
✐

✐

“hts-nim” — 2018/1/8 — 17:08 — page 1 — #1
✐

✐

✐

✐

✐

✐

Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year

Software

Genome Analysis

hts-nim: scripting high-performance genomic

analyses

Brent S. Pedersen 1∗ and Aaron R. Quinlan 1

1University of Utah, Department of Human Genetics, Department of Biomedical Informatics, and USTAR Center for Genetic Discovery.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Processing genomic data requires custom software. In many cases, this is accomplished in

scripting languages because of ease of writing and brevity.

Results: We present hts-nim, a library written in the Nim programming language that enables a scripting-

like syntax without sacrificing performance.

Availability: hts-nim is available at https://github.com/brentp/hts-nim and the example tools are at

https://github.com/brentp/hts-nim-tools both under the MIT license.

Contact: bpederse@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

For genomics applications, it can be preferable to release command-line

tools over libraries because it limits the surface-area exposed to users,

provides the opportunity for hidden optimizations that guarantee speed

regardless of use, and eases distribution. However, these tools are either

limited to their intended use or they will suffer from feature-creep and the

resulting complexity. In contrast, genomics libraries place greater burden

on the user but offer increased flexibility. In order to fill the gap for fast

custom analysis in a simple language, we expose the htslib library in the

nim programming language in a library called hts-nim. Nim compiles to

C, has very good performance, garbage collection, control over memory

re-use, and a simple syntax that is easy to pick up for many programmers

familiar with common scripting languages.

We have also previously published mosdepth (Pedersen and Quinlan,

2017) which uses hts-nim extensively and is now a widely-used tool. Now,

we introduce the hts-nim library and show how it enables the creation fast

tools that are easy to write. We present 3 example tools, each of which is a

substantial and useful tool with command-line parsing and error-handling,

but each is short enough to be readable in a few minutes. The first example

allows filtering a BAM/CRAM file with a simple expression langauge,

the second allows counting reads in genomic regions, and the third is a

quality-control tool to ensure that regions are not missing from Variant

Call Format (VCF) (Danecek et al., 2011) files.

2 Approach

hts-nim is written in the nim programming language; low-level bindings

from nim to htslib are created automatically using a tool called c2nim; then,

hand-written and tested code is used for the user-exposed layer. This layer

hooks into the garbage collection so that a user of hts-nim does not need to

explicitly clean up objects or free memory as would be required in C. As

much as possible, the interface exposed in hts-nim allows re-using memory

to avoid pressure on the garbage collector. However, the user is also free

to write code that results in more allocations for the sake of simplicity. For

example, when accessing the base qualities of an alignment from a BAM

file, the user passes in a seq that is filled by the base_qualities method on

an alignment object; that seq is then filled inside the method and returned

to the user. This allows the user to control the memory allocations, by

either re-using the same container for every alignment, or allocating a new

one before each call the the base_qualities method. The design of hts-nim

and the nim programming language itself provide many opportunities for

optimization like this that allow speed-memory trade-offs.

To show the syntax and scope of the library we cover 3 examples.

3 Examples

3.1 BAM/CRAM Filtering

It is common to filter alignment files using samtools (Li et al., 2009);

here, we introduce a complementary tool built with hts-nim. It uses a

simple expression language, kexpr by Heng Li to parse and evaluate user-

specified expressions. The documentation for the tool indicates the fields

© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

✐

✐

“hts-nim” — 2018/1/8 — 17:08 — page 2 — #2
✐

✐

✐

✐

✐

✐

2 Pedersen & Quinlan

that are available for filtering, but briefly, flags are prefix with is_, and tags

are prefixed with tag_. This exposes a type of filtering that is not available

in samtools. An example of usage looks like:

Listing 1. bam-filter example

hts -nim -tools bam -filter --threads 2 "

is_proper_pair && insert_size > 200"

$input_bam > $out

3.2 Counting Alignments in Genomic Regions

We have previously released mosdepth (Pedersen and Quinlan, 2017)

which calculates the average per-base coverage across the genome and

within a given set of regions. However, in some cases, it is preferable

to know the count of reads overlapping each region rather than the

average per-base coverage. The count-reads tool performs this operation

by iterating over each read in a BAM or CRAM file and checking first that

it meets the required flag and mapping quality constraints and then if it

overlaps a region of interest given in a BED file passed on the command-

line. The overlap testing is done with a nim library we wrote to do very

fast interval lookups. Usage of this module looks like:

Listing 2. count-reads example

hts -nim -tools count -reads --threads 2 --

mapq 10 exons.bed $input_bam > $out.

bed

For each line in the exons.bed file, this will count the number of overlapping

reads and output that line plus that count to STDOUT. The user can also

filter to specific alignment flags, but the default excludes reads that are

duplicates, failed quality-control or secondary reads. We compared this

tool to samtools bedcov which has a similar functionality except that it

sums the total bases of coverage for each region. On an exome BAM

file with 82 million reads and a BED file with about 1.2 million regions,

this tool–count-reads–took 3 minutes and 8 seconds of CPU time while

samtools bedcov took about 33 minutes. Simply counting the reads with

samtools view -c takes 1 minute and 36 seconds. Rather than to compare

exact times, this is to show the relative speed of hts-nim and the highlight

ability to create very fast, custom tools in a few lines of code.

3.3 Quality Control Variant Call Files

Projects with many samples will often split the genome into regions

for parallelization. It is possible that a few regions may result in

truncated or no output because of a silent or uncaught error. This

missing data can go unnoticed due the the large number of files and the

complexity of processing steps. Here, we introduce a tool, vcf-check that

takes a background VCF, e.g. from ExAC (Lek et al., 2016) gnomAD

(http://gnomad.broadinstitute.org/) to establish a base-line of what parts

of the genome are expected to have common variation. It then compares

chunks of the genome from the background and the query VCF so that the

user can find regions that have no representation in the query VCF but are

common in the backgrounds. We have found this crude metric to work well

in finding regions of the genome that are lost in processing for whatever

reason. An example invocation of this tool looks like:

Listing 3. vcf-check example

vcf -check --maf 0.1 $gnomad_vcf

$query_vcf > $missed_txt

The tab-delimited output contains the count of variants above 0.1 allele

frequency for both VCFs in each region. Missing regions from the query

will appear as consecutive rows with counts of 0 where the corresponding

counts from the background VCF are non-zero.

4 Discussion

We have demonstrated the breadth of hts-nim’s utility by introducing

a set of tools for BAM and VCF processing. These tools are

available with documentation at https://github.com/brentp/hts-nim-tools

as a complement to the library documentation to aid users in creating their

own programs. The speed and simplicity of the language combined with

the utility provided by htslib (https://htslib.org) will make this a valuable

library.

Acknowledgements

hts-nim benefits from several ideas utilized rust-htslib which is itself an

excellent genomic software library.

Funding

This research was supported by awards to ARQ from the US National

Human Genome Research Institute (NIH R01HG006693 and NIH

R01HG009141), the US National Institute of General Medical Sciences

(NIH R01GM124355), and the US National Cancer Institute (NIH

U24CA209999).

References

Danecek, P. et al. (2011). The variant call format and vcftools.

Bioinformatics, 27(15), 2156–2158.

Lek, M. et al. (2016). Analysis of protein-coding genetic variation in

60,706 humans. Nature, 536(7616), 285–291.

Li, H. et al. (2009). The sequence alignment/map format and samtools.

Bioinformatics, 25(16), 2078–2079.

Pedersen, B. S. and Quinlan, A. R. (2017). mosdepth: quick coverage

calculation for genomes and exomes. Bioinformatics, 1, 2.

