Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

769 lines (706 sloc) 29.012 kB
{-# LANGUAGE CPP, NoImplicitPrelude, TemplateHaskell #-}
{-|
Module: Data.Aeson.TH
Copyright: (c) 2011, 2012 Bryan O'Sullivan
(c) 2011 MailRank, Inc.
License: Apache
Stability: experimental
Portability: portable
Functions to mechanically derive 'ToJSON' and 'FromJSON' instances. Note that
you need to enable the @TemplateHaskell@ language extension in order to use this
module.
An example shows how instances are generated for arbitrary data types. First we
define a data type:
@
data D a = Nullary
| Unary Int
| Product String Char a
| Record { testOne :: Double
, testTwo :: Bool
, testThree :: D a
} deriving Eq
@
Next we derive the necessary instances. Note that we make use of the feature to
change record field names. In this case we drop the first 4 characters of every
field name.
@
$('deriveJSON' ('drop' 4) ''D)
@
This will result in the following (simplified) code to be spliced in your program:
@
import Control.Applicative
import Control.Monad
import Data.Aeson
import Data.Aeson.TH
import qualified Data.HashMap.Strict as H
import qualified Data.Text as T
import qualified Data.Vector as V
instance 'ToJSON' a => 'ToJSON' (D a) where
'toJSON' =
\\value ->
case value of
Nullary ->
'object' [T.pack \"Nullary\" .= 'toJSON' ([] :: [()])]
Unary arg1 ->
'object' [T.pack \"Unary\" .= 'toJSON' arg1]
Product arg1 arg2 arg3 ->
'object' [ T.pack \"Product\"
.= ('Array' $ 'V.create' $ do
mv <- 'VM.unsafeNew' 3
'VM.unsafeWrite' mv 0 ('toJSON' arg1)
'VM.unsafeWrite' mv 1 ('toJSON' arg2)
'VM.unsafeWrite' mv 2 ('toJSON' arg3)
return mv)
]
Record arg1 arg2 arg3 ->
'object' [ T.pack \"Record\"
.= 'object' [ T.pack \"One\" '.=' arg1
, T.pack \"Two\" '.=' arg2
, T.pack \"Three\" '.=' arg3
]
]
@
@
instance 'FromJSON' a => 'FromJSON' (D a) where
'parseJSON' =
\\value ->
case value of
'Object' obj ->
case H.toList obj of
[(conKey, conVal)] ->
case conKey of
_ | conKey == T.pack \"Nullary\" ->
case conVal of
'Array' arr ->
if V.null arr
then pure Nullary
else fail \"\<error message\>\"
_ -> fail \"\<error message\>\"
| conKey == T.pack \"Unary\" ->
case conVal of
arg -> Unary \<$\> parseJSON arg
| conKey == T.pack \"Product\" ->
case conVal of
'Array' arr ->
if V.length arr == 3
then Product \<$\> 'parseJSON' (arr `V.unsafeIndex` 0)
\<*\> 'parseJSON' (arr `V.unsafeIndex` 1)
\<*\> 'parseJSON' (arr `V.unsafeIndex` 2)
else fail \"\<error message\>\"
_ -> fail \"\<error message\>\"
| conKey == T.pack \"Record\" ->
case conVal of
'Object' recObj ->
if H.size recObj == 3
then Record \<$\> recObj '.:' T.pack \"One\"
\<*\> recObj '.:' T.pack \"Two\"
\<*\> recObj '.:' T.pack \"Three\"
else fail \"\<error message\>\"
_ -> fail \"\<error message\>\"
| otherwise -> fail \"\<error message\>\"
_ -> fail \"\<error message\>\"
_ -> fail \"\<error message\>\"
@
Note that every \"\<error message\>\" is in fact a descriptive message which
provides as much information as is reasonable about the failed parse.
Now we can use the newly created instances.
@
d :: D 'Int'
d = Record { testOne = 3.14159
, testTwo = 'True'
, testThree = Product \"test\" \'A\' 123
}
@
>>> fromJSON (toJSON d) == Success d
> True
Please note that you can derive instances for tuples using the following syntax:
@
-- FromJSON and ToJSON instances for 4-tuples.
$('deriveJSON' id ''(,,,))
@
-}
module Data.Aeson.TH
( deriveJSON
, deriveToJSON
, deriveFromJSON
, mkToJSON
, mkParseJSON
) where
--------------------------------------------------------------------------------
-- Imports
--------------------------------------------------------------------------------
-- from aeson:
import Data.Aeson ( toJSON, Object, object, (.=)
, ToJSON, toJSON
, FromJSON, parseJSON
)
import Data.Aeson.Types ( Value(..), Parser )
-- from base:
import Control.Applicative ( pure, (<$>), (<*>) )
import Control.Monad ( return, mapM, liftM2, fail )
import Data.Bool ( otherwise )
import Data.Eq ( (==) )
import Data.Function ( ($), (.), id )
import Data.Functor ( fmap )
import Data.List ( (++), foldl, foldl', intercalate
, length, map, zip, genericLength
)
import Data.Maybe ( Maybe(Nothing, Just) )
import Prelude ( String, (-), Integer, fromIntegral, error )
import Text.Printf ( printf )
import Text.Show ( show )
#if __GLASGOW_HASKELL__ < 700
import Control.Monad ( (>>=) )
import Prelude ( fromInteger )
#endif
-- from unordered-containers:
import qualified Data.HashMap.Strict as H ( lookup, toList, size )
-- from template-haskell:
import Language.Haskell.TH
-- from text:
import qualified Data.Text as T ( Text, pack, unpack )
-- from vector:
import qualified Data.Vector as V ( unsafeIndex, null, length, create )
import qualified Data.Vector.Mutable as VM ( unsafeNew, unsafeWrite )
--------------------------------------------------------------------------------
-- Convenience
--------------------------------------------------------------------------------
-- | Generates both 'ToJSON' and 'FromJSON' instance declarations for the given
-- data type.
--
-- This is a convienience function which is equivalent to calling both
-- 'deriveToJSON' and 'deriveFromJSON'.
deriveJSON :: (String -> String)
-- ^ Function to change field names.
-> Name
-- ^ Name of the type for which to generate 'ToJSON' and 'FromJSON'
-- instances.
-> Q [Dec]
deriveJSON withField name =
liftM2 (++)
(deriveToJSON withField name)
(deriveFromJSON withField name)
--------------------------------------------------------------------------------
-- ToJSON
--------------------------------------------------------------------------------
{-
TODO: Don't constrain phantom type variables.
data Foo a = Foo Int
instance (ToJSON a) ⇒ ToJSON Foo where ...
The above (ToJSON a) constraint is not necessary and perhaps undesirable.
-}
-- | Generates a 'ToJSON' instance declaration for the given data type.
--
-- Example:
--
-- @
-- data Foo = Foo 'Char' 'Int'
-- $('deriveToJSON' 'id' ''Foo)
-- @
--
-- This will splice in the following code:
--
-- @
-- instance 'ToJSON' Foo where
-- 'toJSON' =
-- \\value -> case value of
-- Foo arg1 arg2 -> 'Array' $ 'V.create' $ do
-- mv <- 'VM.unsafeNew' 2
-- 'VM.unsafeWrite' mv 0 ('toJSON' arg1)
-- 'VM.unsafeWrite' mv 1 ('toJSON' arg2)
-- return mv
-- @
deriveToJSON :: (String -> String)
-- ^ Function to change field names.
-> Name
-- ^ Name of the type for which to generate a 'ToJSON' instance
-- declaration.
-> Q [Dec]
deriveToJSON withField name =
withType name $ \tvbs cons -> fmap (:[]) $ fromCons tvbs cons
where
fromCons :: [TyVarBndr] -> [Con] -> Q Dec
fromCons tvbs cons =
instanceD (return $ map (\t -> ClassP ''ToJSON [VarT t]) typeNames)
(classType `appT` instanceType)
[ funD 'toJSON
[ clause []
(normalB $ consToJSON withField cons)
[]
]
]
where
classType = conT ''ToJSON
typeNames = map tvbName tvbs
instanceType = foldl' appT (conT name) $ map varT typeNames
-- | Generates a lambda expression which encodes the given data type as JSON.
--
-- Example:
--
-- @
-- data Foo = Foo Int
-- @
--
-- @
-- encodeFoo :: Foo -> 'Value'
-- encodeFoo = $('mkToJSON' id ''Foo)
-- @
--
-- This will splice in the following code:
--
-- @
-- \\value -> case value of Foo arg1 -> 'toJSON' arg1
-- @
mkToJSON :: (String -> String) -- ^ Function to change field names.
-> Name -- ^ Name of the type to encode.
-> Q Exp
mkToJSON withField name = withType name (\_ cons -> consToJSON withField cons)
-- | Helper function used by both 'deriveToJSON' and 'mkToJSON'. Generates code
-- to generate the JSON encoding of a number of constructors. All constructors
-- must be from the same type.
consToJSON :: (String -> String)
-- ^ Function to change field names.
-> [Con]
-- ^ Constructors for which to generate JSON generating code.
-> Q Exp
consToJSON _ [] = error $ "Data.Aeson.TH.consToJSON: "
++ "Not a single constructor given!"
-- A single constructor is directly encoded. The constructor itself may be
-- forgotten.
consToJSON withField [con] = do
value <- newName "value"
lam1E (varP value)
$ caseE (varE value)
[encodeArgs id withField con]
-- With multiple constructors we need to remember which constructor is
-- encoded. This is done by generating a JSON object which maps to constructor's
-- name to the JSON encoding of its contents.
consToJSON withField cons = do
value <- newName "value"
lam1E (varP value)
$ caseE (varE value)
[ encodeArgs (wrap $ getConName con) withField con
| con <- cons
]
where
wrap :: Name -> Q Exp -> Q Exp
wrap name exp =
let fieldName = [e|T.pack|] `appE` litE (stringL $ nameBase name)
in [e|object|] `appE` listE [ infixApp fieldName
[e|(.=)|]
exp
]
-- | Generates code to generate the JSON encoding of a single constructor.
encodeArgs :: (Q Exp -> Q Exp) -> (String -> String) -> Con -> Q Match
-- Nullary constructors. Generates code that explicitly matches against the
-- constructor even though it doesn't contain data. This is useful to prevent
-- type errors.
encodeArgs withExp _ (NormalC conName []) =
match (conP conName [])
(normalB $ withExp [e|toJSON ([] :: [()])|])
[]
-- Polyadic constructors with special case for unary constructors.
encodeArgs withExp _ (NormalC conName ts) = do
let len = length ts
args <- mapM newName ["arg" ++ show n | n <- [1..len]]
js <- case [[e|toJSON|] `appE` varE arg | arg <- args] of
-- Single argument is directly converted.
[e] -> return e
-- Multiple arguments are converted to a JSON array.
es -> do
mv <- newName "mv"
let newMV = bindS (varP mv)
([e|VM.unsafeNew|] `appE`
litE (integerL $ fromIntegral len))
stmts = [ noBindS $
[e|VM.unsafeWrite|] `appE`
(varE mv) `appE`
litE (integerL ix) `appE`
e
| (ix, e) <- zip [(0::Integer)..] es
]
ret = noBindS $ [e|return|] `appE` varE mv
return $ [e|Array|] `appE`
(varE 'V.create `appE`
doE (newMV:stmts++[ret]))
match (conP conName $ map varP args)
(normalB $ withExp js)
[]
-- Records.
encodeArgs withExp withField (RecC conName ts) = do
args <- mapM newName ["arg" ++ show n | (_, n) <- zip ts [1 :: Integer ..]]
let js = [ infixApp ([e|T.pack|] `appE` fieldNameExp withField field)
[e|(.=)|]
(varE arg)
| (arg, (field, _, _)) <- zip args ts
]
match (conP conName $ map varP args)
(normalB $ withExp $ [e|object|] `appE` listE js)
[]
-- Infix constructors.
encodeArgs withExp _ (InfixC _ conName _) = do
al <- newName "argL"
ar <- newName "argR"
match (infixP (varP al) conName (varP ar))
( normalB
$ withExp
$ [e|toJSON|] `appE` listE [ [e|toJSON|] `appE` varE a
| a <- [al,ar]
]
)
[]
-- Existentially quantified constructors.
encodeArgs withExp withField (ForallC _ _ con) =
encodeArgs withExp withField con
--------------------------------------------------------------------------------
-- FromJSON
--------------------------------------------------------------------------------
-- | Generates a 'FromJSON' instance declaration for the given data type.
--
-- Example:
--
-- @
-- data Foo = Foo Char Int
-- $('deriveFromJSON' id ''Foo)
-- @
--
-- This will splice in the following code:
--
-- @
-- instance 'FromJSON' Foo where
-- 'parseJSON' =
-- \\value -> case value of
-- 'Array' arr ->
-- if (V.length arr == 2)
-- then Foo \<$\> 'parseJSON' (arr `V.unsafeIndex` 0)
-- \<*\> 'parseJSON' (arr `V.unsafeIndex` 1)
-- else fail \"\<error message\>\"
-- other -> fail \"\<error message\>\"
-- @
deriveFromJSON :: (String -> String)
-- ^ Function to change field names.
-> Name
-- ^ Name of the type for which to generate a 'FromJSON' instance
-- declaration.
-> Q [Dec]
deriveFromJSON withField name =
withType name $ \tvbs cons -> fmap (:[]) $ fromCons tvbs cons
where
fromCons :: [TyVarBndr] -> [Con] -> Q Dec
fromCons tvbs cons =
instanceD (return $ map (\t -> ClassP ''FromJSON [VarT t]) typeNames)
(classType `appT` instanceType)
[ funD 'parseJSON
[ clause []
(normalB $ consFromJSON name withField cons)
[]
]
]
where
classType = conT ''FromJSON
typeNames = map tvbName tvbs
instanceType = foldl' appT (conT name) $ map varT typeNames
-- | Generates a lambda expression which parses the JSON encoding of the given
-- data type.
--
-- Example:
--
-- @
-- data Foo = Foo 'Int'
-- @
--
-- @
-- parseFoo :: 'Value' -> 'Parser' Foo
-- parseFoo = $('mkParseJSON' id ''Foo)
-- @
--
-- This will splice in the following code:
--
-- @
-- \\value -> case value of arg -> Foo \<$\> 'parseJSON' arg
-- @
mkParseJSON :: (String -> String) -- ^ Function to change field names.
-> Name -- ^ Name of the encoded type.
-> Q Exp
mkParseJSON withField name =
withType name (\_ cons -> consFromJSON name withField cons)
-- | Helper function used by both 'deriveFromJSON' and 'mkParseJSON'. Generates
-- code to parse the JSON encoding of a number of constructors. All constructors
-- must be from the same type.
consFromJSON :: Name
-- ^ Name of the type to which the constructors belong.
-> (String -> String)
-- ^ Function to change field names.
-> [Con]
-- ^ Constructors for which to generate JSON parsing code.
-> Q Exp
consFromJSON _ _ [] = error $ "Data.Aeson.TH.consFromJSON: "
++ "Not a single constructor given!"
consFromJSON tName withField [con] = do
value <- newName "value"
lam1E (varP value)
$ caseE (varE value)
(parseArgs tName withField con)
consFromJSON tName withField cons = do
value <- newName "value"
obj <- newName "obj"
conKey <- newName "conKey"
conVal <- newName "conVal"
let -- Convert the Data.Map inside the Object to a list and pattern match
-- against it. It must contain a single element otherwise the parse will
-- fail.
caseLst = caseE ([e|H.toList|] `appE` varE obj)
[ match (listP [tupP [varP conKey, varP conVal]])
(normalB caseKey)
[]
, do other <- newName "other"
match (varP other)
(normalB $ [|wrongPairCountFail|]
`appE` (litE $ stringL $ show tName)
`appE` ([|show . length|] `appE` varE other)
)
[]
]
caseKey = caseE (varE conKey)
[match wildP (guardedB guards) []]
guards = [ do g <- normalG $ infixApp (varE conKey)
[|(==)|]
( [|T.pack|]
`appE` conNameExp con
)
e <- caseE (varE conVal)
(parseArgs tName withField con)
return (g, e)
| con <- cons
]
++
[ liftM2 (,)
(normalG [e|otherwise|])
( [|conNotFoundFail|]
`appE` (litE $ stringL $ show tName)
`appE` listE (map (litE . stringL . nameBase . getConName) cons)
`appE` ([|T.unpack|] `appE` varE conKey)
)
]
lam1E (varP value)
$ caseE (varE value)
[ match (conP 'Object [varP obj])
(normalB caseLst)
[]
, do other <- newName "other"
match (varP other)
( normalB
$ [|noObjectFail|]
`appE` (litE $ stringL $ show tName)
`appE` ([|valueConName|] `appE` varE other)
)
[]
]
-- | Generates code to parse the JSON encoding of a single constructor.
parseArgs :: Name -- ^ Name of the type to which the constructor belongs.
-> (String -> String) -- ^ Function to change field names.
-> Con -- ^ Constructor for which to generate JSON parsing code.
-> [Q Match]
-- Nullary constructors.
parseArgs tName _ (NormalC conName []) =
[ do arr <- newName "arr"
match (conP 'Array [varP arr])
( normalB $ condE ([|V.null|] `appE` varE arr)
([e|pure|] `appE` conE conName)
( parseTypeMismatch tName conName
(litE $ stringL "an empty Array")
( infixApp (litE $ stringL $ "Array of length ")
[|(++)|]
([|show . V.length|] `appE` varE arr)
)
)
)
[]
, matchFailed tName conName "Array"
]
-- Unary constructors.
parseArgs _ _ (NormalC conName [_]) =
[ do arg <- newName "arg"
match (varP arg)
( normalB $ infixApp (conE conName)
[e|(<$>)|]
([e|parseJSON|] `appE` varE arg)
)
[]
]
-- Polyadic constructors.
parseArgs tName _ (NormalC conName ts) = parseProduct tName conName $ genericLength ts
-- Records.
parseArgs tName withField (RecC conName ts) =
[ do obj <- newName "recObj"
let x:xs = [ [|lookupField|]
`appE` (litE $ stringL $ show tName)
`appE` (litE $ stringL $ nameBase conName)
`appE` (varE obj)
`appE` ( [e|T.pack|]
`appE`
fieldNameExp withField field
)
| (field, _, _) <- ts
]
match (conP 'Object [varP obj])
( normalB $ condE ( infixApp ([|H.size|] `appE` varE obj)
[|(==)|]
(litE $ integerL $ genericLength ts)
)
( foldl' (\a b -> infixApp a [|(<*>)|] b)
(infixApp (conE conName) [|(<$>)|] x)
xs
)
( parseTypeMismatch tName conName
( litE $ stringL $ "Object with "
++ show (length ts)
++ " name/value pairs"
)
( infixApp ([|show . H.size|] `appE` varE obj)
[|(++)|]
(litE $ stringL $ " name/value pairs")
)
)
)
[]
, matchFailed tName conName "Object"
]
-- Infix constructors. Apart from syntax these are the same as
-- polyadic constructors.
parseArgs tName _ (InfixC _ conName _) = parseProduct tName conName 2
-- Existentially quantified constructors. We ignore the quantifiers
-- and proceed with the contained constructor.
parseArgs tName withField (ForallC _ _ con) = parseArgs tName withField con
-- | Generates code to parse the JSON encoding of an n-ary
-- constructor.
parseProduct :: Name -- ^ Name of the type to which the constructor belongs.
-> Name -- ^ 'Con'structor name.
-> Integer -- ^ 'Con'structor arity.
-> [Q Match]
parseProduct tName conName numArgs =
[ do arr <- newName "arr"
-- List of: "parseJSON (arr `V.unsafeIndex` <IX>)"
let x:xs = [ [|parseJSON|]
`appE`
infixApp (varE arr)
[|V.unsafeIndex|]
(litE $ integerL ix)
| ix <- [0 .. numArgs - 1]
]
match (conP 'Array [varP arr])
(normalB $ condE ( infixApp ([|V.length|] `appE` varE arr)
[|(==)|]
(litE $ integerL numArgs)
)
( foldl' (\a b -> infixApp a [|(<*>)|] b)
(infixApp (conE conName) [|(<$>)|] x)
xs
)
( parseTypeMismatch tName conName
(litE $ stringL $ "Array of length " ++ show numArgs)
( infixApp (litE $ stringL $ "Array of length ")
[|(++)|]
([|show . V.length|] `appE` varE arr)
)
)
)
[]
, matchFailed tName conName "Array"
]
--------------------------------------------------------------------------------
-- Parsing errors
--------------------------------------------------------------------------------
matchFailed :: Name -> Name -> String -> MatchQ
matchFailed tName conName expected = do
other <- newName "other"
match (varP other)
( normalB $ parseTypeMismatch tName conName
(litE $ stringL expected)
([|valueConName|] `appE` varE other)
)
[]
parseTypeMismatch :: Name -> Name -> ExpQ -> ExpQ -> ExpQ
parseTypeMismatch tName conName expected actual =
foldl appE
[|parseTypeMismatch'|]
[ litE $ stringL $ nameBase conName
, litE $ stringL $ show tName
, expected
, actual
]
lookupField :: (FromJSON a) => String -> String -> Object -> T.Text -> Parser a
lookupField tName rec obj key =
case H.lookup key obj of
Nothing -> unknownFieldFail tName rec (T.unpack key)
Just v -> parseJSON v
unknownFieldFail :: String -> String -> String -> Parser fail
unknownFieldFail tName rec key =
fail $ printf "When parsing the record %s of type %s the key %s was not present."
rec tName key
noObjectFail :: String -> String -> Parser fail
noObjectFail t o =
fail $ printf "When parsing %s expected Object but got %s." t o
wrongPairCountFail :: String -> String -> Parser fail
wrongPairCountFail t n =
fail $ printf "When parsing %s expected an Object with a single name/value pair but got %s pairs."
t n
conNotFoundFail :: String -> [String] -> String -> Parser fail
conNotFoundFail t cs o =
fail $ printf "When parsing %s expected an Object with a name/value pair where the name is one of [%s], but got %s."
t (intercalate ", " cs) o
parseTypeMismatch' :: String -> String -> String -> String -> Parser fail
parseTypeMismatch' tName conName expected actual =
fail $ printf "When parsing the constructor %s of type %s expected %s but got %s."
conName tName expected actual
--------------------------------------------------------------------------------
-- Utility functions
--------------------------------------------------------------------------------
-- | Boilerplate for top level splices.
--
-- The given 'Name' must be from a type constructor. Furthermore, the
-- type constructor must be either a data type or a newtype. Any other
-- value will result in an exception.
withType :: Name
-> ([TyVarBndr] -> [Con] -> Q a)
-- ^ Function that generates the actual code. Will be applied
-- to the type variable binders and constructors extracted
-- from the given 'Name'.
-> Q a
-- ^ Resulting value in the 'Q'uasi monad.
withType name f = do
info <- reify name
case info of
TyConI dec ->
case dec of
DataD _ _ tvbs cons _ -> f tvbs cons
NewtypeD _ _ tvbs con _ -> f tvbs [con]
other -> error $ "Data.Aeson.TH.withType: Unsupported type: "
++ show other
_ -> error "Data.Aeson.TH.withType: I need the name of a type."
-- | Extracts the name from a constructor.
getConName :: Con -> Name
getConName (NormalC name _) = name
getConName (RecC name _) = name
getConName (InfixC _ name _) = name
getConName (ForallC _ _ con) = getConName con
-- | Extracts the name from a type variable binder.
tvbName :: TyVarBndr -> Name
tvbName (PlainTV name ) = name
tvbName (KindedTV name _) = name
-- | Makes a string literal expression from a constructor's name.
conNameExp :: Con -> Q Exp
conNameExp = litE . stringL . nameBase . getConName
-- | Creates a string literal expression from a record field name.
fieldNameExp :: (String -> String) -- ^ Function to change the field name.
-> Name
-> Q Exp
fieldNameExp f = litE . stringL . f . nameBase
-- | The name of the outermost 'Value' constructor.
valueConName :: Value -> String
valueConName (Object _) = "Object"
valueConName (Array _) = "Array"
valueConName (String _) = "String"
valueConName (Number _) = "Number"
valueConName (Bool _) = "Boolean"
valueConName Null = "Null"
Jump to Line
Something went wrong with that request. Please try again.