Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
80 lines (70 sloc) 2.81 KB
#!/usr/bin/env python3
import fire
import json
import os
import numpy as np
import tensorflow as tf
import model, sample, encoder
def conditional(
raw_text_input='',
model_name='117M',
seed=None,
nsamples=1,
batch_size=1,
length=None,
temperature=1,
top_k=0,
):
"""
Interactively run the model
:raw_text_input='' : String, input text used to generate conditional sample
:model_name=117M : String, which model to use
:seed=None : Integer seed for random number generators, fix seed to reproduce
results
:nsamples=1 : Number of samples to return total
:batch_size=1 : Number of batches (only affects speed/memory). Must divide nsamples.
:length=None : Number of tokens in generated text, if None (default), is
determined by model hyperparameters
:temperature=1 : Float value controlling randomness in boltzmann
distribution. Lower temperature results in less random completions. As the
temperature approaches zero, the model will become deterministic and
repetitive. Higher temperature results in more random completions.
:top_k=0 : Integer value controlling diversity. 1 means only 1 word is
considered for each step (token), resulting in deterministic completions,
while 40 means 40 words are considered at each step. 0 (default) is a
special setting meaning no restrictions. 40 generally is a good value.
"""
if batch_size is None:
batch_size = 1
assert nsamples % batch_size == 0
enc = encoder.get_encoder(model_name)
hparams = model.default_hparams()
with open(os.path.join('models', model_name, 'hparams.json')) as f:
hparams.override_from_dict(json.load(f))
if length is None:
length = hparams.n_ctx // 2
elif length > hparams.n_ctx:
raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx)
with tf.Session(graph=tf.Graph()) as sess:
context = tf.placeholder(tf.int32, [batch_size, None])
np.random.seed(seed)
tf.set_random_seed(seed)
output = sample.sample_sequence(
hparams=hparams, length=length,
context=context,
batch_size=batch_size,
temperature=temperature, top_k=top_k
)
saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(os.path.join('models', model_name))
saver.restore(sess, ckpt)
while True:
context_tokens = enc.encode(raw_text_input)
generated = 0
for _ in range(nsamples // batch_size):
out = sess.run(output, feed_dict={
context: [context_tokens for _ in range(batch_size)]
})[:, len(context_tokens):]
for i in range(batch_size):
generated += 1
return enc.decode(out[i])
You can’t perform that action at this time.