Expand Up
@@ -29,6 +29,28 @@ namespace boost{ namespace math{
namespace detail {
template <class T >
struct has_hidden_guard_digits
: public mpl::bool_
<std::numeric_limits<T>::is_specialized
&& (std::numeric_limits<T>::radix == 10 )
&& (std::numeric_limits<T>::digits10 != std::numeric_limits<T>::max_digits10)>
{};
template <class T >
inline const T& normalize_value (const T& val, const mpl::false_&) { return val; }
template <class T >
inline T normalize_value (const T& val, const mpl::true_&)
{
BOOST_STATIC_ASSERT (std::numeric_limits<T>::is_specialized);
BOOST_STATIC_ASSERT (std::numeric_limits<T>::radix != 2 );
boost::intmax_t shift = std::numeric_limits<T>::digits - ilogb (val) - 1 ;
T result = scalbn (val, shift);
result = round (result);
return scalbn (result, -shift);
}
template <class T >
inline T get_smallest_value (mpl::true_ const &)
{
Expand Down
Expand Up
@@ -93,19 +115,33 @@ struct min_shift_initializer
template <class T >
const typename min_shift_initializer<T>::init min_shift_initializer<T>::initializer;
template <class T >
inline T calc_min_shifted (const mpl::true_&)
{
BOOST_MATH_STD_USING
return ldexp (tools::min_value<T>(), tools::digits<T>() + 1 );
}
template <class T >
inline T calc_min_shifted (const mpl::false_&)
{
BOOST_STATIC_ASSERT (std::numeric_limits<T>::is_specialized);
BOOST_STATIC_ASSERT (std::numeric_limits<T>::radix != 2 );
return scalbn (tools::min_value<T>(), std::numeric_limits<T>::digits + 1 );
}
template <class T >
inline T get_min_shift_value ()
{
BOOST_MATH_STD_USING
static const T val = ldexp (tools::min_value<T>(), tools::digits<T>() + 1 );
static const T val = calc_min_shifted<T>(mpl::bool_<!std::numeric_limits<T>::is_specialized || std::numeric_limits<T>::radix == 2 >());
min_shift_initializer<T>::force_instantiate ();
return val;
}
template <class T , class Policy >
T float_next_imp (const T& val, const Policy& pol)
T float_next_imp (const T& val, const mpl::true_&, const Policy& pol)
{
BOOST_MATH_STD_USING
int expon;
Expand Down
Expand Up
@@ -145,14 +181,62 @@ T float_next_imp(const T& val, const Policy& pol)
diff = detail::get_smallest_value<T>();
return val + diff;
} // float_next_imp
//
// Special version for some base other than 2:
//
template <class T , class Policy >
T float_next_imp (const T& val, const mpl::false_&, const Policy& pol)
{
BOOST_STATIC_ASSERT (std::numeric_limits<T>::is_specialized);
BOOST_STATIC_ASSERT (std::numeric_limits<T>::radix != 2 );
BOOST_MATH_STD_USING
boost::intmax_t expon;
static const char * function = " float_next<%1%>(%1%)" ;
int fpclass = (boost::math::fpclassify)(val);
if ((fpclass == (int )FP_NAN) || (fpclass == (int )FP_INFINITE))
{
if (val < 0 )
return -tools::max_value<T>();
return policies::raise_domain_error<T>(
function,
" Argument must be finite, but got %1%" , val, pol);
}
if (val >= tools::max_value<T>())
return policies::raise_overflow_error<T>(function, 0 , pol);
if (val == 0 )
return detail::get_smallest_value<T>();
if ((fpclass != (int )FP_SUBNORMAL) && (fpclass != (int )FP_ZERO) && (fabs (val) < detail::get_min_shift_value<T>()) && (val != -tools::min_value<T>()))
{
//
// Special case: if the value of the least significant bit is a denorm, and the result
// would not be a denorm, then shift the input, increment, and shift back.
// This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
//
return scalbn (float_next (T (scalbn (val, 2 * std::numeric_limits<T>::digits)), pol), -2 * std::numeric_limits<T>::digits);
}
expon = 1 + ilogb (val);
if (-1 == scalbn (val, -expon) * std::numeric_limits<T>::radix)
--expon; // reduce exponent when val is a power of base, and negative.
T diff = scalbn (T (1 ), expon - std::numeric_limits<T>::digits);
if (diff == 0 )
diff = detail::get_smallest_value<T>();
return val + diff;
} // float_next_imp
} // namespace detail
template <class T , class Policy >
inline typename tools::promote_args<T>::type float_next (const T& val, const Policy& pol)
{
typedef typename tools::promote_args<T>::type result_type;
return detail::float_next_imp (static_cast <result_type>(val), pol);
return detail::float_next_imp (detail::normalize_value ( static_cast <result_type>(val), typename detail::has_hidden_guard_digits<T>:: type ()), mpl::bool_<!std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2 )>( ), pol);
}
#if 0 //def BOOST_MSVC
Expand Down
Expand Up
@@ -187,7 +271,7 @@ inline typename tools::promote_args<T>::type float_next(const T& val)
namespace detail {
template <class T , class Policy >
T float_prior_imp (const T& val, const Policy& pol)
T float_prior_imp (const T& val, const mpl::true_&, const Policy& pol)
{
BOOST_MATH_STD_USING
int expon;
Expand Down
Expand Up
@@ -228,14 +312,63 @@ T float_prior_imp(const T& val, const Policy& pol)
diff = detail::get_smallest_value<T>();
return val - diff;
} // float_prior_imp
//
// Special version for bases other than 2:
//
template <class T , class Policy >
T float_prior_imp (const T& val, const mpl::false_&, const Policy& pol)
{
BOOST_STATIC_ASSERT (std::numeric_limits<T>::is_specialized);
BOOST_STATIC_ASSERT (std::numeric_limits<T>::radix != 2 );
BOOST_MATH_STD_USING
boost::intmax_t expon;
static const char * function = " float_prior<%1%>(%1%)" ;
int fpclass = (boost::math::fpclassify)(val);
if ((fpclass == (int )FP_NAN) || (fpclass == (int )FP_INFINITE))
{
if (val > 0 )
return tools::max_value<T>();
return policies::raise_domain_error<T>(
function,
" Argument must be finite, but got %1%" , val, pol);
}
if (val <= -tools::max_value<T>())
return -policies::raise_overflow_error<T>(function, 0 , pol);
if (val == 0 )
return -detail::get_smallest_value<T>();
if ((fpclass != (int )FP_SUBNORMAL) && (fpclass != (int )FP_ZERO) && (fabs (val) < detail::get_min_shift_value<T>()) && (val != tools::min_value<T>()))
{
//
// Special case: if the value of the least significant bit is a denorm, and the result
// would not be a denorm, then shift the input, increment, and shift back.
// This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
//
return scalbn (float_prior (T (scalbn (val, 2 * std::numeric_limits<T>::digits)), pol), -2 * std::numeric_limits<T>::digits);
}
expon = 1 + ilogb (val);
T remain = scalbn (val, -expon);
if (remain * std::numeric_limits<T>::radix == 1 )
--expon; // when val is a power of two we must reduce the exponent
T diff = scalbn (T (1 ), expon - std::numeric_limits<T>::digits);
if (diff == 0 )
diff = detail::get_smallest_value<T>();
return val - diff;
} // float_prior_imp
} // namespace detail
template <class T , class Policy >
inline typename tools::promote_args<T>::type float_prior (const T& val, const Policy& pol)
{
typedef typename tools::promote_args<T>::type result_type;
return detail::float_prior_imp (static_cast <result_type>(val), pol);
return detail::float_prior_imp (detail::normalize_value ( static_cast <result_type>(val), typename detail::has_hidden_guard_digits<T>:: type ()), mpl::bool_<!std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2 )>( ), pol);
}
#if 0 //def BOOST_MSVC
Expand Down
Expand Up
@@ -283,7 +416,7 @@ inline typename tools::promote_args<T, U>::type nextafter(const T& val, const U&
namespace detail {
template <class T , class Policy >
T float_distance_imp (const T& a, const T& b, const Policy& pol)
T float_distance_imp (const T& a, const T& b, const mpl::true_&, const Policy& pol)
{
BOOST_MATH_STD_USING
//
Expand Down
Expand Up
@@ -384,14 +517,121 @@ T float_distance_imp(const T& a, const T& b, const Policy& pol)
BOOST_ASSERT (result == floor (result));
return result;
} // float_distance_imp
//
// Special versions for bases other than 2:
//
template <class T , class Policy >
T float_distance_imp (const T& a, const T& b, const mpl::false_&, const Policy& pol)
{
BOOST_STATIC_ASSERT (std::numeric_limits<T>::is_specialized);
BOOST_STATIC_ASSERT (std::numeric_limits<T>::radix != 2 );
BOOST_MATH_STD_USING
//
// Error handling:
//
static const char * function = " float_distance<%1%>(%1%, %1%)" ;
if (!(boost::math::isfinite)(a))
return policies::raise_domain_error<T>(
function,
" Argument a must be finite, but got %1%" , a, pol);
if (!(boost::math::isfinite)(b))
return policies::raise_domain_error<T>(
function,
" Argument b must be finite, but got %1%" , b, pol);
//
// Special cases:
//
if (a > b)
return -float_distance (b, a, pol);
if (a == b)
return T (0 );
if (a == 0 )
return 1 + fabs (float_distance (static_cast <T>((b < 0 ) ? T (-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), b, pol));
if (b == 0 )
return 1 + fabs (float_distance (static_cast <T>((a < 0 ) ? T (-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), a, pol));
if (boost::math::sign (a) != boost::math::sign (b))
return 2 + fabs (float_distance (static_cast <T>((b < 0 ) ? T (-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), b, pol))
+ fabs (float_distance (static_cast <T>((a < 0 ) ? T (-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), a, pol));
//
// By the time we get here, both a and b must have the same sign, we want
// b > a and both postive for the following logic:
//
if (a < 0 )
return float_distance (static_cast <T>(-b), static_cast <T>(-a), pol);
BOOST_ASSERT (a >= 0 );
BOOST_ASSERT (b >= a);
boost::intmax_t expon;
//
// Note that if a is a denorm then the usual formula fails
// because we actually have fewer than tools::digits<T>()
// significant bits in the representation:
//
expon = 1 + ilogb (((boost::math::fpclassify)(a) == (int )FP_SUBNORMAL) ? tools::min_value<T>() : a);
T upper = scalbn (T (1 ), expon);
T result = T (0 );
//
// If b is greater than upper, then we *must* split the calculation
// as the size of the ULP changes with each order of magnitude change:
//
if (b > upper)
{
boost::intmax_t expon2 = 1 + ilogb (b);
T upper2 = scalbn (T (1 ), expon2 - 1 );
result = float_distance (upper2, b);
result += (expon2 - expon - 1 ) * scalbn (T (1 ), std::numeric_limits<T>::digits - 1 );
}
//
// Use compensated double-double addition to avoid rounding
// errors in the subtraction:
//
expon = std::numeric_limits<T>::digits - expon;
T mb, x, y, z;
if (((boost::math::fpclassify)(a) == (int )FP_SUBNORMAL) || (b - a < tools::min_value<T>()))
{
//
// Special case - either one end of the range is a denormal, or else the difference is.
// The regular code will fail if we're using the SSE2 registers on Intel and either
// the FTZ or DAZ flags are set.
//
T a2 = scalbn (a, std::numeric_limits<T>::digits);
T b2 = scalbn (b, std::numeric_limits<T>::digits);
mb = -(std::min)(T (scalbn (upper, std::numeric_limits<T>::digits)), b2);
x = a2 + mb;
z = x - a2;
y = (a2 - (x - z)) + (mb - z);
expon -= std::numeric_limits<T>::digits;
}
else
{
mb = -(std::min)(upper, b);
x = a + mb;
z = x - a;
y = (a - (x - z)) + (mb - z);
}
if (x < 0 )
{
x = -x;
y = -y;
}
result += scalbn (x, expon) + scalbn (y, expon);
//
// Result must be an integer:
//
BOOST_ASSERT (result == floor (result));
return result;
} // float_distance_imp
} // namespace detail
template <class T , class U , class Policy >
inline typename tools::promote_args<T, U>::type float_distance (const T& a, const U& b, const Policy& pol)
{
typedef typename tools::promote_args<T, U>::type result_type;
return detail::float_distance_imp (static_cast <result_type>(a), static_cast <result_type>(b), pol);
return detail::float_distance_imp (detail::normalize_value ( static_cast <result_type>(a), typename detail::has_hidden_guard_digits<T>:: type ()), detail::normalize_value ( static_cast <result_type>(b), typename detail::has_hidden_guard_digits<T>:: type ()), mpl::bool_<!std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2 )>( ), pol);
}
template <class T , class U >
Expand All
@@ -403,7 +643,7 @@ typename tools::promote_args<T, U>::type float_distance(const T& a, const U& b)
namespace detail {
template <class T , class Policy >
T float_advance_imp (T val, int distance, const Policy& pol)
T float_advance_imp (T val, int distance, const mpl::true_&, const Policy& pol)
{
BOOST_MATH_STD_USING
//
Expand Down
Expand Up
@@ -482,14 +722,100 @@ T float_advance_imp(T val, int distance, const Policy& pol)
diff = distance * detail::get_smallest_value<T>();
return val += diff;
} // float_advance_imp
//
// Special version for bases other than 2:
//
template <class T , class Policy >
T float_advance_imp (T val, int distance, const mpl::false_&, const Policy& pol)
{
BOOST_STATIC_ASSERT (std::numeric_limits<T>::is_specialized);
BOOST_STATIC_ASSERT (std::numeric_limits<T>::radix != 2 );
BOOST_MATH_STD_USING
//
// Error handling:
//
static const char * function = " float_advance<%1%>(%1%, int)" ;
int fpclass = (boost::math::fpclassify)(val);
if ((fpclass == (int )FP_NAN) || (fpclass == (int )FP_INFINITE))
return policies::raise_domain_error<T>(
function,
" Argument val must be finite, but got %1%" , val, pol);
if (val < 0 )
return -float_advance (-val, -distance, pol);
if (distance == 0 )
return val;
if (distance == 1 )
return float_next (val, pol);
if (distance == -1 )
return float_prior (val, pol);
if (fabs (val) < detail::get_min_shift_value<T>())
{
//
// Special case: if the value of the least significant bit is a denorm,
// implement in terms of float_next/float_prior.
// This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
//
if (distance > 0 )
{
do { val = float_next (val, pol); } while (--distance);
}
else
{
do { val = float_prior (val, pol); } while (++distance);
}
return val;
}
boost::intmax_t expon = 1 + ilogb (val);
T limit = scalbn (T (1 ), distance < 0 ? expon - 1 : expon);
if (val <= tools::min_value<T>())
{
limit = sign (T (distance)) * tools::min_value<T>();
}
T limit_distance = float_distance (val, limit);
while (fabs (limit_distance) < abs (distance))
{
distance -= itrunc (limit_distance);
val = limit;
if (distance < 0 )
{
limit /= std::numeric_limits<T>::radix;
expon--;
}
else
{
limit *= std::numeric_limits<T>::radix;
expon++;
}
limit_distance = float_distance (val, limit);
if (distance && (limit_distance == 0 ))
{
return policies::raise_evaluation_error<T>(function, " Internal logic failed while trying to increment floating point value %1%: most likely your FPU is in non-IEEE conforming mode." , val, pol);
}
}
/* expon = 1 + ilogb(val);
if((1 == scalbn(val, 1 + expon)) && (distance < 0))
--expon;*/
T diff = 0 ;
if (val != 0 )
diff = distance * scalbn (T (1 ), expon - std::numeric_limits<T>::digits);
if (diff == 0 )
diff = distance * detail::get_smallest_value<T>();
return val += diff;
} // float_advance_imp
} // namespace detail
template <class T , class Policy >
inline typename tools::promote_args<T>::type float_advance (T val, int distance, const Policy& pol)
{
typedef typename tools::promote_args<T>::type result_type;
return detail::float_advance_imp (static_cast <result_type>(val), distance, pol);
return detail::float_advance_imp (detail::normalize_value ( static_cast <result_type>(val), typename detail::has_hidden_guard_digits<T>:: type ()), distance, mpl::bool_<!std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2 )>() , pol);
}
template <class T >
Expand Down