2-D plotting library for Project Jupyter
bqplot
is a 2-D visualization system for Jupyter, based on the constructs of
the Grammar of Graphics.
In bqplot, every component of a plot is an interactive widget. This allows the user to integrate visualizations with other Jupyter interactive widgets to create integrated GUIs with a few lines of Python code.
You can follow the documentation on https://bqplot.github.io/bqplot
To try out bqplot interactively in your web browser, just click on the binder link:
This package depends on the following packages:
ipywidgets
(version >=7.0.0, <8.0)traitlets
(version >=4.3.0, <5.0)traittypes
(Version >=0.2.1, <0.3)numpy
pandas
Using pip:
$ pip install bqplot
Using conda
$ conda install -c conda-forge bqplot
If you are using JupyterLab <=2:
$ jupyter labextension install @jupyter-widgets/jupyterlab-manager bqplot
For a development installation (requires JupyterLab (version >= 4) and yarn):
$ git clone https://github.com/bqplot/bqplot.git
$ cd bqplot
$ pip install -e .
$ jupyter nbextension install --py --overwrite --symlink --sys-prefix bqplot
$ jupyter nbextension enable --py --sys-prefix bqplot
Note for developers: the --symlink
argument on Linux or OS X allows one to
modify the JavaScript code in-place. This feature is not available
with Windows.
For the experimental JupyterLab extension, install the Python package, make sure the Jupyter widgets extension is installed, and install the bqplot extension:
$ pip install "ipywidgets>=7.6"
$ jupyter labextension develop . --overwrite
Whenever you make a change of the JavaScript code, you will need to rebuild:
cd js
jlpm run build
Then refreshing the JupyterLab/Jupyter Notebook is enough to reload the changes.
You can install the dependencies necessary to run the tests with:
conda env update -f test-environment.yml
And run it with for Python tests:
pytest
And cd js
to run the JS tests with:
jlpm run test
Every time you make a change on your tests it's necessary to rebuild the JS side:
jlpm run build
In order to install a previous bqplot version, you need to know which front-end version (JavaScript) matches with the back-end version (Python).
For example, in order to install bqplot 0.11.9
, you need the labextension version 0.4.9
.
$ pip install bqplot==0.11.9
$ jupyter labextension install bqplot@0.4.9
Versions lookup table:
back-end (Python) |
front-end (JavaScript) |
---|---|
0.12.14 | 0.5.14 |
0.12.13 | 0.5.13 |
0.12.12 | 0.5.12 |
0.12.11 | 0.5.11 |
0.12.10 | 0.5.10 |
0.12.9 | 0.5.9 |
0.12.8 | 0.5.8 |
0.12.7 | 0.5.7 |
0.12.6 | 0.5.6 |
0.12.4 | 0.5.4 |
0.12.3 | 0.5.3 |
0.12.2 | 0.5.2 |
0.12.1 | 0.5.1 |
0.12.0 | 0.5.0 |
0.11.9 | 0.4.9 |
0.11.8 | 0.4.8 |
0.11.7 | 0.4.7 |
0.11.6 | 0.4.6 |
0.11.5 | 0.4.5 |
0.11.4 | 0.4.5 |
0.11.3 | 0.4.4 |
0.11.2 | 0.4.3 |
0.11.1 | 0.4.1 |
0.11.0 | 0.4.0 |
See our contributing guidelines to know how to contribute and set up a development environment.
This software is licensed under the Apache 2.0 license. See the LICENSE file for details.