Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
package scorch.autograd
import botkop.numsca.Tensor
import botkop.{numsca => ns}
import org.scalactic.{Equality, TolerantNumerics}
import org.scalatest.{FlatSpec, Matchers}
import scorch._
class AutoGradSpec extends FlatSpec with Matchers {
"Autograd" should "calculate the gradient" in {
val x = Variable(-2)
val y = Variable(5)
val z = Variable(-4)
val q = x + y
val f = q * z
val df = Variable(1)
f.backward(df)
println(x.grad)
println(y.grad)
println(z.grad)
println(q.grad)
println(f.grad)
assert(x.grad.data.squeeze() == -4)
assert(y.grad.data.squeeze() == -4)
assert(z.grad.data.squeeze() == 3)
assert(q.grad.data.squeeze() == -4)
assert(f.grad.data.squeeze() == 1)
}
it should "do sigmoid backward" in {
val w0 = Variable(2)
val x0 = Variable(-1)
val w1 = Variable(-3)
val x1 = Variable(-2)
val w2 = Variable(-3)
// forward pass
val dot = w0 * x0 + w1 * x1 + w2
val out = 1 / (1 + exp(-dot))
out.backward()
println(w0.grad)
println(x0.grad)
println(w1.grad)
println(x1.grad)
println(w2.grad)
implicit val doubleEquality: Equality[Double] =
TolerantNumerics.tolerantDoubleEquality(0.01)
assert(w0.grad.data.squeeze() === -0.2)
assert(x0.grad.data.squeeze() === 0.39)
assert(w1.grad.data.squeeze() === -0.39)
assert(x1.grad.data.squeeze() === -0.59)
assert(w2.grad.data.squeeze() === 0.2)
}
it should "derive constants as 1" in {
val x = Variable(3)
x.backward()
assert(x.grad.data.squeeze() == 1)
val y = Variable(ns.full(Array(3, 3), -2))
y.backward()
assert(ns.arrayEqual(y.grad.data, ns.ones(3, 3)))
val z = Variable(ns.zeros(3, 3))
z.backward()
assert(ns.arrayEqual(z.grad.data, ns.ones(3, 3)))
}
it should "derive multiplication with a constant" in {
val x = Variable(3)
val y = x * 3
y.backward()
assert(x.grad.data.squeeze() == 3)
}
it should "derive multiplication with itself" in {
val x = Variable(3)
val y = x * x
y.backward()
assert(x.grad.data.squeeze() == 6)
}
it should "derive square" in {
val x = Variable(3)
val y = x ** 2
y.backward()
assert(x.grad.data.squeeze() == 6)
}
it should "derive division with a constant" in {
implicit val doubleEquality: Equality[Double] =
TolerantNumerics.tolerantDoubleEquality(0.01)
val x = Variable(3)
val y = x / 3
y.backward()
assert(x.grad.data.squeeze() === 0.33)
}
it should "derive the mean" in {
val x = Variable(ns.ones(2, 2))
val y = x + 2
val z = y * y * 3
val out = mean(z)
out.backward()
println(x.grad.data)
assert(ns.arrayEqual(x.grad.data, ns.full(x.data.shape, 4.5)))
}
it should "do crazy stuff" in {
val x = Variable(ns.ones(3, 1))
val y = x * 2
def acc(v: Variable): Variable = if (ns.sum(v.data) < 100) acc(v * 2) else v
val z = acc(y)
z.backward(Variable(Tensor(0.1, 1.0, 0.0001).reshape(3, 1)))
println(x.grad)
assert(ns.arrayEqual(x.grad.data, Tensor(6.4, 64, 0.0064).reshape(3, 1)))
}
it should "derive mse" in {
val nOut = 4
val minibatch = 3
val input = Variable(ns.randn(minibatch, nOut))
val label = Variable(ns.randn(minibatch, nOut))
val diff = input - label
val sqDiff = diff * diff
val msePerEx = mean(sqDiff)
val avgMSE = mean(msePerEx)
avgMSE.shape shouldBe List(1, 1)
avgMSE.backward()
input.grad.shape shouldBe input.shape
}
}