Skip to content
Go to file

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time



Project Summary

Dynamic changes to the signaling efficacy between neurons is thought to underlie many adaptive behaviors, including memory formation. Signaling efficacies (i.e. synaptic weights) are directly correlated with postsynaptic levels of AMPA-type glutamate receptors (AMPAR), the primary receptor used in fast excitatory transmissions. While synaptic regulation of AMPAR is considered fundamental to brain information storage, and despite the large number of studies done on this topic, there remains uncertainty regarding AMPAR-mediated synaptic plasticity. However, there is a wealth of information on AMPAR trafficking mechanisms from which to develop a unified model of synaptic plasticity. Such a model could be useful for addressing long-standing questions regarding how temporary signals induce persisting changes to signaling efficacy, and how these synaptic weights are maintained over long durations. This project explores factors involved in AMPAR synaptic regulation, and includes the synthesis of a unified model for simulating AMPAR trafficking in-and-around synapses. Primary components of the model include: (1) AMPARs that diffuse along a 3D dendritic surface, (2) a dynamic actin filament network, and (3) multivalent synaptic/scaffold-associates proteins (SAPs) that can interact with AMPARs, actin filaments, and other SAPs. This spatially-resolved stochastic model integrates experimental data on structural and molecular dynamics, and simulates these processes in 3D space.

Documentation Wiki

Further documentation can be found on the github wiki

Graphical Abstract

  • Overview of modeling environment. (A) Membrane diffusion of AMPAR was simulated on a 3D surface-mesh representing a short dendritic segment with several spines. Geometric values for surface components included dendrite segment length and diameter, density and distance between spines, and dimensions of spine head and neck. AMPAR diffused laterally along these surfaces with Brownian motion; rates were matched to empirical values. (B) Actin scaffolding dynamics were simulated inside the spine-protrusions. Components of the scaffold and their interactin with surface receptors is illustrated in (C).



3d actin network 3d actin network

3d actin network S3D Full Model

3d Diffusion Animation in matlab Dendritic surface diffusion

Further Reading


Multiplex Computational Model of Neural Dynamics



No packages published
You can’t perform that action at this time.