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There are proposals that extend the classical generalized additive models (GAMs)
to accommodate high-dimensional data (𝑝 >> 𝑛) using group sparse regularization.
However, the sparse regularization may induce excess shrinkage when estimating
smoothing functions, damaging predictive performance. Moreover, most of these
GAMs consider an “all-in-all-out” approach for functional selection, rendering them
difficult to answer if nonlinear effects are necessary. While some Bayesian models
can address these shortcomings, using Markov chain Monte Carlo algorithms for
model fitting creates a new challenge, scalability. Hence, we propose Bayesian hierar-
chical generalized additive models as a solution: we consider the smoothing penalty
for proper shrinkage of curve interpolation and separation of smoothing function lin-
ear and nonlinear spaces. A novel spike-and-slab spline prior is proposed to select
components of smoothing functions. Two scalable and deterministic algorithms, EM-
Coordinate Descent and EM-Iterative Weighted Least Squares, are developed for
different utilities. Simulation studies and metabolomics data analyses demonstrate
improved predictive or computational performance against state-of-the-art models,
mgcv, COSSO and sparse Bayesian GAM. The software implementation of the pro-
posed models is freely available via an R package BHAM.
KEYWORDS:
Spike-and-Slab Priors; High-Dimensional Data; Generalized Additive Models; EM-IWLS; EM-
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1 INTRODUCTION

Many modern biomedical research, e.g. sequencing data analysis, electric health record data analysis, require special treatment
of high-dimensionality, commonly known as 𝑝 >> 𝑛 problem. There is extensive literature on high-dimensional linear models
via penalized models or Bayesian hierarchical models, see Mallick and Yi1 for review. These models are built upon a restrictive
and unrealistic assumption, linearity. In classical statistical modeling, many strategies and models are proposed to relax the
linearity assumption with various degrees of complexity. For example, variable categorization is a simple and common practice
in epidemiology, but suffers from power and interpretation issues. More complex models to address nonlinear effects include
random forest and other so-called “black box” models2. These models are useful for statistical prediction but do not estimate
parameters relevant to the data generation process that one can draw inferences from. In addition, how to generalize these models
to the high-dimensional setting remains unclear.
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Nonparametric regression models are appropriate alternatives to the “black-box” models thanks to their balance between
model flexibility and interpretability. Among those, generalized additive models (GAMs), proposed in the seminal work of Hastie
and Tibshirani3, grew to be one of the most popular modeling tools. In a GAM, the response variable, 𝑌 , which is assumed to
follow some exponential family distribution with mean 𝜇 and dispersion 𝜙, can be modeled with the summation of smoothing
functions, 𝐵𝑗(⋅), 𝑗 = 1,… , 𝑝, of a given 𝑝-dimensional vector of covariates 𝒙, written as

𝐸(𝑌 |𝒙) = 𝑔−1(𝛽0 +
𝑝
∑

𝑗=1
𝐵𝑗(𝑥𝑗)),

where 𝑔−1(⋅) is the inverse of a monotonic link function. The smoothing functions can take many forms and are estimated using
a pseudo-weighted version of the backfitting algorithm4. Nevertheless, the classical GAMs cannot fulfill the increasing analytic
demands for high-dimensional data analysis in biomedical studies.

There exists some proposals to generalize the classical GAM to accommodate high-dimensional applications. The regularized
models, branching out from group regularized linear models, are used to fit GAMs by accounting for the structure introduced
when expanding smoothing functions. Ravikumar et al.5 extended the grouped lasso6 to additive models (AMs); Huang et
al.7 further developed adaptive grouped lasso for additive models; Wang et al.8 and Xue9 respectively applied grouped SCAD
penalty10 to additive models. Recently Bayesian hierarchical models are also used in the context of high-dimensional additive
models. Various group spike-and-slab priors combining with computationally intensive Markov chain Monte Carlo (MCMC)
algorithms11,12 are proposed, where the application on AMs are by-products. Bai et al.13 was the first to apply group spike-and-
slab lasso prior to Gaussian AMs using a fast optimization algorithm, and further generalized the framework to GAMs14. Focus
on addressing the sparsity, these methods can overly penalize the basis function coefficients and produce inaccurate predictions
and curve interpolation, particularly when complex signals are assumed and large number of knots are used.15 In addition, these
methods adapt an ‘all-in-all-out’ strategy, i.e. either including or excluding the variable completely, rendering no space for bi-
level selection. Scheipl et al.16 proposed a spike-and-slab structure prior that address the previous challenges. But the model
fitting relies on computational intensive MCMC algorithms and creates scalability concern. It would be of special interest to
develop a fast, flexible and accurate generalized additive model framework.

To address these challenges, we propose a novel Bayesian hierarchical generalized additive model (BHAM) for high dimen-
sional data analysis. Specifically, we incorporate smoothing penalties in the model via re-parameterization of the smoothing
function to avoid overly shrinking basis function coefficients. Smoothing penalties are commonly implemented in the classical
GAMs through smoothing regression splines. They are quadratic norms of the coefficients and allow locally adaptive penalties
on each smoothing function. A smoothing penalty conditioning on a smoothing parameter 𝜆𝑗 is a function of the integration of
the second derivative of the spline function, expressed mathematically as

pen [𝐵𝑗(𝑥)
]

= 𝜆𝑗 ∫ 𝐵′′
𝑗 (𝑥)𝑑𝑥 = 𝜆𝑗𝜷𝑇

𝑗 𝑺𝑗𝜷𝑗 , (1)
where 𝑺𝑗 is a known smoothing penalty matrix, and 𝜷𝑗 are the basis function coefficients. Smoothing penalties were also previ-
ously used in the spike-and-slab GAM16 and the sparsity-smoothness penalty17. Moreover, incorporating the smoothing penalty
allows the separation of the linear space of a smoothing function from the nonlinear space. We then impose a new two-part spike-
and-slab spline prior on the smoothing functions for bi-level selection such that the linear and nonlinear spaces of smoothing
functions can be selected separately. The prior setup encourages a flexible solution, rendering one of three possibilities for each
predictor: no effect, only linear effect, or linear and nonlinear effects. In addition, two scalable optimization-based algorithms,
EM-Coordinate Descent (EM-CD) algorithm and EM-Iterative weighted least square (EM-IWLS) algorithm, are developed and
implemented in an publicly available R package BHAM via https://github.com/boyiguo1/BHAM, making translational science
more accessible.

The proposed framework, BHAM, differs from previous spike-and-slab based GAMs, i.e. the spike-and-slab GAM16 and
the SB-GAM14 in three ways. First of all, the proposed spike-and-slab spline prior is a spike-and-slab lasso type prior using
independent mixture double exponential distribution, compared to spike-and-slab GAM that uses normal-mixture-of-inverse
gamma prior. Spike-and-slab lasso priors provide computational convenience during model fitting by using optimization algo-
rithms instead of intensive sampling algorithms. They make fitting high-dimensional models more feasible without sacrificing
performance in prediction and variable selection. Secondly, SB-GAM uses a group spike-and-slab lasso prior with an EM-
CD algorithm to fit the model. While both methods use the combination of expectation maximization algorithm and coordient
descent algorithm, there are subtle difference in the implementation due to the difference in prior specification. The proposed
model sets up independent priors among basis function coefficients after the re-parameterization step, which provides some

https://github.com/boyiguo1/BHAM
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advantage in computation. In addition, we offer an alternative algorithm, EM-IWLS, that can provide variance-covariance matrix
of the coefficients. Last but not least, the proposed model addresses the incapability of bi-level selection in SB-GAM.

In Section 2, we establish the Bayesian hierarchical generalized additive model, introduce the proposed spike-and-slab spline
priors, and describe the two fast-fitting algorithms. In Section 3, we compare the proposed framework to state-of-the-art models,
mgcv, COSSO and sparse Bayesian GAM via Monte Carlo simulation studies. Analyses of two metabolomics datasets are
presented in Section 4. Conclusion and discussions are given in Section 5.

2 BAYESIAN HIERARCHICAL ADDITIVE MODELS (BHAMS)

Following the GLM notation introduced in Section 1, we have a generalized additive model with link function 𝑔(⋅) and linear
predictor

𝜂 = 𝛽0 +
𝑝
∑

𝑗=1
𝐵𝑗(𝑥𝑗) = 𝛽0 +

𝑝
∑

𝑗=1
𝜷𝑇
𝑗 𝑿𝑗 , (2)

with smoothing functions 𝐵𝑗(𝑥𝑗) of the variable 𝑥𝑗 , 𝑗 = 1,… , 𝑝. The outcome 𝑌 follows a exponential family distribution with
density function 𝑓 (𝑦), mean 𝜇 = 𝑔−1(𝜂) and dispersion parameter 𝜙, and the data distribution is

𝑓 (𝒀 = 𝒚|𝜷, 𝜙) =
𝑛

∏

𝑖=1
𝑓 (𝑌 = 𝑦𝑖|𝜷, 𝜙),

The basis function matrix, i.e. the design matrix derived from the smoothing function 𝐵𝑗(𝑥𝑗), is denoted 𝑿𝑗 for the variable
𝑥𝑗 . The dimension of the design matrix depends on the choice of the smoothing function, and is denoted as 𝐾𝑗 for 𝑥𝑗 . Its
corresponding smoothing penalty matrix is denoted as 𝑺𝑗 . 𝜷𝑗 denotes the basis function coefficients for the 𝑗th variable such
that 𝐵𝑗(𝑥𝑗) = 𝜷𝑇

𝑗 𝑿𝑗 . With slight abuse of notation, we denote vectors and matrices in bold fonts 𝜷,𝑿 with conformable
dimensions, where scalar and random variables are denoted in unbold fonts 𝛽,𝑋. The matrix transposing operation is denoted
with a superscript 𝑇 . To note, the proposed model can include parametric forms of variables in the model, treating the parametric
function as a special case of the smoothing function, e.g. 𝐵𝑗(𝑥𝑗) = 𝑥𝑗 with the smoothing penalty matrix defined as 𝑺𝑗 =

[

0
].

To encourage proper smoothing of additive functions, we adopt the idea of smoothing penalties from smoothing spline mod-
els. The basic idea is to set up a smoothing penalty, described in Equation (1), in the prior density function. However, the direct
integration of smoothing penalty with sparsity penalty is not obvious. Marra and Wood18 proposed a re-parameterization pro-
cedure to accommodate the smoothing penalty implicitly. Given the smoothing penalty matrix 𝑺𝑗 is symmetric and positive
semi-definite for univariate smoothing functions, we apply eigendecomposition on the penalty matrix 𝑺 = 𝑼𝑫𝑼 𝑇 , where the
matrix 𝑫 is diagonal with the eigenvalues arranged in the ascending order. To note, 𝑫 can contain elements of zeros on the
diagonal, where the zeros are associated with the linear space of the smoothing function. For the most popular smoothing func-
tion, cubic splines, the dimension of the linear space is one. Hereafter, we focus on discussing a uni-dimensional linear space for
simplicity; however, it generalizes easily to the cases where the linear space is multidimensional. We further write the orthonor-
mal matrix 𝑼 ≡

[

𝑼 0 ∶ 𝑼 ∗] containing the eigenvectors as columns in the corresponding order to 𝑫. That is, 𝑼 contains the
eigenvectors 𝑈 0 with zero eigenvalues for the linear space and 𝑼 ∗ contains the eigenvectors (as columns) for the non-zero eigen-
values, i.e. the non-linear space. We multiply the basis function matrix 𝑿 with the orthonormal matrix 𝑼 for the new design
matrix 𝑿repa = 𝑿𝑼 ≡

[

𝑋0 ∶ 𝑿∗]. An additional scaling step is imposed on 𝑿∗ by the non-zero eigenvalues of 𝑫 such that the
new basis function matrix 𝑿∗ can receive uniform penalty on each of its dimensions. With slight abuse of the notation, we drop
the superscript repa and denote 𝑿𝑗 ≡

[

𝑋0
𝑗 ∶ 𝑿∗

𝑗

]

as the basis function matrix for the 𝑗th variable after the re-parameterization.
A spline function can be expressed in the matrix form

𝐵𝑗(𝑥𝑗) = 𝐵0
𝑗 (𝑥𝑗) + 𝐵∗

𝑗 (𝑥𝑗) = 𝛽𝑗𝑋
0
𝑗 + 𝜷∗

𝒋
𝑇𝑿∗

𝑗 ,

and the generalized additive model in Equation (2) now is

𝐸(𝑌 |𝒙) = 𝑔−1(𝛽0 +
𝑝
∑

𝑗=1
𝐵𝑗(𝑥𝑗)) = 𝑔−1(𝛽0 +

𝑝
∑

𝑗=1
𝜷𝑇
𝑗 𝑿𝑗) = 𝑔−1

[

𝛽0 +
𝑝
∑

𝑗=1
(𝛽𝑗𝑋0

𝑗 + 𝜷∗
𝑗
𝑇𝑿∗

𝑗 )

]

, (3)

where the coefficients 𝜷𝑗 ≡
[

𝛽𝑗 ∶ 𝜷∗
𝑗

]

is an augmentation of the coefficient scalar 𝛽𝑗 of linear space and the coefficient vector
𝜷∗
𝑗 of non-linear space.
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The re-parameterization step sets up the foundation of the proposed model and provides three benefits. First of all, the
re-parameterization integrates the smoothing penalty into the design matrix, and encourages models to properly smooth the
nonlinear function in addition to the sparse penalty for functional selection. Secondly, the eigendecomposition of the smooth-
ing penalty allows the isolation of the linear space from the nonlinear space, improving the feasibility of bi-level functional
selection. The eigendecomposition facilitates the construction of orthonormal design matrix, which makes imposing indepen-
dent priors on the coefficients possible. This reduces the computational complexity compared to using a multivariate priors, and
greatly broadens the choices of priors and further model choices. Last but not least, the scaling step of 𝑿∗ further simplifies the
choice of priors, from column-specific priors to a unified prior.

2.1 Spike-and-Slab Spline Priors
The family of spike-and-slab (SS) regression models is one of most commonly used models in high-dimensional data analysis
for its utility in outcome prediction and variable selection. We defer to Bai et al.19 for an in-depth introduction to spike-and-slab
priors. To summarize, spike-and-slab priors are a family of mixture distributions that comprises a skinny spike density 𝑓spike(⋅)
for weak signals and a flat slab density 𝑓slab(⋅) for strong signals, mathematically

𝛽|𝛾 ∼ (1 − 𝛾)𝑓spike(𝛽) + 𝛾𝑓slab(𝛽).

The most distinct feature of SS priors is that it is conditioned on a latent binary variable 𝛾 ∈ {0, 1} that indicates whether
the variable 𝑥 is included in the model. There are various spike-and-slab priors depending on the choice for the spike density
𝑓spike(⋅) and the slab density 𝑓slab(⋅), see George and McCulloch20,21; Chipman22 for grouped variables; Brown et al.23 for
multivariate outcomes; Ishwaran and Rao24; Clyde and George25 and reference therein. Two of most popular spike and slab
priors are spike-and-slab normal prior20 and spike-and-slab double exponential prior26.

The major criticism of early spike-and-slab models is being computationally prohibitive.19 Since then, many studies focus
on alleviating the computational burden that sampling algorithms bear, which include EMVS based on spike-and-slab normal
prior27 and spike-and-slab Lasso (SSL)28,26. Particularly, the development of SSL model substantially improves the scalability
of SS models, setting up the theoretical foundation for generalized models in -omics data analysis29,30,31,32. The SSL prior is
composed of two double exponential distributions with mean 0 and different dispersion parameters, 0 < 𝑠0 < 𝑠1, mathematically,

𝛽|𝛾 ∼ (1 − 𝛾)𝐷𝐸(0, 𝑠0) + 𝛾𝐷𝐸(0, 𝑠1), 0 < 𝑠0 < 𝑠1.

Given that both double exponential distributions have a mean of 0 and the latent indicator 𝛾 can only take the value of 0 or 1,
the mixture double exponential distribution can be formulated as one single double exponential density,

𝛽|𝛾 ∼ 𝐷𝐸(0, 𝑆), 0 < 𝑠0 < 𝑠1, (4)
with the scale parameter 𝑆 = (1 − 𝛾)𝑠0 + 𝛾𝑠1. The SSL also mitigates the problem of EMVS where the weak signals are not
shrink to zero, and hence is preferred in high-dimensional data analysis. We notice that Bai14 is the first to apply spike-and-slab
lasso prior in the GAM framework, where the densities of the spike and slab components take the group lasso density11 and
limits to an “all-in-all-out” strategy for functional selection.

2.1.1 Two-part Spike-and-Slab Lasso Prior
We introduce a novel prior for GAMs, particularly for high-dimensional nonlinear modeling with bi-level selection. The proposed
prior extends from the spike-and-slab lasso prior described in Equation (4). Given the re-parameterized design matrix 𝑿𝑗 =
[

𝑋0
𝑗 ∶ 𝑿∗

𝑗

]

for the 𝑗th variable, we impose a two-part SSL prior to the coefficients 𝜷𝑗 =
[

𝛽𝑗 ∶ 𝜷∗
𝑗

]

. Specifically, we impose
independent group priors on the linear space coefficients and on the nonlinear space coefficients respectively,

𝛽𝑗|𝛾𝑗 , 𝑠0, 𝑠1 ∼ 𝐷𝐸(0, (1 − 𝛾𝑗)𝑠0 + 𝛾𝑗𝑠1)

𝛽∗𝑗𝑘|𝛾
∗
𝑗 , 𝑠0, 𝑠1

iid∼ 𝐷𝐸(0, (1 − 𝛾∗𝑗 )𝑠0 + 𝛾∗𝑗 𝑠1), 𝑘 = 1,… , 𝐾𝑗 (5)
where 𝛾𝑗 ∈ {0, 1} and 𝛾∗𝑗 ∈ {0, 1} are two latent indicator variables, indicating if the model includes the linear effect and the
nonlinear effect of the 𝑗th variable respectively. 𝑠0 and 𝑠1 are scale parameters, assuming 0 < 𝑠0 < 𝑠1 and given. These scale
parameters 𝑠0 and 𝑠1 can be treated as tuning parameters and optimized via cross-validation. A discussion of how to choose the
scale parameters comes in Section 2.3. To note, this prior differs from previous group SSL priors31,32, as the 𝛽𝑗 and 𝜷∗

𝑗 have
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different indicator variables 𝛾𝑗 , 𝛾∗𝑗 respectively. It is possible to add a more restrictive assumption on the priors, assuming that
one indicator variable decides the inclusion of both the linear effect and nonlinear effect, i.e. 𝛾𝑗 = 𝛾∗𝑗 . This converges to the SB-
GAM14. Conversely, it is also possible to relax the assumption such that each coefficient 𝛽𝑗𝑘 ∈ 𝜷∗

𝑗 has its own latent indicator
𝛾𝑗𝑘, but at the cost of complicating the bi-level functional selection. This reduces the proposed prior to the classic SSL prior.

The re-parameterization introduced in Section 2 grants the validity of the proposed prior. First of all, the smoothing function
bases are linear dependent and necessitate extra attention. The eigeondecomposition remedies the problem and hence our prior
can be set to be conditionally independent. Secondly, the eigenvalue scaling provides a panacea to allow unified scale parameters
for all bases of all smoothing functions.

The rest of the hierarchical prior follows the traditional SSL prior: we set up hyper-priors on 𝛾𝑗 , 𝛾∗𝑗 to allow local adaption of
the shrinkage using a Bernoulli distribution, written as binomial distribution of one trial. The two indicators of the 𝑗th predictor,
𝛾𝑗 and 𝛾∗𝑗 , shares the same probability parameter 𝜃𝑗 ,

𝛾𝑗|𝜃𝑗 ∼ 𝐵𝑖𝑛(1, 𝜃𝑗) 𝛾∗𝑗 |𝛾𝑗 ,𝜃𝑗 ∼ 𝐵𝑖𝑛(1, 𝛾𝑗𝜃𝑗).

Equivalently, we can derive the marginal distribution of 𝛾∗𝑗 by integrate out 𝛾𝑗 (Supplement 1),
𝛾∗𝑗 |𝜃𝑗 ∼ 𝐵𝑖𝑛(1, 𝜃2𝑗 ).

This is to leverage the fact that the probability of selecting the bases of a smoothing function should be similar, while allowing
different penalty on the linear space and non-linear space of the smoothing function. The hyper prior of 𝛾𝑗 decides the sparsity of
the model at the functional selection level, while that of 𝛾∗𝑗 decides the smoothness of the spline function at basis function level.
Meanwhile, we specify that 𝛾𝑗 and 𝛾∗𝑗 are independently distributed for analytic simplicity. We further specify the parameter 𝜃𝑗
follows a beta distribution with given shape parameters 𝑎 and 𝑏,

𝜃𝑗 ∼ 𝐵𝑒𝑡𝑎(𝑎, 𝑏).

The beta distribution is a conjugate prior for the binomial distribution and hence provides some computation convenience. For
simplicity, we focus on a special case of beta distribution, uniform (0,1), i.e. 𝑎 = 1, 𝑏 = 1. When the variable have large effects
in any of the bases, the parameter 𝜃𝑗 will be estimated large, which in turn encourages the model to include the rest of bases.
Hereafter, we refer Bayesian hierarchical generalized additive models with the spike-and-slab spline prior as the BHAM, and
visually presented in Figure 1.

Figure 1 here

2.1.2 Other Priors
With the re-parameterization step of the basis function matrix 𝑿, it is possible to generalized the SSL prior to other priors, for
example normal priors for ridge-type regularization and mixture normal prior for spike-and-slab regularization. These priors
would work better in low and medium dimensional settings where the sparse assumption is not necessary. Here we elaborate the
mixture normal prior as a demonstration of applying continuous spike-and-slab prior in BHAM.

A spike-and-slab mixture normal spline prior can be expressed as
𝛽𝑗|𝛾𝑗 , 𝑠0, 𝑠1 ∼ 𝑁(0, (1 − 𝛾𝑗)𝑠0 + 𝛾𝑗𝑠1)

𝛽∗𝑗𝑘|𝛾
∗
𝑗 , 𝑠0, 𝑠1

iid∼ 𝑁(0, (1 − 𝛾∗𝑗 )𝑠0 + 𝛾∗𝑗 𝑠1), 𝑘 = 1,… , 𝐾𝑗 .

Similar to the spike-and-slab spline prior in Equation (5), 0 < 𝑠0 < 𝑠1 are tuning parameters and can be optimized via cross-
validation. One of the critics received by the spike-and-slab mixture normal prior is that the tails of a normal distribution
diminishes to zero too fast, which causes problems when estimating the large effects. Distributions with heavier tails can be
used as an alternative, for example mixture Student’s 𝑡 distribution with small degree of freedom.

2.2 Algorithms for Fitting BHAMs
The proposed models can be fitted with MCMC algorithms. Nevertheless, the computational burden of MCMC algorithms
creates scalability issues. George and McCulloch21 examined the computation speed for various MCMC algorithms with spike-
and-slab mixture normal priors, and suggested MCMC algorithms works well for medium size (𝑝=25) of predictors with only
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linear effects. However, it is not feasible for high-dimensional data analysis where the number of predictors easily exceeds 100.
Specific to additive models, each predictor would expand to multiple new “predictors” via basis functions, creating greater
computational demands. Scheipl et al.15 demonstrated the computational demands of a MCMC algorithm for fitting spike-and-
slab GAM grow exponentially as 𝑝 increases modestly via simulation studies. Hence, we feel compelled to develop scalable
algorithms for fitting Bayesian hierarchical additive models in high-dimensional settings.

As an alternative to sampling algorithms for fitting Bayesian models, optimization algorithms focus on the maximum a pos-
teriori (MAP) estimates and speed up the model fitting process at the cost of posterior inference. The earlier work for fitting SS
models using optimization algorithms includes EMVS27. Rockova and George27 proposed an expectation-maximization (EM)
based algorithm to fit models that use continuous mixture normal priors. In the E step, the latent binary indicators 𝛾s are treated
as the missing data, and the posterior means are calculated conditioning on the current value of other parameters; in the M
step, a ridge estimator was used to update the coefficients, followed by updating 𝜙, 𝜃. The same authors28,26 further combined
the EM algorithm with coordinate descent algorithm to fit SSL models. Yi and his group independently developed the EM-
Iterative Weighted Least Square and EM-cyclic coordinate descent algorithms to fit models with broader class of priors, SSL
included.33 These algorithms were implemented for generalized linear models29, Cox proportional hazards models30 and their
grouped counterparts31,32. Both EM based algorithms provide deterministic solutions, which becomes a popular property for
reproducible research

In this section, we extend the two EM-based algorithms, EM-CD and EM-IWLS algorithms, to fit BHAMs. To note, the
two proposed algorithms provides different utilities. The EM-CD algorithm is specifically for fitting BHAM with an expedited
performance, recommending to use in high and ultra-high dimensional setting. A specific concern of EM-CD algorithm is that it
provides no information for inference. In contrast, the EM-IWLS can estimate the variance-covariance matrix of the coefficients.
Moreover, the EM-IWLS is a more general model fitting algorithm that can be used for fitting not only SSL and continuous SS
priors but also Student’s t-priors and double exponential priors. To note, SB-GAM13,14 also used an EM-CD algorithm. The
main difference between proposed EM-CD algorithm and that in SB-GAM is that SB-GAM uses a block CD algorithm for their
group prior, while the proposed prior is pairwise independent requiring no special treatment in the CD algorithm.

2.2.1 EM algorithms
EM algorithm is an iterative algorithm to find MAP estimates or the maximum likelihood estimates. It is commonly used when
some necessary data to establish the likelihood function are missing. Instead of maximizing the the likelihood function, the
algorithm maximizes the expectation of the likelihood function with respect to the “missing” data.

The recursive algorithm consists of two steps:
• E-step: to calculate the expectation of the posterior density function with respect to some “missing” data
• M-step: to maximize the expectation derived in the E-step and update parameters of interest

For BHAMs, we define the parameters of interest as Θ = {𝜷,𝜽, 𝜙} and consider the latent binary indicators 𝜸 as nuisance
parameters of the model, in other words the “missing” data. Our objective is to find the parameters Θ that maximize the posterior
density function, or equivalently, the logarithm of the density function,

argmaxΘ log 𝑓 (Θ, 𝜸|y,X)

= log𝑓 (y|𝜷, 𝜙) +
𝑝
∑

𝑗=1

⎡

⎢

⎢

⎣

log 𝑓 (𝛽𝑗|𝛾𝑗) +
𝐾𝑗
∑

𝑘=1
log 𝑓 (𝛽∗𝑗𝑘|𝛾

∗
𝑗 )
⎤

⎥

⎥

⎦

+
𝑝
∑

𝑗=1

[

(𝛾𝑗 + 𝛾∗𝑗 ) log 𝜃𝑗 + (2 − 𝛾𝑗 − 𝛾∗𝑗 ) log(1 − 𝜃𝑗)
]

+
𝑝
∑

𝑗=1
log 𝑓 (𝜃𝑗),

where 𝑓 (y|𝜷, 𝜙) is the data distribution and 𝑓 (𝜃) is the Beta(1,1) density. We choose non-informative prior for the intercept 𝛽0
and the dispersion parameter 𝜙; for example, 𝑓 (𝛽0|𝜏20 ) = 𝑁(0, 𝜏20 ) with 𝜏20 set to a large value and 𝑓 (log𝜙) ∝ 1.

We use the EM algorithm to find the MAP estimate of Θ. This is, in the E-step, we calculate the expectation of posterior
density function of log 𝑓 (Θ, 𝜸|y,X) with respect to the latent indicators 𝜸 conditioning on the values from previous iteration
Θ(𝑡−1),

𝐸𝜸|Θ(𝑡−1) log 𝑓 (Θ, 𝜸|y,X).
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Hereafter, we use the shorthand notation 𝐸(⋅) ≡ 𝐸𝜸|Θ(𝑡−1)(⋅). In the M-step, we find the Θ(𝑡) that maximize 𝐸 log 𝑓 (Θ, 𝜸|y,X).
The E- and M- steps are iterated until the algorithm converge.

To note here, the log-posterior density of BHAMs (up to additive constants) can be written as a two-part equation
log 𝑓 (Θ, 𝜸|y,X) = 𝑄1(𝜷, 𝜙) +𝑄2(𝜸,𝜽),

where
𝑄1 ≡ 𝑄1(𝜷, 𝜙) = log𝑓 (y|𝜷, 𝜙) +

𝑝
∑

𝑗=1

⎡

⎢

⎢

⎣

log 𝑓 (𝛽𝑗|𝛾𝑗) +
𝐾𝑗
∑

𝑘=1
log 𝑓 (𝛽∗𝑗𝑘|𝛾

∗
𝑗𝑘)

⎤

⎥

⎥

⎦

and
𝑄2 ≡ 𝑄2(𝜸,𝜽) =

𝑝
∑

𝑗=1

[

(𝛾𝑗 + 𝛾∗𝑗 ) log 𝜃𝑗 + (2 − 𝛾𝑗 − 𝛾∗𝑗 ) log(1 − 𝜃𝑗)
]

+
𝑝
∑

𝑗=1
log 𝑓 (𝜃𝑗).

𝑄1 and 𝑄2 are respectively the log posterior density of the coefficients 𝜷 and the log posterior density of the probability param-
eters 𝜽 conditioning on 𝜸. Meanwhile, conditioning on 𝜸, 𝑄1 and 𝑄2 are independent and can be maximized separately for 𝜷, 𝜙
and 𝜽. Depending on the choice of coefficient priors, 𝑄1 can be treated as penalized likelihood function and maximization of
𝐸(𝑄1) can be solved via CD algorithm or IWLS algorithm in each iteration. Maximization of 𝐸(𝑄2) can be solved via closed
form equations following the beta-binomial conjugate relationship.

2.2.2 EM-Coordinate Descent
When the prior distribution of the coefficients is set to mixture double exponential, coordinate descent algorithm can be used
to estimate the parameters in the M-step. Coordinate descent is an optimization algorithm that offers extreme computational
advantage, and famous for its application in optimizing the 𝑙1 penalized likelihood function.

The density function of spike-and-slab mixture double exponential prior can be written as
𝑓 (𝛽|𝛾, 𝑠0, 𝑠1) =

1
2
[

(1 − 𝛾)𝑠0 + 𝛾𝑠1
] exp(−

|𝛽|
(1 − 𝛾)𝑠0 + 𝛾𝑠1

),

and 𝐸(𝑄1) can be expressed as a log-likelihood function with 𝑙1 penalty

𝐸(𝑄1) = log𝑓 (y|𝜷, 𝜙) −
𝑝
∑

𝑗=1

⎡

⎢

⎢

⎣

𝐸(𝑆𝑗
−1)|𝛽𝑗| +

𝐾𝑗
∑

𝑘=1
𝐸(𝑆∗−1

𝑗 )|𝛽𝑗𝑘|
⎤

⎥

⎥

⎦

, (6)

where 𝑆𝑗 = (1 − 𝛾0𝑗 )𝑠0 + 𝛾0𝑗 𝑠1 and 𝑆∗
𝑗 = (1 − 𝛾∗𝑗 )𝑠0 + 𝛾∗𝑗 𝑠1. To calculate two unknown quantities 𝐸(𝑆𝑗

−1) and 𝐸(𝑆∗−1
𝑗 ), the

posterior probability 𝑝𝑗 ≡ Pr(𝛾0𝑗 = 1|Θ(𝑡−1)) and 𝑝∗𝑗 ≡ Pr(𝛾∗𝑗 = 1|Θ(𝑡−1)) are necessary, which can be derived via Bayes’ theorem.
The calculation of 𝑝∗𝑗 is slightly different from that of 𝑝𝑗 , as 𝑝∗𝑗 depends on the value of the vector 𝜷∗

𝑗 and 𝑝𝑗 only depends on the
scalar 𝛽𝑗 . The calculation follows the equations below.

𝑝𝑗 =
Pr(𝛾𝑗 = 1|𝜃𝑗)𝑓 (𝛽𝑗|𝛾𝑗 = 1, 𝑠1)

Pr(𝛾𝑗 = 1|𝜃𝑗)𝑓 (𝛽𝑗|𝛾𝑗 = 1, 𝑠1) + Pr(𝛾𝑗 = 0|𝜃𝑗)𝑓 (𝛽𝑗|𝛾𝑗 = 0, 𝑠0)

𝑝∗𝑗 =
Pr(𝛾∗𝑗 = 1|𝜃𝑗)

𝐾𝑗
∏

𝑘=1
𝑓 (𝛽𝑗𝑘|𝛾∗𝑗 = 1, 𝑠1)

Pr(𝛾∗𝑗 = 1|𝜃𝑗)
𝐾𝑗
∏

𝑘=1
𝑓 (𝛽𝑗𝑘|𝛾∗𝑗 = 1, 𝑠1) + Pr(𝛾∗𝑗 = 0|𝜃𝑗)

𝐾𝑗
∏

𝑘=1
𝑓 (𝛽𝑗𝑘|𝛾∗𝑗 = 0, 𝑠0)

and Pr(𝛾0𝑗 = 1|𝜃𝑗) = 𝜃𝑗 , Pr(𝛾0𝑗 = 0|𝜃𝑗) = 1 − 𝜃𝑗 , Pr(𝛾∗𝑗 = 1|𝜃𝑗) = 𝜃2𝑗 , Pr(𝛾∗𝑗 = 0|𝜃𝑗) = 1 − 𝜃2𝑗 , 𝑓 (𝛽|𝛾 = 1, 𝑠1) = DE(𝛽|0, 𝑠1),
𝑓 (𝛽|𝛾 = 0, 𝑠0) = DE(𝛽|0, 𝑠0). It is trivial to show

𝐸(𝛾𝑗) = 𝑝𝑗 𝐸(𝛾∗𝑗 ) = 𝑝∗𝑗

𝐸(𝑆−1
𝑗 ) =

1 − 𝑝𝑗
𝑠0

+
𝑝𝑗
𝑠1

𝐸(𝑆∗−1
𝑗 ) =

1 − 𝑝∗𝑗
𝑠0

+
𝑝∗𝑗
𝑠1
. (7)

After replacing withe calculated quantities, 𝐸(𝑄1) can be seen as a 𝑙1 penalized likelihood function with the regularization
parameter 𝜆 = 𝐸(𝑆−1), and hence be optimized via coordinate descent algorithm34. Independently, the remaining parameters
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of interest 𝜽 can be updated by maximizing 𝐸(𝑄2). As the beta distribution is a conjugate prior for Bernoulli distribution, 𝜽 can
be easily updated with a closed form equation,

𝜃𝑗 =
𝑝𝑗 + 𝑝∗𝑗 + 𝑎 − 1

𝑎 + 𝑏
. (8)

Totally, the proposed EM-coordinate descent algorithm is summarized as follows:
1) Choose a starting value 𝜷 (0) and 𝜽(0) for 𝜷 and 𝜽. For example, we can initialize 𝜷 (0) = 𝟎 and 𝜽(0) = 𝟎.5

2) Iterate over the E-step and M-step until convergence
E-step: calculate 𝐸(𝛾𝑗), 𝐸(𝛾∗𝑗 ) and 𝐸(𝑆−1

𝑗 ), 𝐸(𝑆∗−1
𝑗 ) with estimates of Θ(𝑡−1) from previous iteration

M-step:
a) Update 𝜷 (𝑡), and the dispersion parameter 𝜙(𝑡) if exists, using the coordinate descent algorithm with the penalized

likelihood function in Equation (6)
b) Update 𝜽(𝑡) using Equation (8)

We assess convergence by the criterion: |𝑑(𝑡) − 𝑑(𝑡−1)
|∕(0.1 + |𝑑(𝑡)

|) < 𝜖, where 𝑑(𝑡) = −2 log 𝑓 (y|X, 𝜷 (𝑡), 𝜙(𝑡)) is the estimate
of deviance at the 𝑡th iteration, and 𝜖 is a small value (say 10−5).

2.2.3 EM-IWLS
Similar to the EM-CD algorithm, the EM-IWLS algorithm is an iterative EM-based algorithm where the iterative weighted least
squares algorithm is used to find the estimate of 𝜷, 𝜙 that maximizes 𝐸(𝑄1). The iterative weighted least squares algorithm was
originally proposed to fit the classical generalized linear models, and generalized to fit some Bayesian hierarchical models.35
Yi and Ma36 formulated Student’s t-distribution and double exponential distribution as hierarchical normal distributions such
that generalized linear models with shrinkage priors can be easily fitted using IWLS in combination with EM algorithm. In this
work, we adapt the EM-IWLS paradigm to fit BHAM with spike-and-slab spline prior .

A double exponential prior, 𝛽|𝑆 ∼ 𝐷𝐸(0, 𝑆) can be formulated as a hierarchical normal prior with unknown variance 𝜏2

integrated out:
𝛽|𝜏2 ∼ 𝑁(0, 𝜏2)
𝜏2|𝑆 ∼ 𝐺𝑎𝑚𝑚𝑎(1, 1∕(2𝑆2)),

For the mixture double exponential priors, we can define the scale parameter 𝑆 = (1 − 𝛾)𝑠0 + 𝛾𝑠1 following Equation (4). The
change in the prior formulation in turn leads to the change in the log posterior density function, as 𝑄1 needs to account for the
hyperprior of 𝜏2:

𝑄1(𝜷, 𝜙) = log𝑓 (y|𝜷, 𝜙) +
𝑝
∑

𝑗=1

⎡

⎢

⎢

⎣

log 𝑓 (𝛽𝑗|𝜏2𝑗 ) + log 𝑓 (𝜏2𝑗 |𝑆𝑗) +
𝐾𝑗
∑

𝑘=1
{log 𝑓 (𝛽∗𝑗𝑘|𝜏

∗2
𝑗𝑘) + log 𝑓 (𝜏∗2𝑗𝑘|𝑆

∗
𝑗 )}

⎤

⎥

⎥

⎦

. (9)

Since 𝝉2 are not of our primary interest, we treat them as the “missing” data in addition to the latent indicators 𝜸,
and hence construct the expectation 𝐸𝜸,𝝉2|Θ(𝑡−1)(𝑄1) in the E-step. To note, unlike the same latent indicator 𝛾∗𝑗 which
is shared by the coefficients of the non-linear terms 𝛽∗𝑗𝑘 for 𝑘 = 1,… , 𝐾𝑗 , 𝜏2𝑗𝑘 is coefficient specific for 𝛽∗𝑗𝑘.
𝐸(𝑆𝑗

−1
|𝛽𝑗 , 𝑠0, 𝑠1), 𝐸(𝑆∗−1

𝑗 |𝜷∗
𝑗 , 𝑠0, 𝑠1), 𝐸(𝜏2𝑗 |𝑆𝑗 , 𝛽𝑗) and 𝐸(𝜏∗2𝑗𝑘|𝑆

∗
𝑗 , 𝛽

∗
𝑗𝑘) needs to be calculated to formulate 𝐸(𝑄1). As neither

𝐸(𝑆𝑗
−1
|𝛽𝑗 , 𝑠0, 𝑠1) nor 𝐸(𝑆∗−1

𝑗 |𝜷∗
𝑗 , 𝑠0, 𝑠1) depends on 𝜏2s, they can be derived using Equation (7). On the other hand, 𝜏2, follow-

ing gamma distributions, is a conjugate prior for the normal variance, and the conditional posterior density of 𝜏−2 is an inverse
Gaussian distribution. 𝐸(𝜏−2𝑗 ) and 𝐸(𝜏∗−2𝑗𝑘 ) are calculated using the closed form equation

𝐸(𝜏−2𝑗 |𝑆𝑗 , 𝛽𝑗) = 𝑆𝑗
−1∕|𝛽𝑗| 𝐸(𝜏∗−2𝑗𝑘 |𝑆

∗
𝑗 , 𝛽

∗
𝑗𝑘) = 𝑆∗

𝑗
−1∕|𝛽∗𝑗𝑘|,

where 𝑆𝑗 and 𝑆∗
𝑗 are replaced by the expectation and 𝛽s are replaced with 𝛽(𝑡−1). With simplification (up to constant additive

terms), we have
𝐸(𝑄1) = log𝑓 (y|𝜷, 𝜙) −

𝑝
∑

𝑗=1

⎡

⎢

⎢

⎣

2𝐸(𝜏𝑗−2)𝛽𝑗2 +
𝐾𝑗
∑

𝑘=1
2𝐸(𝜏∗𝑗𝑘

−2)𝛽∗𝑗𝑘
2
⎤

⎥

⎥

⎦

. (10)
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2𝐸(𝜏−2)𝛽2 can be seen as the kernel of a normal density with mean 0 and variance 𝐸(𝜏2), and we can formulate the coefficients
𝜷 as a multivariate normal distribution with means 𝟎 and variance covariance matrix 𝚺𝜏2 , where 𝚺𝜏2 is a diagonal matrix with
𝐸(𝜏2)s on the diagonal,

𝜷 ∼ MVN(0,𝚺𝜏2).
Meanwhile, following the classical IWLS, we can approximate the generalized model likelihood at each iteration with a

weighted normal likelihood:
𝑓 (y|𝜷, 𝜙) ≈ MVN(z|𝑿𝜷, 𝜙𝚺)

where the ‘normal response’ 𝑧𝑖 and ‘weight’ 𝑤𝑖 are called the pseudo-response and pseudo-weight respectively. The pseudo-
response and the pseudo-weight are calculated by

𝑧𝑖 = �̂�𝑖 −
𝐿′(𝑦𝑖|�̂�𝑖)
𝐿′′(𝑦𝑖|�̂�𝑖)

𝑤𝑖 = −𝐿′′(𝑦𝑖|�̂�𝑖),

where �̂�𝑖 = (𝑿�̂�)𝑖, 𝐿′(𝑦𝑖|�̂�𝑖, �̂�) and 𝐿′′(𝑦𝑖|�̂�𝑖, �̂�) are the first and second derivative of the log density, log 𝑓 (y𝑖|𝜷, 𝜙) with respect
to 𝜂𝑖.

With 𝒛 ∼ MVN(𝑿𝜷, 𝜙𝚺) and 𝜷 ∼ MVN(0, 𝜙𝚺𝜏2), we can augment the two multivariate normal distributions and update the
estimates for 𝜷 and 𝜙 via least squares in each iteration of the EM algorithm. We create the augmented response, augmented
data, and augmented variance-covariance matrix following

𝒛∗ =
[

𝒛
𝟎

]

𝑿∗ =
[

𝑿
𝑰

]

𝚺∗ =
[

𝚺 𝟎
𝟎 𝚺𝜏2∕𝜙

]

,

such that
𝒛∗ ∼ MVN(𝑿∗𝜷, 𝜙Σ∗).

Using the least squares estimators to update 𝜷 and 𝜙, we have
𝜷 (𝑡) = (𝑿𝑇

∗𝚺
−1𝑿∗)−1𝑿𝑇

∗𝚺
−1𝒛∗ 𝜙(𝑡) = 1

𝑛
(𝒛∗ −𝑋∗𝜷 (𝑡))𝑇𝚺−1(𝒛∗ −𝑋∗𝜷 (𝑡)).

To note, the variance-covariance matrix of the coefficient estimates variance-covariance matrix can be derived in the EM-IWLS
algorithm and in turn can be used for statistical inferences,

Var(𝜷 (𝑡)) = (𝑿𝑇
∗𝚺

−1𝑿∗)−1𝜙(𝑡).

Totally, the proposed EM-IWLS algorithm is summarized as follows:
1) Choose a starting value 𝜷 (0) and 𝜽(0) for 𝜷 and 𝜽. For example, we can initialize 𝜷 (0) = 𝟎 and 𝜽(0) = 𝟎.5

2) Iterate over the E-step and M-step until convergence
E-step: calculate 𝐸(𝛾𝑗), 𝐸(𝛾∗𝑗 ) and 𝐸(𝜏−2𝑗 ), 𝐸(𝜏∗−2𝑗𝑘 ) with the estimates Θ(𝑡−1) from the previous iteration
M-step:

a) Based on the current value of 𝛽, calculate the pseudo-data 𝑧(𝑡)𝑖 and the pseudo-weights 𝑤(𝑡)
𝑖b) Update 𝜷 (𝑡) by runing the augmented weighted least squared

c) If 𝜙 is present, update 𝜙

Similar to EM-CD, we assess convergence by the criterion, |𝑑(𝑡)−𝑑(𝑡−1)
|∕(0.1+|𝑑(𝑡)

|) < 𝜖, where 𝜖 is a small value (say 10−5).

2.3 Selecting Optimal Scale Values
Our proposed models, BHAM, require two preset scale parameters (𝑠0, 𝑠1). Hence, we need to find the optimal values for the
scale parameters such that the model reaches its best prediction performance regarding a criteria of preference. This would
be achieved by constructing a two dimensional grid, consists of different pairs of (𝑠0, 𝑠1) value. However, previous research
suggested the value of slab scale 𝑠1 have less impact on the final model and is recommended to be set as a generally large value,
e.g. 𝑠1 = 1, that provides no or weak shrinkage.26 As a result, we focus on examining different values of spike scale 𝑠0. Instead
of the 2-D grid, We consider a sequence of 𝐿 decreasing values {𝑠𝑙0} ∶ 0 < 𝑠10 < 𝑠20 < ⋯ < 𝑠𝐿0 < 𝑠1. Increasing the spike
scale 𝑠0 tends to include more non-zero coefficients in the model. A measure of preference calculated with cross-validations
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(CV), e.g. deviance, area under the curve (AUC), mean squared error, can be used to facilitate the selection of a final model.
The procedure is similar to the Lasso implemented in the widely used R package glmnet, which quickly fits Lasso models over
a list of values of regularization parameters 𝜆 , giving a sequence of models for users to choose from.

3 SIMULATION STUDY

In this section, we compare the performance of the proposed models to four alternative models: component selection and
smoothing operator (COSSO)37, adaptive COSSO38, generalized additive models with automatic smoothing39, SB-GAM14.
COSSO is one of the earliest smoothing spline models that consider sparsity-smoothness penalty. Adaptive COSSO improved
upon COSSO by using adaptive weight for penalties such that the penalty of each functional component are different for extra
flexibility. Generalized additive models with automatic smoothing, hereafter mgcv, is one of the most popular models for non-
linear effect interpolation and prediction. SB-GAM is the first spike-and-slab lasso GAM. We implement COSSO and adaptive
COSSO with R package cosso 2.1-1, generalized additive models with automatic smoothing with R package mgcv 1.8-31,
SB-GAM with R package sparseGAM 1.0. COSSO models and SB-GAM do not provide flexibility to define smoothing func-
tions, and hence use the default choices. Both mgcv and proposed models allow customized smoothing functions and we choose
the cubic regression spline. We controll the dimensionality of each smoothing function, 10 bases, for all different choices of
smoothing functions. We use 5-fold CV with the default selection criteria to select the final model for COSSO models, SB-
GAM and the proposed models. 20 default candidates of tuning parameters (𝑠0 in BHAM, 𝜆0 in SB-GAM) are examined for
SB-GAM and the proposed models which allow user-specification of tuning candidates. All computation was conducted on a
high-performance 64-bit Linux platform with 48 cores of 2.70GHz eight-core Intel Xeon E5-2680 processors and 24G of RAM
per core and R 3.6.240.

Other related methods for high-dimensional GAMs also exist, notably the methods of sparse additive models by Ravikumar et
al.5 and stochastic search term selection for GAM16. However, we exclude these methods from current simulation study because
of demonstrated inferior predictive performance compared to mgcv and scalability issues with increased number of predictors.15

3.1 Monte Carlo Simulation Study
We follow the data generating process described in Bai14. We first generate 𝑛 = 500 training data points with 𝑝 =
4, 10, 50, 100, 200 predictors respectively, where the predictors 𝑋 are simulated from a multivariate normal distribution
MVN𝑛×𝑝(0, 𝐼𝑃 ). We then simulate the outcome 𝑦 from two distributions, Gaussian and binomial with the identity link and logit
link 𝑔(𝑥) = log( 𝑥

1−𝑥
) respectively. The mean of each outcome were simulated via the following function

𝔼(𝑌 ) = 𝑔−1(5 sin(2𝜋𝑥1) − 4 cos(2𝜋𝑥2 − 0.5) + 6(𝑥3 − 0.5) − 5(𝑥24 − 0.3))

for Gaussian and binomial outcomes. Gaussian outcomes requires specification of dispersion, where we set the dispersion param-
eter to be 1. In this data generating process, we have 𝑥1, 𝑥2, 𝑥3, 𝑥4 as the active covariates, while the rest covariates are inactive,
i.e. 𝑓𝑗(𝑥𝑗) = 0 for 𝑗 = 4,… , 𝑝. Another set of independent sample of size 𝑛𝑡𝑒𝑠𝑡 = 1000, are created following the same data
generating process, serving as the testing data. We generate 50 independent pairs of training and testing datasets to evaluate
the prediction performance of the chosen models, where training datasets are used to fit the models and testing datasets used to
calculate assessment measures.

To evaluate the predictive performance of the models, the statistics, 𝑅2 for Gaussian model and AUC for binomial model
calculated based on the testing dataset, are averaged across 50 simulations. Computation time for model selection, final model
fitting and prediction are recorded for all simulations.

Table 1 here
Table 2 here

The predictive performances have a consistent pattern across the two distributions of outcomes. Across all the scenarios,
COSSO and adaptive COSSO have the least favorable performance among the applicable methods examined (See Table 1 and
2). To note, mgcv doesn’t support high-dimensional analysis, i.e. the number of coefficients are greater than the sample size,
and hence not evaluated when 𝑝 = 100, 200. mgcv predicts well when 𝑝 is small or moderate (𝑝 = 4, 10), and deteriorate
when the number of predictors increase. Among the three fast-computing Bayesian hierarchical models, the proposed models,
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BHAM-IWLS and BHAM-CD predicts better than SB-GAM when the dimension of are moderate (p=4, 10, 50). Particularly,
BHAM-IWLS performs as good as mgcv if not better. However, in high dimensional case where we mimic the situation the
signals are extremely sparse, SB-GAM has better performance than the proposed method. However, the BHAM-CD has extreme
computational advantage over SB-GAM (see Table 3) without sacrificing much of the prediction accuracy.

4 METABOLOMICS DATA ANALYSIS

In this section, we apply the proposed models BHAM, fitted with the EM-CD algorithm, to analyze two real-world metabolomics
datasets where the outcomes are binary and continuous respectively. We demonstrate the improved prediction performance
compared to the other Bayesian hierarchical additive model, SB-GAM14, while being computationally efficient (see Table ??).

Table ?? here

4.1 Emory Cardiovascular Biobank
We use the proposed models BHAM to analyze a metabolic dataset from a recently published research41 studying plasma
metabolomic profile on the three-year all-cause mortality among patients undergoing cardiac catheterization. The dataset is pub-
licly available via Dryad 42. It contains in total of 776 subjects from two cohorts. As there is a large number of non-overlapping
features among the two cohorts, we use the cohort with larger sample size (N=454). There are initially 6796 features in the
dataset, which is too large to be practically meaningful to analyze. Hence, we perform a univariate screening procedure on the
features, via GAM implemented in mgcv, and choose the the top 200 features with smallest p-values. We use 5-knot spline
additive models for binary outcome using two different models, the proposed BHAM and the SB-GAM. 10-Fold CV are used
to choose the optimal tuning parameters of each framework with respect to the default selection criterion implemented in the
software. Out-of-bag samples are used for prediction performance evaluation, where deviance, AUC, Brier score defined as
1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2, and misclassication error defined as 1

𝑛

𝑛
∑

𝑖=1
𝐼(|𝑦𝑖 − �̂�𝑖| > 0.5) are calculated. BHAM-CD obtains superior AUC,

Brier score, and misclassification error in the out-of-bag samples compared to SB-GAM (see Table 5).
Table 5 here

4.2 Weight Loss Maintenance Cohort
We use the proposed models BHAM to analyze metabolomics data from a recently published study43 on the association between
metabolic biomarkers and weight loss, where the dataset is publicly available44. In this analysis, we primarily focuse on the
analysis of one of the three studies included, weight loss maintenance cohort45, due to the drastically different intervention
effects. In the dataset, 765 metaboliltes in baseline plasma collected were profiled using liquid chromatography mass spectrom-
etry. Quality control and natural log transformation are performed during metabolites data preparation. The outcome of interest
are standardized percent change in insulin resistance, and hence modeled using a Gaussian model. After removing missing dat-
apoints and addressing outliers in the data, there are 𝑝=237 features remaining in the analysis. 5-Knot spline additive models for
the Gaussian outcome are constructed using two different models, the proposed BHAM and the SB-GAM. 10-Fold CV are used
to choose the optimal tuning parameters of each framework with respect to the default selection criterion implemented in the
software. Out-of-bag samples are used for prediction performance evaluation, where deviance, 𝑅2, mean squared error (MSE)
defined as 1

𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2, and mean absolute error (MAE) defined as 1

𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖| are calculated. BHAM-CD obtains superior

𝑅2, MSE, and MAE in the out-of-bag samples compared to SB-GAM (see Table 6).
Table 6 here
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5 DISCUSSION

In the paper, we described a novel generalized additive model using Bayesian hierarchical priors, particularly the proposed spike-
and-slab spline prior for bi-level functional selection. Meanwhile, we introduced two optimization based algorithms for model
fitting. The algorithms can be easily scale up to address high-dimensional data analysis in a computational efficient manner.
Via simulations, we demonstrated that the proposed model provides as good, if not better, prediction performance compared to
some state-of-the-art non-linear modeling devices.

The proposed model shares many commonality with an high-dimensional Bayesian GAM, SB-GAM14, independently
developed around the same time of this work. Both frameworks emphasize computational efficiency by deploying group spike-
and-slab lasso type of priors and optimization-based fast and scalable algorithms. Bai provided the theoretical proof for the
consistency of variable selection using group spike-and-slab lasso prior. Nevertheless, SB-GAM fails to address the bi-level
functional selection and the model inference. The proposed model provides solutions to these remaining questions while main-
taining the same level of prediction accuracy. Moreover, the proposed model renders additional flexibility to model specification,
allowing various choices of smoothing functions and degrees of freedom.

For translational science purpose, we implemented the proposed model in a R package BHAM, deposited at https://github.com/
boyiguo1/BHAM. To maximize the flexibility of smoothing function specification, we deploy the same programming grammar
as in the state-of-the-art package mgcv, in contrast to previous tools where smoothing functions are limited to the default ones.
Ancillary functions are provided for model specification in high-dimensional settings, curve plotting and functional selection.
In addition, in BHAM, we streamline the model fitting algorithms to support other popular Bayesian hierarchical prior for the
smoothing functions, such as Student’s T distribution, double exponential distribution, mixture normal and T distribution’s.
These priors could be helpful when the sparse assumption is weak or not necessary.,

There are some improvements possible for the proposed models. First of all, the proposed model achieves a bi-level selection
via the two-part spike-and-slab spline prior. Nevertheless, this set-up could result in a situation that is not theoretically sound:
the non-linear component is selected, but the linear component is not. We currently address it analytically by including the
linear component in the model when non-linear component is selected. Another possible solution is to impose a dependent
structure of 𝛾∗𝑗 on 𝛾𝑗0 , i.e. 𝛾∗𝑗 |𝛾0𝑗 , 𝜃𝑗 . Secondly, the computational time for fitting a BHAM model with EM-IWLS algorithms
can be improved. Current implementation of the EM-IWLS algorithm jointly updates all coefficients in each iteration, which
requires a lot computation resources. This jointly updating procedure can be enhanced by adapting a backfitting step3 where each
smoothing function are updated individually. Thirdly, when using the proposed model in real data analysis where a screening
procedure is implemented before joint predictive modeling. we recommend to include the screening procedure in the cross-
validation during model selection.46 For the sake of model comparison, we fit the models using the same pool of predictors in
Section 4.1.

Our future efforts direct to modeling survival outcomes and integrative analysis. While the proposed model addresses a great
deal of analytic problem, analyzing the time-to-event outcome remains unsolved. An naive approach would be convert a time-
to-event outcome to a Poisson outcome following Whitehead47. However, it would be more efficient to directly fit Cox models
via penalized pseudo likelihood function48. Meanwhile, with growing understanding of biological structure within -omics field,
it is appealing to integrate external biology information in the modeling process. The main motivation for integrative models
is that biologically informed grouping of weak effects increases the power of detecting true associations between features and
the outcome49, and stabilizes the analysis results for reproducibility purpose. Such integration can be achieved by setting up a
structural hyperprior on the inclusion indicator of the smoothing function null space 𝜸0. The similar strategy has been used in
Ferrari and Dunson50.

https://github.com/boyiguo1/BHAM
https://github.com/boyiguo1/BHAM
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Linear Space: Nonlinear Space:

𝛾𝑗 ∼ 𝐵𝑖𝑛(1, 𝜃𝑗)

𝛽𝑗 ∼ 𝐷𝐸(0, (1 − 𝛾𝑗)𝑠0 + 𝛾𝑗𝑠1)

𝛾∗𝑗 ∼ 𝐵𝑖𝑛(1, 𝛾𝑗𝜃𝑗)

𝛽∗𝑗𝑘 ∼ 𝐷𝐸(0, (1 − 𝛾∗𝑗 )𝑠0 + 𝛾∗𝑗 𝑠1)(𝑠0, 𝑠1)

𝜷 = (𝛽1, 𝜷∗
1,… , 𝛽𝑗 , 𝜷∗

𝑗 ,… , 𝛽𝑝, 𝜷∗
𝑝)

𝜃𝑗 ∼ 𝐵𝑒𝑡𝑎(𝑎, 𝑏)

(𝑎, 𝑏)

𝑦𝑖 ∼ 𝐸𝑥𝑝𝑜.𝐹𝑎𝑚.(𝑔−1(𝜷𝑇𝑿𝑖), 𝜙)

FIGURE 1 Directed acyclic graph of the proposed Bayesian hierarchical additive model with parameter expansion. Elliposes
are stochastic nodes, rectangles and are deterministic nodes.

P BHAM-IWLS BHAM-CD COSSO Adaptive COSSO mgcv SB-GAM
4 0.90 (0.01) 0.90 (0.01) 0.75 (0.03) 0.71 (0.13) 0.90 (0.01) 0.82 (0.04)
10 0.90 (0.01) 0.88 (0.01) 0.67 (0.15) 0.76 (0.03) 0.90 (0.01) 0.82 (0.04)
50 0.88 (0.01) 0.80 (0.04) 0.43 (0.17) 0.57 (0.19) 0.86 (0.02) 0.82 (0.04)
100 0.80 (0.07) 0.73 (0.06) 0.41 (0.19) 0.51 (0.22) - 0.81 (0.04)
200 0.72 (0.10) 0.77 (0.02) 0.33 (0.15) 0.44 (0.19) - 0.82 (0.04)

TABLE 1 The average and standard deviation of the out-of-sample 𝑅2 measure for Gaussian outcomes over 50 iterations.
The models of comparison include the proposed Bayesian hierarchical additive model (BHAM) fitted with Iterative Weighted
Least Square (BHAM-IWLS) and Coordinate Descent (BHAM-CD) algorithms, component selection and smoothing operator
(COSSO), adaptive COSSO, mgcv and sparse Bayesian generalized additive model (SB-GAM). mgcv doesn’t provide estimation
whe number of parameters exceeds sample size i.e. p = 100, 200.
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P BHAM-IWLS BHAM-CD COSSO Adaptive COSSO mgcv SB-GAM
4 0.94 (0.01) 0.94 (0.02) 0.90 (0.02) 0.90 (0.01) 0.94 (0.01) 0.93 (0.01)

10 0.93 (0.01) 0.89 (0.02) 0.85 (0.04) 0.86 (0.03) 0.92 (0.04) 0.92 (0.01)
50 0.92 (0.01) 0.89 (0.01) 0.83 (0.02) 0.83 (0.02) 0.76 (0.04) 0.92 (0.01)

100 0.89 (0.02) 0.86 (0.02) 0.83 (0.02) 0.84 (0.02) - 0.92 (0.01)
200 0.88 (0.01) 0.86 (0.02) 0.82 (0.05) 0.81 (0.08) - 0.92 (0.01)

TABLE 2 The average and standard deviation of the out-of-sample area under the curve measures for binomial outcomes over 50
iterations. The models of comparison include the proposed Bayesian hierarchical additive model (BHAM) fitted with Iterative
Weighted Least Square (BHAM-IWLS) and Coordinate Descent (BHAM-CD) algorithms, component selection and smoothing
operator (COSSO), adaptive COSSO, mgcv and sparse Bayesian generalized additive model (SB-GAM). mgcv doesn’t provide
estimation whe number of parameters exceeds sample size i.e. p = 100, 200.

TABLE 4 Model fitting time in seconds for two metabolomics data analyses, from Emory Cardiovascular Biobank (ECB) and
Weight Loss Maintenance Cohort (WLM). It tabulates the computation time for cross-validation step (CV) and optimal model
fitting step (Final), and total computation time (Total) for the proposed model BHAM with EM-CD algorithm (BHAM-CD) and
the model of comparison SB-GAM.\label{tab:time_real_data}

BHAM-CD SB-GAMData
CV Final Total CV Final Total

ECB 225.2 3.0 228.2 3,506.4 34.4 3,540.7
WLM 483.1 7.6 490.7 3,116.0 32.7 3,148.7
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Methods Deviance AUC Brier Misclass
BHAM-CD 455.69 0.74 0.16 0.21
SB-GAM 1230.06 0.71 0.21 0.24

TABLE 5 Prediction performance of BHAM fitted with Cooridnate Descent algorithm (BHAM-CD) and SB-GAM models for
Emory Cardiovascular Biobank by 10-fold cross-validation, including deviance, area under the curve (AUC), Brier score, and
misclassification error (Misclass) where class labels are defined using threshold = 0.5.

Methods Deviance 𝑅2 MSE MAE
BHAM-CD 665.63 0.07 0.94 0.75
SB-GAM 666.83 0.03 0.98 0.77

TABLE 6 Prediction performance of of BHAM fitted with Cooridnate Descent algorithm (BHAM-CD) and SB-GAM models
for Weight Loss Maintenance Cohort by 10-fold cross-validation, including deviance, 𝑅2, mean squared error (MSE), and mean
absolute error (MAE).
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