph::detail::face_handle
<Graph, StoreOldHandlesPolicy, StoreEmbeddingPolicy> face_handle_t ;
Expand All
@@ -173,27 +173,27 @@ namespace boost
typedef typename map_vertex_to_<v_size_t >::type vertex_to_v_size_map_t ;
typedef typename map_vertex_to_<vertex_t >::type vertex_to_vertex_map_t ;
typedef typename map_vertex_to_<edge_t >::type vertex_to_edge_map_t ;
typedef typename map_vertex_to_<vertex_list_ptr_t >::type
typedef typename map_vertex_to_<vertex_list_ptr_t >::type
vertex_to_vertex_list_ptr_map_t ;
typedef typename map_vertex_to_< edge_vector_t >::type
typedef typename map_vertex_to_< edge_vector_t >::type
vertex_to_edge_vector_map_t ;
typedef typename map_vertex_to_<bool >::type vertex_to_bool_map_t ;
typedef typename map_vertex_to_<face_handle_t >::type
typedef typename map_vertex_to_<face_handle_t >::type
vertex_to_face_handle_map_t ;
typedef typename map_vertex_to_<face_handle_list_ptr_t >::type
typedef typename map_vertex_to_<face_handle_list_ptr_t >::type
vertex_to_face_handle_list_ptr_map_t ;
typedef typename map_vertex_to_<typename vertex_list_t ::iterator>::type
typedef typename map_vertex_to_<typename vertex_list_t ::iterator>::type
vertex_to_separated_node_map_t ;
template <typename BicompSideToTraverse = single_side,
typename VisitorType = lead_visitor,
typename Time = current_iteration>
struct face_vertex_iterator
{
typedef face_iterator<Graph,
vertex_to_face_handle_map_t ,
vertex_t ,
BicompSideToTraverse,
typedef face_iterator<Graph,
vertex_to_face_handle_map_t ,
vertex_t ,
BicompSideToTraverse,
VisitorType,
Time>
type;
Expand All
@@ -216,7 +216,7 @@ namespace boost
public:
boyer_myrvold_impl (const Graph& arg_g, VertexIndexMap arg_vm):
g (arg_g),
Expand All
@@ -237,7 +237,7 @@ namespace boost
flipped_vector (num_vertices(g), false ),
backedges_vector (num_vertices(g)),
dfs_parent_edge_vector (num_vertices(g)),
vertices_by_dfs_num (num_vertices(g)),
low_point (low_point_vector.begin(), vm),
Expand Down
Expand Up
@@ -271,72 +271,72 @@ namespace boost
// Sort vertices by their lowpoint - need this later in the constructor
vertex_vector_t vertices_by_lowpoint (num_vertices (g));
std::copy ( vertices (g).first , vertices (g).second ,
std::copy ( vertices (g).first , vertices (g).second ,
vertices_by_lowpoint.begin ()
);
bucket_sort (vertices_by_lowpoint.begin (),
vertices_by_lowpoint.end (),
bucket_sort (vertices_by_lowpoint.begin (),
vertices_by_lowpoint.end (),
low_point,
num_vertices (g)
);
// Sort vertices by their dfs number - need this to iterate by reverse
// Sort vertices by their dfs number - need this to iterate by reverse
// DFS number in the main loop.
std::copy ( vertices (g).first , vertices (g).second ,
std::copy ( vertices (g).first , vertices (g).second ,
vertices_by_dfs_num.begin ()
);
bucket_sort (vertices_by_dfs_num.begin (),
vertices_by_dfs_num.end (),
bucket_sort (vertices_by_dfs_num.begin (),
vertices_by_dfs_num.end (),
dfs_number,
num_vertices (g)
);
// Initialize face handles. A face handle is an abstraction that serves
// two uses in our implementation - it allows us to efficiently move
// along the outer face of embedded bicomps in a partially embedded
// graph, and it provides storage for the planar embedding. Face
// handles are implemented by a sequence of edges and are associated
// with a particular vertex - the sequence of edges represents the
// current embedding of edges around that vertex, and the first and
// last edges in the sequence represent the pair of edges on the outer
// face that are adjacent to the associated vertex. This lets us embed
// edges in the graph by just pushing them on the front or back of the
// Initialize face handles. A face handle is an abstraction that serves
// two uses in our implementation - it allows us to efficiently move
// along the outer face of embedded bicomps in a partially embedded
// graph, and it provides storage for the planar embedding. Face
// handles are implemented by a sequence of edges and are associated
// with a particular vertex - the sequence of edges represents the
// current embedding of edges around that vertex, and the first and
// last edges in the sequence represent the pair of edges on the outer
// face that are adjacent to the associated vertex. This lets us embed
// edges in the graph by just pushing them on the front or back of the
// sequence of edges held by the face handles.
//
//
// Our algorithm starts with a DFS tree of edges (where every vertex is
// an articulation point and every edge is a singleton bicomp) and
// repeatedly merges bicomps by embedding additional edges. Note that
// any bicomp at any point in the algorithm can be associated with a
// an articulation point and every edge is a singleton bicomp) and
// repeatedly merges bicomps by embedding additional edges. Note that
// any bicomp at any point in the algorithm can be associated with a
// unique edge connecting the vertex of that bicomp with the lowest DFS
// number (which we refer to as the "root" of the bicomp) with its DFS
// number (which we refer to as the "root" of the bicomp) with its DFS
// child in the bicomp: the existence of two such edges would contradict
// the properties of a DFS tree. We refer to the DFS child of the root
// of a bicomp as the "canonical DFS child" of the bicomp. Note that a
// the properties of a DFS tree. We refer to the DFS child of the root
// of a bicomp as the "canonical DFS child" of the bicomp. Note that a
// vertex can be the root of more than one bicomp.
//
// We move around the external faces of a bicomp using a few property
// We move around the external faces of a bicomp using a few property
// maps, which we'll initialize presently:
//
// - face_handles: maps a vertex to a face handle that can be used to
// move "up" a bicomp. For a vertex that isn't an articulation point,
// this holds the face handles that can be used to move around that
// - face_handles: maps a vertex to a face handle that can be used to
// move "up" a bicomp. For a vertex that isn't an articulation point,
// this holds the face handles that can be used to move around that
// vertex's unique bicomp. For a vertex that is an articulation point,
// this holds the face handles associated with the unique bicomp that
// the vertex is NOT the root of. These handles can therefore be used
// to move from any point on the outer face of the tree of bicomps
// this holds the face handles associated with the unique bicomp that
// the vertex is NOT the root of. These handles can therefore be used
// to move from any point on the outer face of the tree of bicomps
// around the current outer face towards the root of the DFS tree.
//
// - dfs_child_handles: these are used to hold face handles for
// - dfs_child_handles: these are used to hold face handles for
// vertices that are articulation points - dfs_child_handles[v] holds
// the face handles corresponding to vertex u in the bicomp with root
// u and canonical DFS child v.
//
// - canonical_dfs_child: this property map allows one to determine the
// canonical DFS child of a bicomp while traversing the outer face.
// This property map is only valid when applied to one of the two
// This property map is only valid when applied to one of the two
// vertices adjacent to the root of the bicomp on the outer face. To
// be more precise, if v is the canonical DFS child of a bicomp,
// canonical_dfs_child[dfs_child_handles[v].first_vertex()] == v and
// canonical_dfs_child[dfs_child_handles[v].first_vertex()] == v and
// canonical_dfs_child[dfs_child_handles[v].second_vertex()] == v.
//
// - pertinent_roots: given a vertex v, pertinent_roots[v] contains a
Expand Down
Expand Up
@@ -365,19 +365,19 @@ namespace boost
}
canonical_dfs_child[v] = v;
pertinent_roots[v] = face_handle_list_ptr_t (new face_handle_list_t );
pertinent_roots[v] = face_handle_list_ptr_t (new face_handle_list_t );
separated_dfs_child_list[v] = vertex_list_ptr_t (new vertex_list_t );
}
// We need to create a list of not-yet-merged depth-first children for
// each vertex that will be updated as bicomps get merged. We sort each
// list by ascending lowpoint, which allows the externally_active
// function to run in constant time, and we keep a pointer to each
// vertex's representation in its parent's list, which allows merging
// each vertex that will be updated as bicomps get merged. We sort each
// list by ascending lowpoint, which allows the externally_active
// function to run in constant time, and we keep a pointer to each
// vertex's representation in its parent's list, which allows merging
// in constant time.
for (typename vertex_vector_t ::iterator itr =
for (typename vertex_vector_t ::iterator itr =
vertices_by_lowpoint.begin ();
itr != vertices_by_lowpoint.end (); ++itr)
{
Expand All
@@ -389,7 +389,7 @@ namespace boost
separated_dfs_child_list[parent]->insert
(separated_dfs_child_list[parent]->end (), v);
}
}
}
// The merge stack holds path information during a walkdown iteration
merge_stack.reserve (num_vertices (g));
Expand All
@@ -404,11 +404,11 @@ namespace boost
bool is_planar ()
{
// This is the main algorithm: starting with a DFS tree of embedded
// edges (which, since it's a tree, is planar), iterate through all
// This is the main algorithm: starting with a DFS tree of embedded
// edges (which, since it's a tree, is planar), iterate through all
// vertices by reverse DFS number, attempting to embed all backedges
// connecting the current vertex to vertices with higher DFS numbers.
//
//
// The walkup is a procedure that examines all such backedges and sets
// up the required data structures so that they can be searched by the
// walkdown in linear time. The walkdown does the actual work of
Expand All
@@ -434,7 +434,7 @@ namespace boost
store_old_face_handles (StoreOldHandlesPolicy ());
vertex_t v (*vi);
walkup (v);
if (!walkdown (v))
Expand All
@@ -445,7 +445,7 @@ namespace boost
clean_up_embedding (StoreEmbeddingPolicy ());
return true ;
}
Expand All
@@ -462,14 +462,14 @@ namespace boost
void walkup (vertex_t v)
{
// The point of the walkup is to follow all backedges from v to
// The point of the walkup is to follow all backedges from v to
// vertices with higher DFS numbers, and update pertinent_roots
// for the bicomp roots on the path from backedge endpoints up
// to v. This will set the stage for the walkdown to efficiently
// traverse the graph of bicomps down from v.
typedef typename face_vertex_iterator<both_sides>::type walkup_iterator_t ;
out_edge_iterator_t oi, oi_end;
for (boost::tie (oi,oi_end) = out_edges (v,g); oi != oi_end; ++oi)
{
Expand All
@@ -491,7 +491,7 @@ namespace boost
backedges[w].push_back (e);
v_size_t timestamp = dfs_number[v];
v_size_t timestamp = dfs_number[v];
backedge_flag[w] = timestamp;
walkup_iterator_t walkup_itr (w, face_handles);
Expand All
@@ -500,11 +500,11 @@ namespace boost
while (true )
{
// Move to the root of the current bicomp or the first visited
// vertex on the bicomp by going up each side in parallel
while (walkup_itr != walkup_end &&
while (walkup_itr != walkup_end &&
visited[*walkup_itr] != timestamp
)
{
Expand All
@@ -515,20 +515,20 @@ namespace boost
// If we've found the root of a bicomp through a path we haven't
// seen before, update pertinent_roots with a handle to the
// current bicomp. Otherwise, we've just seen a path we've been
// current bicomp. Otherwise, we've just seen a path we've been
// up before, so break out of the main while loop.
if (walkup_itr == walkup_end)
{
vertex_t dfs_child = canonical_dfs_child[lead_vertex];
vertex_t parent = dfs_parent[dfs_child];
visited[dfs_child_handles[dfs_child].first_vertex ()]
visited[dfs_child_handles[dfs_child].first_vertex ()]
= timestamp;
visited[dfs_child_handles[dfs_child].second_vertex ()]
visited[dfs_child_handles[dfs_child].second_vertex ()]
= timestamp;
if (low_point[dfs_child] < dfs_number[v] ||
if (low_point[dfs_child] < dfs_number[v] ||
least_ancestor[dfs_child] < dfs_number[v]
)
{
Expand All
@@ -553,10 +553,10 @@ namespace boost
break ;
}
}
}
}
Expand All
@@ -577,19 +577,19 @@ namespace boost
while (!pertinent_roots[v]->empty ())
{
face_handle_t root_face_handle = pertinent_roots[v]->front ();
face_handle_t curr_face_handle = root_face_handle;
pertinent_roots[v]->pop_front ();
pertinent_roots[v]->pop_front ();
merge_stack.clear ();
while (true )
{
typename face_vertex_iterator<>::type
typename face_vertex_iterator<>::type
first_face_itr, second_face_itr, face_end;
vertex_t first_side_vertex
vertex_t first_side_vertex
= graph_traits<Graph>::null_vertex ();
vertex_t second_side_vertex;
vertex_t first_tail, second_tail;
Expand All
@@ -603,7 +603,7 @@ namespace boost
for (; first_face_itr != face_end; ++first_face_itr)
{
vertex_t face_vertex (*first_face_itr);
if (pertinent (face_vertex, v) ||
if (pertinent (face_vertex, v) ||
externally_active (face_vertex, v)
)
{
Expand All
@@ -614,15 +614,15 @@ namespace boost
first_tail = face_vertex;
}
if (first_side_vertex == graph_traits<Graph>::null_vertex () ||
if (first_side_vertex == graph_traits<Graph>::null_vertex () ||
first_side_vertex == curr_face_handle.get_anchor ()
)
break ;
for (;second_face_itr != face_end; ++second_face_itr)
{
vertex_t face_vertex (*second_face_itr);
if (pertinent (face_vertex, v) ||
if (pertinent (face_vertex, v) ||
externally_active (face_vertex, v)
)
{
Expand Down
Expand Up
@@ -654,14 +654,14 @@ namespace boost
chosen = second_side_vertex;
chose_first_upper_path = false ;
}
else
else
{
// If there's a pertinent vertex on the lower face
// between the first_face_itr and the second_face_itr,
// If there's a pertinent vertex on the lower face
// between the first_face_itr and the second_face_itr,
// this graph isn't planar.
for (;
*first_face_itr != second_side_vertex;
for (;
*first_face_itr != second_side_vertex;
++first_face_itr
)
{
Expand All
@@ -675,85 +675,85 @@ namespace boost
return false ;
}
}
// Otherwise, the fact that we didn't find a pertinent
// vertex on this face is fine - we should set the
// short-circuit edges and break out of this loop to
// Otherwise, the fact that we didn't find a pertinent
// vertex on this face is fine - we should set the
// short-circuit edges and break out of this loop to
// start looking at a different pertinent root.
if (first_side_vertex == second_side_vertex)
{
if (first_tail != v)
{
vertex_t first
vertex_t first
= face_handles[first_tail].first_vertex ();
vertex_t second
vertex_t second
= face_handles[first_tail].second_vertex ();
boost::tie (first_side_vertex, first_tail)
= make_tuple (first_tail,
first == first_side_vertex ?
boost::tie (first_side_vertex, first_tail)
= make_tuple (first_tail,
first == first_side_vertex ?
second : first
);
}
else if (second_tail != v)
{
vertex_t first
vertex_t first
= face_handles[second_tail].first_vertex ();
vertex_t second
vertex_t second
= face_handles[second_tail].second_vertex ();
boost::tie (second_side_vertex, second_tail)
boost::tie (second_side_vertex, second_tail)
= make_tuple (second_tail,
first == second_side_vertex ?
first == second_side_vertex ?
second : first);
}
else
break ;
}
canonical_dfs_child[first_side_vertex]
canonical_dfs_child[first_side_vertex]
= canonical_dfs_child[root_face_handle.first_vertex ()];
canonical_dfs_child[second_side_vertex]
canonical_dfs_child[second_side_vertex]
= canonical_dfs_child[root_face_handle.second_vertex ()];
root_face_handle.set_first_vertex (first_side_vertex);
root_face_handle.set_second_vertex (second_side_vertex);
if (face_handles[first_side_vertex].first_vertex () ==
if (face_handles[first_side_vertex].first_vertex () ==
first_tail
)
face_handles[first_side_vertex].set_first_vertex (v);
else
face_handles[first_side_vertex].set_second_vertex (v);
if (face_handles[second_side_vertex].first_vertex () ==
if (face_handles[second_side_vertex].first_vertex () ==
second_tail
)
face_handles[second_side_vertex].set_first_vertex (v);
else
face_handles[second_side_vertex].set_second_vertex (v);
break ;
}
// When we unwind the stack, we need to know which direction
// When we unwind the stack, we need to know which direction
// we came down from on the top face handle
bool chose_first_lower_path =
(chose_first_upper_path &&
face_handles[chosen].first_vertex () == first_tail)
bool chose_first_lower_path =
(chose_first_upper_path &&
face_handles[chosen].first_vertex () == first_tail)
||
(!chose_first_upper_path &&
(!chose_first_upper_path &&
face_handles[chosen].first_vertex () == second_tail);
// If there's a backedge at the chosen vertex, embed it now
if (backedge_flag[chosen] == dfs_number[v])
{
w = chosen;
backedge_flag[chosen] = num_vertices (g) + 1 ;
add_to_merge_points (chosen, StoreOldHandlesPolicy ());
typename edge_vector_t ::iterator ei, ei_end;
ei_end = backedges[chosen].end ();
for (ei = backedges[chosen].begin (); ei != ei_end; ++ei)
Expand All
@@ -778,7 +778,7 @@ namespace boost
}
// Unwind the merge stack to the root, merging all bicomps
bool bottom_path_follows_first;
bool top_path_follows_first;
bool next_bottom_follows_first = chose_first_upper_path;
Expand All
@@ -789,16 +789,16 @@ namespace boost
{
bottom_path_follows_first = next_bottom_follows_first;
boost::tie (merge_point,
next_bottom_follows_first,
boost::tie (merge_point,
next_bottom_follows_first,
top_path_follows_first
) = merge_stack.back ();
merge_stack.pop_back ();
face_handle_t top_handle (face_handles[merge_point]);
face_handle_t bottom_handle
(*pertinent_roots[merge_point]->begin ());
vertex_t bottom_dfs_child = canonical_dfs_child
[pertinent_roots[merge_point]->begin ()->first_vertex ()];
Expand All
@@ -809,23 +809,23 @@ namespace boost
pertinent_roots[merge_point]->pop_front ();
add_to_merge_points (top_handle.get_anchor (),
add_to_merge_points (top_handle.get_anchor (),
StoreOldHandlesPolicy ()
);
if (top_path_follows_first && bottom_path_follows_first)
{
bottom_handle.flip ();
top_handle.glue_first_to_second (bottom_handle);
}
else if (!top_path_follows_first &&
}
else if (!top_path_follows_first &&
bottom_path_follows_first
)
{
flipped[bottom_dfs_child] = true ;
top_handle.glue_second_to_first (bottom_handle);
}
else if (top_path_follows_first &&
else if (top_path_follows_first &&
!bottom_path_follows_first
)
{
Expand All
@@ -841,17 +841,17 @@ namespace boost
}
// Finally, embed all edges (v,w) at their upper end points
canonical_dfs_child[w]
canonical_dfs_child[w]
= canonical_dfs_child[root_face_handle.first_vertex ()];
add_to_merge_points (root_face_handle.get_anchor (),
add_to_merge_points (root_face_handle.get_anchor (),
StoreOldHandlesPolicy ()
);
typename edge_vector_t ::iterator ei, ei_end;
ei_end = backedges[chosen].end ();
for (ei = backedges[chosen].begin (); ei != ei_end; ++ei)
{
{
if (next_bottom_follows_first)
root_face_handle.push_first (*ei, g);
else
Expand All
@@ -862,7 +862,7 @@ namespace boost
curr_face_handle = root_face_handle;
}// while(true)
}// while(!pertinent_roots[v]->empty())
return true ;
Expand All
@@ -878,14 +878,14 @@ namespace boost
void store_old_face_handles (graph::detail::store_old_handles)
{
for (typename std::vector<vertex_t >::iterator mp_itr
for (typename std::vector<vertex_t >::iterator mp_itr
= current_merge_points.begin ();
mp_itr != current_merge_points.end (); ++mp_itr)
{
face_handles[*mp_itr].store_old_face_handles ();
}
current_merge_points.clear ();
}
}
void add_to_merge_points (vertex_t , graph::detail::no_old_handles) {}
Expand All
@@ -895,7 +895,7 @@ namespace boost
current_merge_points.push_back (v);
}
void add_to_embedded_edges (edge_t , graph::detail::no_old_handles) {}
void add_to_embedded_edges (edge_t e, graph::detail::store_old_handles)
Expand Down
Expand Up
@@ -923,7 +923,7 @@ namespace boost
{
typename vertex_list_t ::iterator yi, yi_end;
yi_end = separated_dfs_child_list[*xi]->end ();
for (yi = separated_dfs_child_list[*xi]->begin ();
for (yi = separated_dfs_child_list[*xi]->begin ();
yi != yi_end; ++yi
)
{
Expand All
@@ -932,7 +932,7 @@ namespace boost
(dfs_child_handles[*yi]);
}
}
}
}
// Up until this point, we've flipped bicomps lazily by setting
// flipped[v] to true if the bicomp rooted at v was flipped (the
Expand All
@@ -943,7 +943,7 @@ namespace boost
typedef typename vertex_vector_t ::iterator vertex_vector_itr_t ;
vertex_vector_itr_t vi_end = vertices_by_dfs_num.end ();
for (vertex_vector_itr_t vi = vertices_by_dfs_num.begin ();
for (vertex_vector_itr_t vi = vertices_by_dfs_num.begin ();
vi != vi_end; ++vi
)
{
Expand All
@@ -967,7 +967,7 @@ namespace boost
// If there are any self-loops in the graph, they were flagged
// during the walkup, and we should add them to the embedding now.
// Adding a self loop anywhere in the embedding could never
// Adding a self loop anywhere in the embedding could never
// invalidate the embedding, but they would complicate the traversal
// if they were added during the walkup/walkdown.
Expand All
@@ -978,62 +978,62 @@ namespace boost
edge_t e (*ei);
face_handles[source (e,g)].push_second (e,g);
}
}
bool pertinent (vertex_t w, vertex_t v)
{
// w is pertinent with respect to v if there is a backedge (v,w) or if
// w is the root of a bicomp that contains a pertinent vertex.
return backedge_flag[w] == dfs_number[v] || !pertinent_roots[w]->empty ();
}
bool externally_active (vertex_t w, vertex_t v)
{
// Let a be any proper depth-first search ancestor of v. w is externally
// active with respect to v if there exists a backedge (a,w) or a
// active with respect to v if there exists a backedge (a,w) or a
// backedge (a,w_0) for some w_0 in a descendent bicomp of w.
v_size_t dfs_number_of_v = dfs_number[v];
return (least_ancestor[w] < dfs_number_of_v) ||
(!separated_dfs_child_list[w]->empty () &&
low_point[separated_dfs_child_list[w]->front ()] < dfs_number_of_v);
low_point[separated_dfs_child_list[w]->front ()] < dfs_number_of_v);
}
bool internally_active (vertex_t w, vertex_t v)
{
return pertinent (w,v) && !externally_active (w,v);
}
}
void remove_vertex_from_separated_dfs_child_list (vertex_t v)
{
typename vertex_list_t ::iterator to_delete
typename vertex_list_t ::iterator to_delete
= separated_node_in_parent_list[v];
garbage.splice (garbage.end (),
*separated_dfs_child_list[dfs_parent[v]],
to_delete,
garbage.splice (garbage.end (),
*separated_dfs_child_list[dfs_parent[v]],
to_delete,
boost::next (to_delete)
);
}
// End of the implementation of the basic Boyer-Myrvold Algorithm. The rest
// of the code below implements the isolation of a Kuratowski subgraph in
// of the code below implements the isolation of a Kuratowski subgraph in
// the case that the input graph is not planar. This is by far the most
// complicated part of the implementation.
Expand All
@@ -1046,7 +1046,7 @@ namespace boost
template <typename EdgeToBoolPropertyMap, typename EdgeContainer>
vertex_t kuratowski_walkup (vertex_t v,
vertex_t kuratowski_walkup (vertex_t v,
EdgeToBoolPropertyMap forbidden_edge,
EdgeToBoolPropertyMap goal_edge,
EdgeToBoolPropertyMap is_embedded,
Expand All
@@ -1056,58 +1056,58 @@ namespace boost
vertex_t current_endpoint;
bool seen_goal_edge = false ;
out_edge_iterator_t oi, oi_end;
for (boost::tie (oi,oi_end) = out_edges (v,g); oi != oi_end; ++oi)
forbidden_edge[*oi] = true ;
for (boost::tie (oi,oi_end) = out_edges (v,g); oi != oi_end; ++oi)
{
path_edges.clear ();
edge_t e (*oi);
current_endpoint = target (*oi,g) == v ?
current_endpoint = target (*oi,g) == v ?
source (*oi,g) : target (*oi,g);
if (dfs_number[current_endpoint] < dfs_number[v] ||
if (dfs_number[current_endpoint] < dfs_number[v] ||
is_embedded[e] ||
v == current_endpoint // self-loop
)
{
// Not a backedge
continue ;
}
path_edges.push_back (e);
if (goal_edge[e])
{
return current_endpoint;
}
typedef typename face_edge_iterator<>::type walkup_itr_t ;
walkup_itr_t
walkup_itr_t
walkup_itr (current_endpoint, face_handles, first_side ());
walkup_itr_t walkup_end;
seen_goal_edge = false ;
while (true )
{
{
if (walkup_itr != walkup_end && forbidden_edge[*walkup_itr])
break ;
while (walkup_itr != walkup_end &&
!goal_edge[*walkup_itr] &&
while (walkup_itr != walkup_end &&
!goal_edge[*walkup_itr] &&
!forbidden_edge[*walkup_itr]
)
{
edge_t f (*walkup_itr);
forbidden_edge[f] = true ;
path_edges.push_back (f);
current_endpoint =
source (f, g) == current_endpoint ?
target (f, g) :
current_endpoint =
source (f, g) == current_endpoint ?
target (f, g) :
source (f,g);
++walkup_itr;
}
Expand All
@@ -1119,14 +1119,14 @@ namespace boost
break ;
}
walkup_itr
walkup_itr
= walkup_itr_t (current_endpoint, face_handles, first_side ());
}
if (seen_goal_edge)
break ;
}
if (seen_goal_edge)
Expand Down
Expand Up
@@ -1156,9 +1156,9 @@ namespace boost
// | there exists some bicomp containing three vertices
// ----- x,y, and z as shown such that x and y are externally
// | | active with respect to v (which means that there are
// x y two vertices x_0 and y_0 such that (1) both x_0 and
// | | y_0 are proper depth-first search ancestors of v and
// --z-- (2) there are two disjoint paths, one connecting x
// x y two vertices x_0 and y_0 such that (1) both x_0 and
// | | y_0 are proper depth-first search ancestors of v and
// --z-- (2) there are two disjoint paths, one connecting x
// and x_0 and one connecting y and y_0, both consisting
// fig. 1 entirely of unembedded edges). Furthermore, there
// exists a vertex z_0 such that z is a depth-first
Expand All
@@ -1174,10 +1174,10 @@ namespace boost
// properties of the Boyer-Myrvold algorithm to show the existence of an
// "x-y path" connecting some vertex on the "left side" of the x,y,z
// bicomp with some vertex on the "right side" of the bicomp (where the
// left and right are split by a line drawn through v and z.If either of
// the endpoints of the x-y path is above x or y on the bicomp, a K_3_3
// can be isolated - this is a case C. Otherwise, both endpoints are at
// or below x and y on the bicomp. If there is a vertex alpha on the x-y
// left and right are split by a line drawn through v and z.If either of
// the endpoints of the x-y path is above x or y on the bicomp, a K_3_3
// can be isolated - this is a case C. Otherwise, both endpoints are at
// or below x and y on the bicomp. If there is a vertex alpha on the x-y
// path such that alpha is not x or y and there's a path from alpha to v
// that's disjoint from any of the edges on the bicomp and the x-y path,
// a K_3_3 can be isolated - this is a case D. Otherwise, properties of
Expand All
@@ -1191,8 +1191,8 @@ namespace boost
out_edge_iterator_t oei, oei_end;
typename std::vector<edge_t >::iterator xi, xi_end;
// Clear the short-circuit edges - these are needed for the planar
// testing/embedding algorithm to run in linear time, but they'll
// Clear the short-circuit edges - these are needed for the planar
// testing/embedding algorithm to run in linear time, but they'll
// complicate the kuratowski subgraph isolation
for (boost::tie (vi,vi_end) = vertices (g); vi != vi_end; ++vi)
{
Expand All
@@ -1216,12 +1216,12 @@ namespace boost
typename std::vector<edge_t >::iterator embedded_itr, embedded_end;
embedded_end = embedded_edges.end ();
for (embedded_itr = embedded_edges.begin ();
for (embedded_itr = embedded_edges.begin ();
embedded_itr != embedded_end; ++embedded_itr
)
is_embedded[*embedded_itr] = true ;
// upper_face_vertex is true for x,y, and all vertices above x and y in
// upper_face_vertex is true for x,y, and all vertices above x and y in
// the bicomp
std::vector<bool > upper_face_vertex_vector (num_vertices (g), false );
vertex_to_bool_map_t upper_face_vertex
Expand All
@@ -1233,7 +1233,7 @@ namespace boost
// These next few variable declarations are all things that we need
// to find.
vertex_t z;
vertex_t z = graph_traits<Graph>:: null_vertex ();
vertex_t bicomp_root;
vertex_t w = graph_traits<Graph>::null_vertex ();
face_handle_t w_handle;
Expand All
@@ -1255,13 +1255,13 @@ namespace boost
// backedge from V, then goes up until it hits either X or Y
// (but doesn't find X or Y as the root of a bicomp)
typename face_vertex_iterator<>::type
typename face_vertex_iterator<>::type
x_upper_itr (x, face_handles, first_side ());
typename face_vertex_iterator<>::type
typename face_vertex_iterator<>::type
x_lower_itr (x, face_handles, second_side ());
typename face_vertex_iterator<>::type face_itr, face_end;
// Don't know which path from x is the upper or lower path -
// Don't know which path from x is the upper or lower path -
// we'll find out here
for (face_itr = x_upper_itr; face_itr != face_end; ++face_itr)
{
Expand All
@@ -1283,9 +1283,9 @@ namespace boost
upper_face_vertex[current_vertex] = true ;
}
v_dfchild_handle
v_dfchild_handle
= dfs_child_handles[canonical_dfs_child[previous_vertex]];
for (face_itr = x_lower_itr; *face_itr != y; ++face_itr)
{
vertex_t current_vertex (*face_itr);
Expand All
@@ -1296,7 +1296,7 @@ namespace boost
if (w == graph_traits<Graph>::null_vertex ()) // haven't found a w yet
{
roots_end = pertinent_roots[current_vertex]->end ();
for (roots_itr = pertinent_roots[current_vertex]->begin ();
for (roots_itr = pertinent_roots[current_vertex]->begin ();
roots_itr != roots_end; ++roots_itr
)
{
Expand Down
Expand Up
@@ -1326,15 +1326,15 @@ namespace boost
edge_to_bool_map_t outer_face_edge (outer_face_edge_vector.begin (), em);
walkup_itr_t walkup_end;
for (walkup_itr_t walkup_itr (x, face_handles, first_side ());
for (walkup_itr_t walkup_itr (x, face_handles, first_side ());
walkup_itr != walkup_end; ++walkup_itr
)
{
outer_face_edge[*walkup_itr] = true ;
is_in_subgraph[*walkup_itr] = true ;
}
for (walkup_itr_t walkup_itr (x, face_handles, second_side ());
for (walkup_itr_t walkup_itr (x, face_handles, second_side ());
walkup_itr != walkup_end; ++walkup_itr
)
{
Expand All
@@ -1354,53 +1354,53 @@ namespace boost
for (boost::tie (ei, ei_end) = edges (g); ei != ei_end; ++ei)
{
edge_t e (*ei);
goal_edge[e]
goal_edge[e]
= !outer_face_edge[e] && (source (e,g) == x || target (e,g) == x);
forbidden_edge[*ei] = outer_face_edge[*ei];
}
vertex_t x_ancestor = v;
vertex_t x_endpoint = graph_traits<Graph>::null_vertex ();
while (x_endpoint == graph_traits<Graph>::null_vertex ())
{
{
x_ancestor = dfs_parent[x_ancestor];
x_endpoint = kuratowski_walkup (x_ancestor,
forbidden_edge,
x_endpoint = kuratowski_walkup (x_ancestor,
forbidden_edge,
goal_edge,
is_embedded,
x_external_path
);
}
}
for (boost::tie (ei, ei_end) = edges (g); ei != ei_end; ++ei)
{
edge_t e (*ei);
goal_edge[e]
goal_edge[e]
= !outer_face_edge[e] && (source (e,g) == y || target (e,g) == y);
forbidden_edge[*ei] = outer_face_edge[*ei];
}
vertex_t y_ancestor = v;
vertex_t y_endpoint = graph_traits<Graph>::null_vertex ();
while (y_endpoint == graph_traits<Graph>::null_vertex ())
{
{
y_ancestor = dfs_parent[y_ancestor];
y_endpoint = kuratowski_walkup (y_ancestor,
forbidden_edge,
y_endpoint = kuratowski_walkup (y_ancestor,
forbidden_edge,
goal_edge,
is_embedded,
y_external_path
);
}
}
vertex_t parent, child;
// If v isn't on the same bicomp as x and y, it's a case A
if (bicomp_root != v)
{
Expand All
@@ -1411,13 +1411,13 @@ namespace boost
for (boost::tie (oei,oei_end) = out_edges (*vi,g); oei != oei_end; ++oei)
if (!outer_face_edge[*oei])
goal_edge[*oei] = true ;
for (boost::tie (ei,ei_end) = edges (g); ei != ei_end; ++ei)
forbidden_edge[*ei] = outer_face_edge[*ei];
z = kuratowski_walkup
(v, forbidden_edge, goal_edge, is_embedded, z_v_path);
}
else if (w != graph_traits<Graph>::null_vertex ())
{
Expand All
@@ -1429,17 +1429,17 @@ namespace boost
goal_edge[e] = false ;
forbidden_edge[e] = outer_face_edge[e];
}
goal_edge[w_handle.first_edge ()] = true ;
goal_edge[w_handle.second_edge ()] = true ;
z = kuratowski_walkup (v,
forbidden_edge,
forbidden_edge,
goal_edge,
is_embedded,
z_v_path
);
for (boost::tie (ei, ei_end) = edges (g); ei != ei_end; ++ei)
{
Expand All
@@ -1452,41 +1452,41 @@ namespace boost
{
goal_edge[*pi ] = true ;
}
w_ancestor = v;
vertex_t w_endpoint = graph_traits<Graph>::null_vertex ();
while (w_endpoint == graph_traits<Graph>::null_vertex ())
{
{
w_ancestor = dfs_parent[w_ancestor];
w_endpoint = kuratowski_walkup (w_ancestor,
forbidden_edge,
w_endpoint = kuratowski_walkup (w_ancestor,
forbidden_edge,
goal_edge,
is_embedded,
w_path
);
}
// We really want both the w walkup and the z walkup to finish on
// exactly the same edge, but for convenience (since we don't have
// control over which side of a bicomp a walkup moves up) we've
// defined the walkup to either end at w_handle.first_edge() or
// w_handle.second_edge(). If both walkups ended at different edges,
// we'll do a little surgery on the w walkup path to make it follow
}
// We really want both the w walkup and the z walkup to finish on
// exactly the same edge, but for convenience (since we don't have
// control over which side of a bicomp a walkup moves up) we've
// defined the walkup to either end at w_handle.first_edge() or
// w_handle.second_edge(). If both walkups ended at different edges,
// we'll do a little surgery on the w walkup path to make it follow
// the other side of the final bicomp.
if ((w_path.back () == w_handle.first_edge () &&
z_v_path.back () == w_handle.second_edge ())
if ((w_path.back () == w_handle.first_edge () &&
z_v_path.back () == w_handle.second_edge ())
||
(w_path.back () == w_handle.second_edge () &&
(w_path.back () == w_handle.second_edge () &&
z_v_path.back () == w_handle.first_edge ())
)
{
walkup_itr_t wi, wi_end;
edge_t final_edge = w_path.back ();
vertex_t anchor
= source (final_edge, g) == w_handle.get_anchor () ?
vertex_t anchor
= source (final_edge, g) == w_handle.get_anchor () ?
target (final_edge, g) : source (final_edge, g);
if (face_handles[anchor].first_edge () == final_edge)
wi = walkup_itr_t (anchor, face_handles, second_side ());
Expand All
@@ -1505,9 +1505,9 @@ namespace boost
}
}
}
else
else
{
// We need to find a valid z, since the x-y path re-defines the lower
Expand All
@@ -1518,7 +1518,7 @@ namespace boost
// The z we've used so far is just an externally active vertex on the
// lower face path, but may not be the z we need for a case C, D, or
// E subgraph. the z we need now is any externally active vertex on
// E subgraph. the z we need now is any externally active vertex on
// the lower face path with both old_face_handles edges on the outer
// face. Since we know an x-y path exists, such a z must also exist.
Expand All
@@ -1529,7 +1529,7 @@ namespace boost
for (face_itr = x_lower_itr; *face_itr != y; ++face_itr)
{
vertex_t possible_z (*face_itr);
if (pertinent (possible_z,v) &&
if (pertinent (possible_z,v) &&
outer_face_edge[face_handles[possible_z].old_first_edge ()] &&
outer_face_edge[face_handles[possible_z].old_second_edge ()]
)
Expand All
@@ -1543,14 +1543,14 @@ namespace boost
if (externally_active (z,v))
w = z;
typedef typename face_edge_iterator
<single_side, previous_iteration>::type old_face_iterator_t ;
<single_side, previous_iteration>::type old_face_iterator_t ;
old_face_iterator_t
old_face_iterator_t
first_old_face_itr (z, face_handles, first_side ());
old_face_iterator_t
old_face_iterator_t
second_old_face_itr (z, face_handles, second_side ());
old_face_iterator_t old_face_itr, old_face_end;
Expand All
@@ -1562,10 +1562,10 @@ namespace boost
vertex_to_bool_map_t x_y_path_vertex
(x_y_path_vertex_vector.begin (), vm);
typename std::vector<old_face_iterator_t >::iterator
typename std::vector<old_face_iterator_t >::iterator
of_itr, of_itr_end;
of_itr_end = old_face_iterators.end ();
for (of_itr = old_face_iterators.begin ();
of_itr_end = old_face_iterators.end ();
for (of_itr = old_face_iterators.begin ();
of_itr != of_itr_end; ++of_itr
)
{
Expand All
@@ -1579,13 +1579,13 @@ namespace boost
{
edge_t e (*old_face_itr);
previous_vertex = current_vertex;
current_vertex = source (e,g) == current_vertex ?
current_vertex = source (e,g) == current_vertex ?
target (e,g) : source (e,g);
if (current_vertex == x || current_vertex == y)
seen_x_or_y = true ;
if (w == graph_traits<Graph>::null_vertex () &&
if (w == graph_traits<Graph>::null_vertex () &&
externally_active (current_vertex,v) &&
outer_face_edge[e] &&
outer_face_edge[*boost::next (old_face_itr)] &&
Expand All
@@ -1594,33 +1594,33 @@ namespace boost
{
w = current_vertex;
}
if (!outer_face_edge[e])
{
if (!upper_face_vertex[current_vertex] &&
if (!upper_face_vertex[current_vertex] &&
!lower_face_vertex[current_vertex]
)
{
x_y_path_vertex[current_vertex] = true ;
}
is_in_subgraph[e] = true ;
if (upper_face_vertex[source (e,g)] ||
if (upper_face_vertex[source (e,g)] ||
lower_face_vertex[source (e,g)]
)
{
if (first_x_y_path_endpoint ==
if (first_x_y_path_endpoint ==
graph_traits<Graph>::null_vertex ()
)
first_x_y_path_endpoint = source (e,g);
else
second_x_y_path_endpoint = source (e,g);
}
if (upper_face_vertex[target (e,g)] ||
if (upper_face_vertex[target (e,g)] ||
lower_face_vertex[target (e,g)]
)
{
if (first_x_y_path_endpoint ==
if (first_x_y_path_endpoint ==
graph_traits<Graph>::null_vertex ()
)
first_x_y_path_endpoint = target (e,g);
Expand All
@@ -1634,35 +1634,35 @@ namespace boost
{
chosen_case = detail::BM_CASE_C;
}
}
}
// Look for a case D - one of v's embedded edges will connect to the
// Look for a case D - one of v's embedded edges will connect to the
// x-y path along an inner face path.
// First, get a list of all of v's embedded child edges
out_edge_iterator_t v_edge_itr, v_edge_end;
for (boost::tie (v_edge_itr,v_edge_end) = out_edges (v,g);
for (boost::tie (v_edge_itr,v_edge_end) = out_edges (v,g);
v_edge_itr != v_edge_end; ++v_edge_itr
)
{
edge_t embedded_edge (*v_edge_itr);
if (!is_embedded[embedded_edge] ||
if (!is_embedded[embedded_edge] ||
embedded_edge == dfs_parent_edge[v]
)
continue ;
case_d_edges.push_back (embedded_edge);
vertex_t current_vertex
= source (embedded_edge,g) == v ?
vertex_t current_vertex
= source (embedded_edge,g) == v ?
target (embedded_edge,g) : source (embedded_edge,g);
typename face_edge_iterator<>::type
typename face_edge_iterator<>::type
internal_face_itr, internal_face_end;
if (face_handles[current_vertex].first_vertex () == v)
{
Expand All
@@ -1676,13 +1676,13 @@ namespace boost
}
while (internal_face_itr != internal_face_end &&
!outer_face_edge[*internal_face_itr] &&
!outer_face_edge[*internal_face_itr] &&
!x_y_path_vertex[current_vertex]
)
{
edge_t e (*internal_face_itr);
case_d_edges.push_back (e);
current_vertex =
current_vertex =
source (e,g) == current_vertex ? target (e,g) : source (e,g);
++internal_face_itr;
}
Expand All
@@ -1698,7 +1698,7 @@ namespace boost
}
}
}
Expand All
@@ -1713,25 +1713,25 @@ namespace boost
for (boost::tie (ei, ei_end) = edges (g); ei != ei_end; ++ei)
{
edge_t e (*ei);
goal_edge[e] = !outer_face_edge[e] &&
goal_edge[e] = !outer_face_edge[e] &&
(source (e,g) == z || target (e,g) == z);
forbidden_edge[e] = outer_face_edge[e];
}
kuratowski_walkup (v,
forbidden_edge,
forbidden_edge,
goal_edge,
is_embedded,
z_v_path
);
if (chosen_case == detail::BM_CASE_E)
{
for (boost::tie (ei, ei_end) = edges (g); ei != ei_end; ++ei)
{
forbidden_edge[*ei] = outer_face_edge[*ei];
goal_edge[*ei] = !outer_face_edge[*ei] &&
goal_edge[*ei] = !outer_face_edge[*ei] &&
(source (*ei,g) == w || target (*ei,g) == w);
}
Expand All
@@ -1747,22 +1747,22 @@ namespace boost
{
goal_edge[*pi ] = true ;
}
w_ancestor = v;
vertex_t w_endpoint = graph_traits<Graph>::null_vertex ();
while (w_endpoint == graph_traits<Graph>::null_vertex ())
{
{
w_ancestor = dfs_parent[w_ancestor];
w_endpoint = kuratowski_walkup (w_ancestor,
forbidden_edge,
w_endpoint = kuratowski_walkup (w_ancestor,
forbidden_edge,
goal_edge,
is_embedded,
w_path
);
}
}
}
Expand Down
Expand Up
@@ -1793,7 +1793,7 @@ namespace boost
xi_end = w_path.end ();
for (xi = w_path.begin (); xi != xi_end; ++xi)
is_in_subgraph[*xi] = true ;
child = bicomp_root;
parent = dfs_parent[child];
while (child != parent)
Expand All
@@ -1805,10 +1805,10 @@ namespace boost
// At this point, we've already isolated the Kuratowski subgraph and
// collected all of the edges that compose it in the is_in_subgraph
// property map. But we want the verification of such a subgraph to be
// a deterministic process, and we can simplify the function
// At this point, we've already isolated the Kuratowski subgraph and
// collected all of the edges that compose it in the is_in_subgraph
// property map. But we want the verification of such a subgraph to be
// a deterministic process, and we can simplify the function
// is_kuratowski_subgraph by cleaning up some edges here.
if (chosen_case == detail::BM_CASE_B)
Expand All
@@ -1820,13 +1820,13 @@ namespace boost
// In a case C subgraph, at least one of the x-y path endpoints
// (call it alpha) is above either x or y on the outer face. The
// other endpoint may be attached at x or y OR above OR below. In
// any of these three cases, we can form a K_3_3 by removing the
// edge attached to v on the outer face that is NOT on the path to
// any of these three cases, we can form a K_3_3 by removing the
// edge attached to v on the outer face that is NOT on the path to
// alpha.
typename face_vertex_iterator<single_side, follow_visitor>::type
typename face_vertex_iterator<single_side, follow_visitor>::type
face_itr, face_end;
if (face_handles[v_dfchild_handle.first_vertex ()].first_edge () ==
if (face_handles[v_dfchild_handle.first_vertex ()].first_edge () ==
v_dfchild_handle.first_edge ()
)
{
Expand Down
Expand Up
@@ -1856,13 +1856,13 @@ namespace boost
break ;
}
}
}
else if (chosen_case == detail::BM_CASE_D)
{
// Need to remove both of the edges adjacent to v on the outer face.
// remove the connecting edges from v to bicomp, then
// is_kuratowski_subgraph will shrink vertices of degree 1
// is_kuratowski_subgraph will shrink vertices of degree 1
// automatically...
is_in_subgraph[v_dfchild_handle.first_edge ()] = false ;
Expand All
@@ -1871,16 +1871,16 @@ namespace boost
}
else if (chosen_case == detail::BM_CASE_E)
{
// Similarly to case C, if the endpoints of the x-y path are both
// below x and y, we should remove an edge to allow the subgraph to
// Similarly to case C, if the endpoints of the x-y path are both
// below x and y, we should remove an edge to allow the subgraph to
// contract to a K_3_3.
if ((first_x_y_path_endpoint != x && first_x_y_path_endpoint != y) ||
(second_x_y_path_endpoint != x && second_x_y_path_endpoint != y)
)
{
is_in_subgraph[dfs_parent_edge[v]] = false ;
is_in_subgraph[dfs_parent_edge[v]] = false ;
vertex_t deletion_endpoint, other_endpoint;
if (lower_face_vertex[first_x_y_path_endpoint])
Expand All
@@ -1889,21 +1889,21 @@ namespace boost
other_endpoint = first_x_y_path_endpoint;
}
else
{
{
deletion_endpoint = first_x_y_path_endpoint;
other_endpoint = second_x_y_path_endpoint;
}
typename face_edge_iterator<>::type face_itr, face_end;
bool found_other_endpoint = false ;
for (face_itr = typename face_edge_iterator<>::type
(deletion_endpoint, face_handles, first_side ());
face_itr != face_end; ++face_itr
)
{
edge_t e (*face_itr);
if (source (e,g) == other_endpoint ||
if (source (e,g) == other_endpoint ||
target (e,g) == other_endpoint
)
{
Expand All
@@ -1914,7 +1914,7 @@ namespace boost
if (found_other_endpoint)
{
is_in_subgraph[face_handles[deletion_endpoint].first_edge ()]
is_in_subgraph[face_handles[deletion_endpoint].first_edge ()]
= false ;
}
else
Expand All
@@ -1923,14 +1923,14 @@ namespace boost
= false ;
}
}
}
for (boost::tie (ei, ei_end) = edges (g); ei != ei_end; ++ei)
if (is_in_subgraph[*ei])
*o_itr = *ei;
}
Expand All
@@ -1956,14 +1956,14 @@ namespace boost
vertex_t kuratowski_v;
vertex_t kuratowski_x;
vertex_t kuratowski_y;
vertex_list_t garbage; // we delete items from linked lists by
vertex_list_t garbage; // we delete items from linked lists by
// splicing them into garbage
// only need these two for kuratowski subgraph isolation
std::vector<vertex_t > current_merge_points;
std::vector<edge_t > embedded_edges;
// property map storage
std::vector<v_size_t > low_point_vector;
std::vector<vertex_t > dfs_parent_vector;
Expand All
@@ -1975,7 +1975,7 @@ namespace boost
std::vector< face_handle_t > face_handles_vector;
std::vector< face_handle_t > dfs_child_handles_vector;
std::vector< vertex_list_ptr_t > separated_dfs_child_list_vector;
std::vector< typename vertex_list_t ::iterator >
std::vector< typename vertex_list_t ::iterator >
separated_node_in_parent_list_vector;
std::vector<vertex_t > canonical_dfs_child_vector;
std::vector<bool > flipped_vector;
Expand All
@@ -1992,20 +1992,20 @@ namespace boost
vertex_to_face_handle_list_ptr_map_t pertinent_roots;
vertex_to_v_size_map_t backedge_flag;
vertex_to_v_size_map_t visited;
vertex_to_face_handle_map_t face_handles;
vertex_to_face_handle_map_t face_handles;
vertex_to_face_handle_map_t dfs_child_handles;
vertex_to_vertex_list_ptr_map_t separated_dfs_child_list;
vertex_to_separated_node_map_t separated_node_in_parent_list;
vertex_to_vertex_map_t canonical_dfs_child;
vertex_to_vertex_map_t canonical_dfs_child;
vertex_to_bool_map_t flipped;
vertex_to_edge_vector_map_t backedges;
vertex_to_edge_map_t dfs_parent_edge; // only need for kuratowski
merge_stack_t merge_stack;
};
} // namespace boost
#endif // __BOYER_MYRVOLD_IMPL_HPP__