Skip to content
Switch branches/tags
Go to file
Cannot retrieve contributors at this time
# Copyright 2016 Intel Corporation
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
from scipy.stats import stats
import numpy as np
# Define the Theano flags to use cpu and float64 before theano is imported in brainiak
import os
os.environ['THEANO_FLAGS'] = 'device=cpu, floatX=float64'
import brainiak.funcalign.sssrm
# Load the input data that contains the movie stimuli for unsupervised training with SS-SRM
movie_file ='data/movie_data.mat')
movie_data_left = movie_file['movie_data_lh']
movie_data_right = movie_file['movie_data_rh']
subjects = movie_data_left.shape[2]
# Load the input data that contains the image stimuli and its labels for training a classifier
image_file ='data/image_data.mat')
image_data_left = image_file['image_data_lh']
image_data_right = image_file['image_data_rh']
# Merge the two hemispheres into one piece of data and
# convert data to a list of arrays matching SS-SRM input.
# Each element is a matrix of voxels by TRs_i.
image_data = []
movie_data = []
for s in range(subjects):
image_data.append(np.concatenate([image_data_left[:, :, s], image_data_right[:, :, s]], axis=0))
movie_data.append(np.concatenate([movie_data_left[:, :, s], movie_data_right[:, :, s]], axis=0))
# Read the labels of the image data for training the classifier.
labels ='data/label.mat')
labels = np.squeeze(labels['label'])
image_samples = labels.size
# Z-score the data
for subject in range(subjects):
image_data[subject] = stats.zscore(image_data[subject], axis=1, ddof=1)
movie_data[subject] = stats.zscore(movie_data[subject], axis=1, ddof=1)
# Run cross validation on the blocks of image stimuli (leave one block out)
# Note: There are 8 blocks of 7 samples (TRs) each
print("Running cross-validation with SS-SRM... (this may take a while)")
accuracy = np.zeros((8,))
for block in range(8):
print("Block ", block)
# Create masks with the train and validation samples
idx_validation = np.zeros((image_samples,), dtype=bool)
idx_validation[block*7:(block+1)*7] = True
idx_train = np.ones((image_samples,), dtype=bool)
idx_train[block*7:(block+1)*7] = False
# Divide the samples and labels in train and validation sets
image_data_train = [None] * subjects
labels_train = [None] * subjects
image_data_validation = [None] * subjects
labels_validation = [None] * subjects
for s in range(subjects):
image_data_train[s] = image_data[s][:, idx_train]
labels_train[s] = labels[idx_train]
image_data_validation[s] = image_data[s][:, idx_validation]
labels_validation[s] = labels[idx_validation]
# Run SS-SRM with the movie data and training image data
model = brainiak.funcalign.sssrm.SSSRM(n_iter=10, features=50, gamma=1.0, alpha=0.2), labels_train, image_data_train)
# Predict on the validation samples and check results
prediction = model.predict(image_data_validation)
predicted = 0
total_predicted = 0
for s in range(subjects):
predicted += sum(prediction[s] == labels_validation[s])
total_predicted += prediction[s].size
accuracy[block] = predicted/total_predicted
print("Accuracy for this block: ",accuracy[block])
print("SS-SRM: The average accuracy among all subjects is {0:f} +/- {1:f}".format(np.mean(accuracy), np.std(accuracy)))