A Python-port of @jasonlong's lovely SVG generation library.
Python
Switch branches/tags
Nothing to show
Clone or download
webcsm and bryanveloso Added small changes to make it run in Python 3.5.3 (#6)
* Added small changes to make it run in Python 3.5.3

* Update README.md
Latest commit 6039c17 Jul 2, 2018

README.md

GeoPatterns

Generate beautiful SVG patterns from a string. This is a Python-port of Jason Long's Ruby library.

Installation

GeoPatterns is installable via pip:

$ pip install geopatterns

Usage

Create a new pattern by initializing GeoPattern() with a string and a generator (the result of this string/generator pair is the above image).

>>> from geopatterns import GeoPattern
>>> pattern = GeoPattern('A string for your consideration.', generator='xes')

Currently available generators are:

  • hexagons
  • overlapping_circles
  • overlapping_rings
  • plaid
  • plus_signs
  • rings
  • sinewaves
  • squares
  • triangles
  • xes

Get the SVG string:

>>> print(pattern.svg_string)
u'<svg xmlns="http://www.w3.org/2000/svg" ...

Get the Base64-encoded string:

>>> print(pattern.base64_string)
'PHN2ZyB4bWxucz0iaHR0cDov...

In the case of the Base64-encoded string, you can use it in CSS as follows:

body {
  background-image: url('...zdmc+');
}

You can use cairosvg to save the SVG string as a PNG image. First, install cairosvg:

pip install cairosvg

And then run:

>>> import cairosvg
>>> from geopatterns import GeoPattern
>>> pattern = GeoPattern('A string for your consideration.', generator='xes')
>>> cairosvg.svg2png(bytestring=pattern.svg_string, write_to="output.png")

If you just want to visualize the pattern, you can use cairosvg with PIL:

>>> import matplotlib.pyplot as plt
>>> from PIL import Image
>>> import cairosvg
>>> from geopatterns import GeoPattern
>>> pattern = GeoPattern('A string for your consideration.', generator='xes')
>>> png = cairosvg.svg2png(bytestring=pattern.svg_string)
>>> image = Image.open(BytesIO(png))
>>> plt.imshow(image)
>>> plt.show()