Embedded TDD

For Cambridge Software Crafters
13 March 2024

Brice Fernandes brice@fractallambda.com

Logistics and Wifi

- Behind the main screen to the right of the corridor.
- Wifi is The Bradfield Centre password is Ca3Br1d5e
- We do not expect alarms. Assume a fire alarm is real and make your way to the car park.

Slides and code available on Github github.com/bricef/embedded-tdd-katas

Plan for this evening

- 1. Intro
- 2. What is "Embedded"
- 3. Embedded craftsmanship
- 4. Using Replit
- 5. LED Driver Kata
- 6. Recap

Why this talk?

TDD Refresh

TDD Loop

Write a failing test

Make the test pass

Refactor the code

```
TEST(LedDriver, ArrangeActAssertExample){
         // Arrange
         LedDriver_Create(&virtualLeds);
         // Act
         LedDriver_TurnOn(4);
         // Assert
         TEST_ASSERT_EQUAL_HEX16(0x08, virtualLeds);
         //Teardown
         LedDriver_Destroy();
13
```

Ping Pong TDD

What is "Embedded"

Embedded constraints

- Resource constraints (RAM, CPU)
- Lack of standard libraries
- No or limited filesystem
- Limited Interface (serial? UART, SWI)
- No Operating System
- No standard library
- Direct hardware access
- Lack of MMU/PMMU

Special pains

- Late hardware delivery
- Hardware scarcity
- Hardware bugs
- Long target compile times
- Long target setup and upload time
- Compiler licenses

Let's get the party started!

(also, let's download dependencies whilst we talk!)

Using Replit

Create a replit.com account (use a throwaway email if you'd like)

Idea to software, fast

Build software collaboratively with the power of AI, on any device, without spending a second on setup

Start creating

+ Create Repl

Repls

oloyments

ige

ıms

entation

ktop App oile App

Join Replit Core

This is where your Repls will be when you create them.

1. Create a new Repl

2. Import from Github

3. Choose "Fishon whe you re RnL" bricefernandes **Import from GitHub** Create from Template X My Repositories & From URL Connect your GitHub account Language 🛈 Select a repository Public 4 Upgrade to make private

https://github.com/bricef/embedded-tdd-katas.git

ns

https://github.com/bricef/embedded-tdd-katas.git

Local alternative

If you're confident in your local toolchain Clone the repository locally:

\$ git clone https://github.com/bricef/embedded-tdd-katas.git

Run the setup script

Open a shell in Replit, then run

```
$ cd Code
$ ./setup.sh
```

Now we wait for dependencies to get downloaded...

Whilst we wait...

Embedded Strategy

Dual targeting

- Dual targeting
 - Simulate hard-to-duplicate conditions
 - Get around target bottleneck
 - Running the test suite locally
 - Automated CI

Embedded TDD Cycles

More Frequent

Less Frequent

Automated HW tests

- There's no reason why you can't create an automated harness that runs the unit test on test devices.
- There's no reason why your CI builds couldn't use HW tests. Including cloud runners!
- You might want to ship tests in production devices as part of a HW self-test suite.

We won't go into depth in this topic tonight.

Test Doubles

- Crititcal for embedded
- Mock the HAL
- Mock the clock

How to Mock?

In order of preference

- Link time substitution
 (Requires appropriate code structure)
- 2. Function pointer substitution
- 3. Syntactic substitution (preprocessor)

Combine at will...

Simulators

Allow testing compiled target code in CI.

Run entire test suite.

Go hand-in-hand with Test Doubles.

TDD Test Cycles

Craftsmanship fundamentals still matter

SOLID

- 1. Single Responsibility Principle
- 2. Open Closed Principle
- 3. Liskov Substitution Principle
- 4. Interface Segregation Principle
- 5. Dependency Inversion Priciple

The Katas

LED Driver Kata

Look at KATA.md in Code/src/leddriver

Recap

What we learnt

- 1. TDD is possible and *useful* for embedded software.
- 2. Embedded TDD strategies make the process easier.
- 3. Dual targeting is worth it.

(C is fun, maybe?)

Further Reading

- TDD for Embedded C
- ThrowTheSwitch.org
- Unity Test Framework

Test-Driven Development for Embedded C

James W. Grenning

Forewords by Jack Ganssle and Robert C. Martin

Thank you 🙏

I'm available for contracting brice@fractallambda.com

Attributions

Arrange Act Assert - Own work - CC Attribution-Sharealike

Demo Time - Still frame taken from the film "Airplane!" 1980 - © Paramount Pictures - Used under fair use for teaching.

Party Time by Irtiza Haider - CC Attribution-Sharealike - - Wikimedia Commons

Ping-pong TDD - Own work - CC Attribution-Sharealike - Created using Mermaid.js

Red-green-refactor - © Kodeco - Used under fair use for teaching.

Replit Screenshots - Own work - Created under fair use for teaching.

TDD for Embedded C Book Cover - © 2011 Pragmatic Bookshelf - Used under fair use for teaching.

TDD Cycles - © 2011 Pragmatic Bookshelf - Used under fair use for teaching.

Mockingbird by Ryan Hagerty - Public Domain - National Digital Library of the United States Fish and Wildlife Service