

Introduction to Secure Web Coding

Presented by Gavin Porter

1.1

1.2

Introductions

1.3

FAQ for Today
Toilets

Breaks and labs are good times to visit!

Fire Alarms

Food

Questions

2.1

Common Standards
Payment Card Industry (PCI) Data Security Standard (DSS)

Australian Government Information Security Manual (AG

ISM)

New Zealand Information Security Manual (NZISM)

ISO 27002 - commercial (non-public) standard of security

controls for the design & maintenance of IT systems.

2.2

PCI Standards
PCI-DSS

Two really simple principles to remember:

Never touch the full credit card number

Redirect users to a dedicated payment page from a PCI

DSS certified payment gateway.

2.3

What do we need to do? -
ASDISM / NZISM

Key coding sections:

Software Application Development -> Secure

Programming

Access Control -> Identification and Authentication

Access Control -> Event Logging and Auditing

Web Application Development

2.4

Secure Programming
Software developers should use secure programming
practices when writing code, including:

designing software to use the lowest privilege level needed

to achieve its task;

denying access by default;

checking return values of all system calls; and

validating all inputs.

2.5

User Identification and Authentication

Users must be uniquely identifiable (no shared accounts);

System user authentication data to be protected when in

transit on networks;

Minimum password complexity.

2.6

User Identification and Authentication (CONT.)

Password management policy;

e.g. don't store passwords in the clear;

Account lockout policy;

e.g. lock user accounts after three failed logon attempts

Displaying when a user last logged in.

2.7

Event Logging and Auditing

Log at least the following events for all software components:

user login;

privileged operations, e.g. new users, role changes,

permission changes;

failed attempts to elevate privileges;

failed attempts to access files, functions or services;

security related alerts and failures.

2.8

Event Logging and Auditing (CONT.)

Who did what, where and when?

The Where needs to include the device that generated the
event and the source IP of the web request.

2.9

Web Applications
Use a robust web application framework

It should assist with complex components such as session
management, input handling and cryptographic operations.

2.10

Input Handling

It is essential that web applications do not
trust any input such as the URL and its
parameters, HTML form data, cookie values
and HTTP request headers without

validating and/or sanitising it.

2.11

Output Handling

Output encoding, e.g. HTML or URL, is essential on all output
produced by a web application.

It is particularly useful where external
data sources, which may not be subject to
the same level of input filtering, are output to

users.

2.12

Browser-based security controls

Browser-based security controls such as
Content Security Policy, HTTP Strict
Transport Security and Frame Options can be
leveraged by web applications to help

protect the web application and its users.

2.13

OWASP

For web application development, agencies should follow the
Open Web Application Security Project (OWASP) guide to
building secure Web applications and Web services.

3.1

OWASP
Top Ten List of Security Weaknesses

Cheat Sheets (lots)

Zed Attack Proxy (ZAP)

Secure Coding Quick Reference Guide

http://bell.wgtn.cat-it.co.nz/OWASP_SCP_Quick_Reference_Guide_v2.pdf

3.2

OWASP Top Ten
Aimed at web applications (and web APIs).

The rest of the day will be covering each vulnerability along
with interactive LAB sessions using a framework called
bWAPP.

New version released in November 2017.

4.1

OWASP Top Ten 2017
A1 Injection [was #1]

A2 Broken Authentication [was #2]

A3 Sensitive Data Exposure [was #6]

A4 XML External Entities (XXE) [new]

A5 Broken Access Control [was #4 and #7]

A6 Security Misconfiguration [was #5]

4.2

OWASP Top Ten 2017
A7 Cross-Site Scripting [was #3]

A8 Insecure Deserialization [new]

A9 Using Components with Known Vulnerabilities [was #9]

A10 Insufficient Logging & Monitoring [new]

Old A8 - Cross-Site Request Forgery

4.3

A1 - Injection
Injection flaws occur when an application sends untrusted
data to an interpreter.

Examples:

SQL;

NoSQL;

LDAP;

XML;

OS commands.

4.4

A1 - Injection
SQL

mysql_query("select * from users where name = '" + $name + "'");

$name = "mike o'connor";

ERROR: syntax error at or near "connor"

LINE 1: select * from users where name = 'mike o'connor';

$name = "bobby';drop table users;--";

mysql_query("select * from users where name = 'bobby';

 drop table users;--'");

4.5

A1 - Injection
SQL

5.1

A1 - Injection
OS commands

system("ping -c 3 $hostname");

$hostname = "google.com;cat /etc/passwd"

system("ping -c 3 google.com;cat /etc/passwd");

5.2

A1 - Injection
OS command example

Netgear R7000 - Real Command Injection (Dec 2016)

https://www.exploit-db.com/exploits/40889/

Open a telnet service on port 45:

http://router_ip/;telnetd$IFS-p$IFS'45'

https://www.exploit-db.com/exploits/40889/

5.3

A1 - Injection
Prevention

Input validation;

Escape special characters;

Separate untrusted data from commands.

5.4

A1 - Injection
Prevention | Separating data

Parameterized Queries;

Insert placeholders in queries;

Supply data separately.

Use a 'Safe' API.

A database ORM to provide commonly needed functionality.

6.1

A2 - Broken Authentication
Credentials not protected when stored, or transmitted;

Credentials can be guessed or overwritten;

e.g. brute-force on a recover password page,

or, knowledge-based security answers

Session IDs...

exposed in URLs;

not changed after login;

not invalidated after logout or timeout.

6.2

A2 - Broken Authentication
Prevention

Use multi-factor authentication;

Disable default accounts / change default passwords;

Enforce a 'sensible' password policy;

Check for weak passwords;

Limit or increasingly delay failed login attempts;

Detect / prevent account enumeration attacks against

registration and recovery pages.

6.3

A2 - Broken Authentication
Prevention

Use random session cookies;

Use 'secure' and 'HttpOnly' for session cookies;

Use HTTPS including local assets and third-party scripts;

Use an authentication and session management

framework.

SetCookie: sessionid=kp0l2g67g7ki9mbjb1rgf1a3f5; httpOnly; secure

6.4

A2 - Broken Authentication
Auto-complete

Tell browsers not to cache information in an input field:

autocomplete="off"

Great for sensitive information such as credit card number.

Historically often recommended for password fields.

but, blocks password managers.

HTML5 allows password managers to override page instructions.

6.5

A2 - Broken Authentication
Auto-complete | Browser Support

Browsers started ignoring autocomplete for password fields:

Internet Explorer - version 11 (November 2013)

Firefox - version 30 (February 2014)

Safari - version 7.02 (February 2014)

Chrome - version 34 (April 2014)

7.1

A3 - Sensitive Data Exposure
was A6

What counts as 'Sensitive'?

Passwords;

Personal information;

Health information;

Financial information, such as credit cards.

7.2

A3 - Sensitive Data Exposure
How can it be exposed?

Is it transmitted in clear text across a network?

Is it stored encrypted? backups?

Is it stored protected by an access control list?

Are the crypto algorithms strong?

7.3

A3 - Sensitive Data Exposure
Prevention

Use encryption!

Use access controls!

Use strong encryption!

Destroy data when no longer required.

Don't cache sensitive data at the client.

Store encryption keys sensibly (private means private).

7.4

Government 'Paranoid' Approved Crypto

Approved Symmetric Encryption Algorithm:

AES with a key length of at least 256 bits.

Approved Hashing Algorithm:

Secure Hashing Algorithm 2 (i.e. SHA-256, SHA-384 and SHA-512)

Approved Asymmetric/Public Key Algorithms:

Elliptic Curve Diffie Hellman (ECDH) - used for agreeing on encryption

session keys;

Elliptic Curve Digital Signature Algorithms (ECDSA) - used for digital

signatures.

7.5

NZISM Approved TLS Cryptographic Algorithms

This is what we should be using for any government system
doing HTTPS:

$ openssl ciphers 'EECDH+AES256+AESGCM+ECDSA!SHA1'

ECDHE-ECDSA-AES256-GCM-SHA384

Doesn't work with many/all web browsers.

https://en.wikipedia.org/wiki/Transport_Layer_Security#Web_br

https://en.wikipedia.org/wiki/Transport_Layer_Security#Web_browsers

7.6

SSL Configuration
Generator

https://mozilla.github.io/server-side-tls/ssl-config-generator/

https://mozilla.github.io/server-side-tls/ssl-config-generator/

8

Video | Wireshark

0:00 / 2:43

9.1

bWAPP, a buggy web application
An open-source deliberately insecure web application;

For learning about how to find, and how to prevent

vulnerabilities;

Based on OWASP Top Ten 2013;

Lots of labs.

9.2

LAB #1 | bWAPP
Go to http://[a.b.c.d]/

Select your 'student number', then login as bee, with
password bug and security setting as "low".

Work through your worksheets for SQL Injection and
Command Injection.

10.1

A4 - XML External Entities (XXE)
The 'Entity' statement defines entities in the XML document
type definition (DTD).

Format is:

<!ENTITY [%] name [SYSTEM|PUBLIC publicID] resource [NDATA notation] >

Resource can be a URL to reference an external entity.

10.2

A4 - XML External Entities (XXE)
Attacks occur when...

XML input containing a reference to an external entity is
processed by a weakly configured XML parser.

This attack may lead to:

disclosure of confidential data

server side request forgery

port scanning from parser machine

...and other system impacts.

10.3

A4 - XML External Entities (XXE)
Example

<?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE foo [

 <!ELEMENT foo any>

 <!ENTITY xee SYSTEM "file:///etc/passwd">

]>

10.4

A4 - XML External Entities (XXE)
Common sources

SOAP

SAML

Any untrusted XML that is processed

10.5

A4 - XML External Entities (XXE)
Prevention

Use a simpler data format such as JSON

Use a standard XML processing library and upgrade it

Use whitelist input validation on the XML data

and use XSD validation

Disable XML external entity and DTD processing

Look at OWASP 'XXE Prevention' cheatsheet

https://www.owasp.org/index.php/XML_External_Entity_%28XXE%29_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/XML_External_Entity_%28XXE%29_Prevention_Cheat_Sheet

10.6

A5 - Broken Access Control
Was A4 - Insecure Direct Object References

Access to an object, such as a file, or a REST API call, is
permitted without the user going through the proper access
control and authorisation checks.

or access to a public object under embargo.

or internal document posted to AWS data store without
access controls.

10.7

A5 - Broken Access Control
Insecure Direct Object References | Examples

http://store.example.com/invoices/12345

http://fileserver.example.com/getFile?

file=../../../../../../../../../etc/passwd

http://store.example.com/invoices/12345
http://fileserver.example.com/getFile?file=../../../../../../../../../etc/passwd

10.8

A5 - Broken Access Control
Insecure Direct Object References | Examples

Always perform an access control for every request;

Do not use direct object references:

Use per user indirect object references;

Use per session indirect object references.

Use UUIDs instead of plain integers for ID numbers

Do not allow a user to use ../ to access a resource

11.1

A5 - Broken Access Control
Was A7 - Missing Function Level Access Control

Inadequate access control allows attackers to access
unauthorised functionality, particularly administrative
functionality.

11.2

A5 - Broken Access Control
Missing Function Level Access Control | Examples

http://bank.example.com/transfer?

from=12345&to=67890&amount=10000000

http://hr.example.com/admin/setPay.php?

employee=1234&salary=9999999

http://bank.example.com/transfer?from=12345&to=67890&amount=10000000
http://hr.example.com/admin/setPay.php?employee=1234&salary=9999999

11.3

A5 - Broken Access Control
Missing Function Level Access Control | Prevention

Enforce access control on the server, not just in the client

Enforce access control using data that the user cannot

tamper with

Use a principle of 'Deny by default'

12

LAB #2
Go to http://[a.b.c.d]/

Work through the access controls worksheet.

13.1

A6 - Security Misconfiguration
was A5

Security misconfiguration can happen at any level of an
application stack, including the platform, web server,
application server, database, framework, and custom code.

13.2

A6 - Security Misconfiguration
Prevention

Have a defined configuration / hardening process for each

component of the tech stack;

Disable unnecessary and default features and accounts;

Disable stack traces and detailed error messages in production.

Use security scanning tools, e.g. OpenVAS, Nessus, Qualys.

14.1

Intercepting proxies
Proxies that allow interception and modification of the
request and response of web requests.

Some examples:

OWASP ZAP (open source)

Burp (commercial)

Some proxies can also scan a site for potential vulnerabilities.

14.2

Video | ZAP proxy

0:00 / 7:00

15

OWASP ZAP | Proxy setup
Change proxy settings in Firefox:

Preferences -> Advanced -> Network -> Settings

Select Manual proxy configuration

Set HTTP Proxy to 127.0.0.1, Port to 8080

Set No Proxy for to blank

For Chrome you need to use the command-line:

google-chrome --proxy-server=host:port

16.1

A7 - Cross-Site Scripting (XSS)
Was A3

XSS flaws occur when an application includes users supplied
data in a page sent to a browser without properly validating
or escaping that content.

16.2

A7 - Cross-Site Scripting (XSS)
What can you do with XSS?

Hijack a user's session;

Hijack a user's browser;

Deface websites.

16.3

A7 - Cross-Site Scripting (XSS)
Two types of XSS:

Stored;

Reflected.

16.4

A7 - Cross-Site Scripting (XSS)
Example

< script>alert(document.cookie);< /script>

16.5

16.6

A7 - Cross-Site Scripting (XSS)
Prevention

Escape or encode all untrusted data;

Whitelist input validation;

Use quotes on HTML tag attributes;

Use a Content Security Policy (CSP) HTTP header.

16.7

A7 - Cross-Site Scripting (XSS)
Content Security Policy

Uses an HTTP header, Content-Security-Policy.

Content-Security-Policy: default-src 'self'

Used by facebook (2014)

content-security-policy: default-src *;script-src https://*.facebook.co

*.google-analytics.com *.virtualearth.net *.google.com 127.0.0.1:* *.spo

*.atlassolutions.com chrome-extension://lifbcibllhkdhoafpjfnlhfpfgnpldfl

https://*.fbcdn.net http://*.fbcdn.net *.facebook.net *.spotilocal.com:*

https://fb.scanandcleanlocal.com:* *.atlassolutions.com http://attachmen

16.8

A7 - Cross-Site Scripting (XSS)
Example Tool: BeEF

http://beefproject.com/

The Browser Exploitation Framework (BeEF) is a testing

tool that works through an XSS vulnerability.

The XSS injects a hook for the client to use. After the client

is hooked, the attacker can use the BeEF interface to

perform more attacks on the client.

http://beefproject.com/

16.9

LAB #3
Go to http://[a.b.c.d]/

Work through the Cross-site scripting(XSS) worksheet.

17

A8 - Insecure Deserialization
Bad news: Insecure deserialization can often lead to remote
code execution!

Good news: Often requires a custom attack for successful
exploitation.

18

A8 - Insecure Deserialization
What is serialization?

The process of translating data structures or object state into
a format that can be stored or transmitted and reconstructed
later.

Processing the serialized version allows creation of a
semantically identical clone of the original object.

19.1

A8 - Insecure Deserialization
Where is serialization used?

Remote- and inter-process communications (RPC/IPC)

Wire protocols, web services, messages brokers

Caching/Persistence

Database, cache servers, file systems

HTTP cookies and form tokens

API authentication tokens

19.2

A8 - Insecure Deserialization
Simple example:

A PHP forum uses PHP object serialization to save a "super"
cookie, containing user's ID, role, password hash, etc...

a:4:{i:0;i:132;i:1;s:7:"Mallory";i:2;s:4:"user";

 i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}

Attacker changes it to give themselves admin privileges:

a:4:{i:0;i:1;i:1;s:5:"Alice";i:2;s:5:"admin";

 i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}

19.3

A8 - Insecure Deserialization
Prevention | Simple Approach

Don't use serialization from untrusted sources

Use serialization mediums that only permit primitive data

types

protects against remote code execution but not value change

19.4

A8 - Insecure Deserialization
Prevention | If you really need to support it

Do cryptographic integrity checks

Isolate and run code that deserializes in the lowest

privilege environment possible

Log deserialization exceptions and failures

Alert repeated deserialization attempts

Restrict network connectivity from containers or servers

that deserialize

20.1

A9 - Using Components With Known Vulnerabilities

Need to ensure that we have a complete list of all software
components and the ability to determine the install version.

20.2

A9 - Using Components With Known
Vulnerabilities

Examples

Operating system?

Web server?

Database server?

Language? (PHP/Python/Perl/Java/etc)

Framework?

Application Modules?

Javascript libraries?

21.1

A10 - Insufficient Logging &
Monitoring

Monitoring logs may allow you to discover that you have

been hacked.

If you're not actively monitoring them you may need

historical logs after a breach.

Most breaches are not detected for over six months!

21.2

A10 - Insufficient Logging & Monitoring

Prevention

Ensure logs can be digested by a central log management

system

Provide logs to a central log management system

Ensure security sensitive things are logged with sufficient

user context for analysis, e.g.

login and access control failures

server-side input validation failures

Monitor the logs

22.1

OWASP Top Ten 2013 - removed in 2017

A8 - Cross-Site Request Forgery (CSRF)

Browsers automatically send credentials like session cookies
with any request.

Significant problem for Windows web sites that support

transparent SSO or NTLM authentication

If attacker can persuade a victim's browser to load a
particular page, it will be automatically authenticated.

This forged request might transfer money, or change an
email-address.

22.2

Cross-Site Request Forgery (CSRF)
Examples

Add one of the following to http://evil-but-very-cute-
kittens.com/

<img src="http://otherdomain.bank.com/transfer?to=drevil&amount=100000"

 width="2px" height="2px" style="display:none"/>

<img src="http://otherdomain.social.com/changepassword?

 newpassword=hackme&confirmpassword=hackme"

 width="2px" height="2px" style="display:none"/>

http://evil-but-very-cute-kittens.com/

22.3

Demo

0:00 / 5:35

22.4

Cross-Site Request Forgery (CSRF)
Prevention

Preventing CSRF by making HTTP requests include an

unpredictable token, such as in a hidden form field.

Token should be a one-time use, or short lived to prevent reuse attacks.

Confirm the request has come from a human by using a

CAPTCHA.

Ask the user to re-authenticate for particularly sensitive

requests.

22.5

Cross-Site Request Forgery (CSRF)
Prevention

Most good frameworks will have built-in support for CSRF
prevention.

22.6

Cross-Site Request Forgery (CSRF)
Prevention

Modern really easy approach:

Set the 'SameSite' cookie attribute on session cookies.

Set-Cookie: sess=abc123; path=/; SameSite

The attribute tells the browser not to include the cookie in
any cross-origin requests.

Works with Chrome 55+ and related web browsers, such as
Opera, and Firefox 58+.

http://caniuse.com/#search=SameSite

http://caniuse.com/#search=SameSite

22.7

Cross-Site Request Forgery (CSRF)
Prevention

Two modes (default is Strict)

Set-Cookie: sess=abc123; path=/; SameSite=Strict

Set-Cookie: sess=abc123; path=/; SameSite=Lax

The problem with Strict mode is that cross-origin includes
changes initiated in the browser, such as changing the URL or
opening a new tab and choosing a bookmark.

Lax mode has an exception to allow cookies to be attached to
top-level browser navigations using safe HTTP methods (GET,
HEAD, OPTIONS and TRACE).

More info: https://scotthelme.co.uk/csrf-is-dead/

https://scotthelme.co.uk/csrf-is-dead/

23

LAB #4
Go to http://[a.b.c.d]/

Work through the A9 - PHP Eval worksheet.

24.1

Static Website Generators
Lots of options - look at https://www.staticgen.com/

https://wiki.python.org/moin/StaticSiteGenerator

Suitable for lots of public read-only websites.

Dynamic content from APIs called by web browser.

https://www.staticgen.com/
https://wiki.python.org/moin/StaticSiteGenerator

24.2

Static Website & OWASP Top Ten (1)
A1 Injection

Nothing to inject against in the website

Only third-party APIs

A2 Broken Authentication

No users

No authentication

No session management

24.3

Static Website & OWASP Top Ten (2)
A3 Sensitive Data Exposure

No logins. Should be no sensitive data to be exposed.

Can still use HTTPS

A4 XML External Entity

Unlikely to be processing any XML

A5 Broken Access Controls

Could easily host content that should not be public

However, access controls not expected so content should not be there

24.4

Static Website & OWASP Top Ten (3)
A6 Security Misconfiguration

No dynamic application server to misconfigure

A7 Cross-Site Scripting

No stored cross-site scripting

Reflected cross-site scripting only from third-party APIs

A8 Insecure Deserialization

Unlikely to be doing any

24.5

Static Website & OWASP Top Ten (4)
A9 Using Components with Known Vulnerabilities

Less components -> less vulnerabilities

A10 Insufficient Logging & Monitoring

Still need it but less

Old A8 Cross-Site Request Forgery

Only a problem with third-party APIs

Use a CAPTCHA

25.1

HTTP Security Headers
Strict Transport Security

Content Security Policy

X-Frame-Options

X-XSS-Protection

X-Content-Type-Options

Information leakage, such as X-Powered-By

Caching

25.2

Strict-Transport-Security Header

HTTP Strict-Transport-Security (HSTS) enforces secure
(HTTP over SSL/TLS) connections to the server.

HSTS defends against Man-in-the-Middle attacks.

HSTS disables the ability for a user to ignore SSL

negotiation warnings.

When active, browser automatically changes HTTP links

for a site to HTTPS.

25.3

HSTS - Supported Browsers

Chrome/Chromium 4.0.211.0+ (2010)

Firefox 4+ (2011)

Opera 12+ (2012)

Safari OS X Mavericks+ (2013)

Internet Explorer 11+ (2015)

http://caniuse.com/#feat=stricttransportsecurity

http://caniuse.com/#feat=stricttransportsecurity

25.4

HSTS - Typical implementation

Applies for six months (recommended value) to the domain of
the web server, and its sub-domains:

Strict-Transport-Security: max-age=15768000; includeSubDomains

Six months to two years is recommended.

25.5

HSTS - Preloading

Firefox, Opera, Safari, IE11+ all have HSTS preload lists based
on the Chrome list. These sites are only available over HTTPS
including all sub-domains.

The 'preload' attribute indicates that the domain owner
consents to preloading, i.e. this site should already be on the
Chrome HSTS preload list.

Strict-Transport-Security: max-age=3153600; includeSubDomains; preload

https://hstspreload.appspot.com/

https://hstspreload.appspot.com/

25.6

Content-Security-Policy

Whitelists allowed sources for web page resources, such as
scripts, styles and images.

Specification and use has evolved over time:

X-Content-Security-Policy - older Firefox and IE versions

X-Webkit-CSP - older Chrome and Safari versions

Content-Security-Policy - newer browsers

Simple example:

Content-Security-Policy: script-src 'self'

25.7

Content-Security-Policy - Supported Browsers

Chrome/Chromium 25+

Chrome 4-24 used X-Webkit-CSP

Firefox 4+

Internet Explorer Edge+

IE 10 and 11 used X-Content-Security-Policy

Opera 15+

Safari 7+

Safari 6 used X-Webkit-CSP

25.8

Content-Security-Policy
Generator

Enable 'Report only' mode for testing. Send reports to this

site.

https://report-uri.com/home/generate

https://report-uri.com/home/generate

25.9

Clickjacking Protection
Clickjacking typically occurs by loading a web page in an
HTML frame or iframe.

The X-Frame-Options header tells the web browser where
the frame is allowed to come from.

It has been obsoleted by the 'frame-ancestors' directive in
CSP 2.

25.10

X-Frame-Options Examples

No frames supported:

X-Frame-Options: DENY

Frames only from the same server:

X-Frame-Options: SAMEORIGIN

Frames supported from a specified third-party domain:

X-Frame-Options: ALLOW-FROM https://example.com/

25.11

Cross-Site Scripting Protection

Internet Explorer, and some WebKit based browsers, contain
cross-site scripting protection that can be disabled!

Override, the disable with:

X-XSS-Protection: 1; mode=block

The mode can either attempt to sanitise the XSS or block the
web browser from rendering the page.

25.12

Disable MIME-sniffing
When downloading files from a website, IE and Chrome can
ignore the specified content-type.

They will attempt to guess the correct type by sniffing its
MIME type, and then launching a suitable handler.

A user may download an executable file and run it without
realising.

X-Content-Type-Options: nosniff

25.13

Information Leakage

Common development mode default:

Server: Apache/2.2.23 (Unix) mod_ssl/2.2.23 OpenSSL/0.9.8e-fips-rhel5

 mod_auth_passthrough/2.1 mod_bwlimited/1.4 FrontPage/5.0.2.2635

X-Powered-By: PHP/5.2.13

25.14

Page Caching

We do not want to cache pages from an HTTPS site
containing sensitive data.

Lots of HTTP headers that can be set:

Cache-Control: no-cache, no-store, must-revalidate

Pragma: no-cache

Expires: -1

26.1

Evil User Stories

A user story is an objective a person
should be able to achieve when using the

system.

Used in testing. But how can we test what the bad guys do?

26.2

Evil User Stories | Examples
As a hacker, I can send bad data in URLs, so that I can

access data and functions for which I am not authorized.

As a hacker, I can send bad data in the content of requests,

so I can access data and functions for which I am not

authorized.

As a hacker, I can send bad data in HTTP headers, so I can

access data and functions for which I am not authorized.

As a hacker, I can read and even modify all data that is input

and output by your application.

26.3

Evil User Stories | Testing
We need to test every sprint.

We need complete coverage of every variable supported to
the server, not just the ones we think the user has control
over.

We need to test for unusual values (e.g. integer range, string
size, unusual characters)

 < > () & ' " ` \ ; =

26.4

Evil User Stories | Example
SELECT * FROM users WHERE username = '<username>'

 and password = '<password>'

username: admin

password: ' OR 1=1;--

SELECT * FROM users WHERE username = 'admin'

 and password = ' ' or 1=1

27

