Preface

Why read this book?

This book is about numerically solving linear and nonlinear par-
tial differential equations (PDEs) by writing C code [Kernighan and
Ritchie, 1988] that directly calls PETSc. It tries to both explain the
ideas and illustrate them through example codes. The example=odes
come with enough background information and context so that read-
ers can easily use them as a basis for further developments. Demon-
strated performance and scalability are goals, so runtime options are
explained and compared, and explored in the exercises.
This book is written from the conviction that better access to com-
mon knowledge among experts advances scientific computing as a disci-
pline. An expert in PETSc may say about this book that “1 knew all
that” and that “this book is a fast on-ramp to what I already know.”
That is precisely my hope.
So, let’s suppose you have taken a mathematics course or two in
partial differential equations (PDEs). You have written a few codes _‘ -
in C, and probably some in MATLAB or python or similar pratoype Scripht
iy languages. You are interested in solving PDE or similar, models
numerically in parallel on big problems. Then this book is for you.

What is PETSc?

The Portable, Extensible Toolkit for Scientific computing (PETSc)* ' Say it “pets sea.” The homepage
for PETSc, including download

- and installation instructions, is
the standard software layer for large-scale parallel computation, www.mcs.anl.gov /petsc.

namely the Message Passing Interface (MPI) [Gropp et al., 1999].

Thus PETSc is a framework capable of solving problems ke PDEs at sv s
“large scale,” that is, at high resolution and on supercomputers with

hundreds to millions of cores. PETSc also runs on your laptop, and

that is where most examples from this book should be tried first.

is an open-source, mathematical software library built on top of

PETSc is not particularly new. Version 2.0, the first version to
make an impact in the scientific computing world, was puift in Jeve
1994. A well-known monograph Smith et al. [1996]? uses PETSc 2 B. Smith, P. Bjorstad, and W. Gropp.
Domain decomposition: parallel multilevel
methods for elliptic partial differential
equations. Cambridge University Press,
1996

lopred

6 ED BUELER

2.0 for scalable solutions of linear PDEs. That book focusses on pre-
conditioned iterative linear solvers and domain decomposition. For
example, methods liké additive Schwarz are shown to scalably-solve & och as
the Poisson equation on irregular domains.
But PETSc is now3 at version 3.6. It has evolved into a more pow- > Version 3.6.2 is current in November
erful toolbox with a much richer API (application program interface). =S
Typical examples and applications are for nonlinear PDEs. Nonlinear,
multigrid, and multiphysics* parts of the API are now highly-visible 1 This buzzword refers to a diverse
to users. The PETSc strategy is to compose Newton’s method and zz’;ltle;gso;:(’;g‘:ﬁep‘gizg‘{:sh e
mesh topology tools with a run-time choice of preconditioners and

iterative linear solvers. Navigating this@requires more user OL\ 7 bore i ‘} L\(M iC
knowledge than a generation ago. —
In summary, PETSc may not be a silver bullet, but it presents
seflcco¥

users with many powerful tools for solving hartl problems, well
beyond iterative linear algebra. As twenty years have passed since
version 2.0 and Smith et al. [1996], a new book about PETSc is ap-
propriate.

What I need from you, the reader

To make sense of this book, some of the mathematical theory of PDEs
must be familiar. Evans [2010] is recommended for this theory, but it
is not really a prerequisite.

I will also assume that the reader has a bit of practical intuition
about PDE problems—should I use the common term “maturity”?—
including exposure to nonlinear problems.5 Of course, all applied 5 [Ockendon et al., 2003] is recom-
mathematicians, distinctly including this author, are wanting when it mended.
comes to having the best intuition for nonlinear PDEs.

Multiple numerical discretization paradigms will arise here, and
at least one numerical approach to PDEs should already be in the
reader’s toolbox. That might be the finite element method (FEM)
[Braess, 2007, Elman et al., 2005, Karniadakis and Sherwin, 2013), fi-
nite differences [Morton and Mayers, 2005], finite volumes [LeVeque,
2002]. Spectral methods [Trefethen, 2000] are outside of our scope.
Previous exposure to multigrid ideas [Briggs et al., 2000] would be
helpful, but the concepts will be reviewed as we approach this key
topic.

Many ideas from numerical linear algebra [Greenbaum, 1997,
Trefethen and Bau, 1997] will appear, often with no or brief introduc-
tion. The definitions of vector norms and (induced) matrix norms,
along with the LU and Cholesky decompositions, are assumed. The
textbook by Trefethen and Bau [1997] is thus the closest of the above-
mentioned texts to an actual prerequisite for the material in this
book.

PETSC FOR PDES 7

R\T ey

Starting in Chapter 8 I will assume that you are interested in s
unstructured grids, though not at the exclusion of structured‘ap- 1
proaches. Basics of the FEM method will be reviewed in Chapters
5, 8, and 10, but the reader with some background understanding
will benefit most. Priority topics for a reader’s FEM review include
the weak form of a PDE and the idea of assembling the equations
element-by-element.

There is much that this book does NOT do

I'll assume you want to solve PDEs, though there are many other
uses of PETSc. Furthermore, this book

* does not replace either the PETSc User’s Manual, or online searches [I
of the PETSc manual pages, for understanding the AP, W The t .ﬁ‘} | , £
'\b\ gy\ \bé]"“ :
¥ nelp ! S an
* does not help you install PETSc, W Cec L o ool / f'-F"A‘“? ? 2
Aoc o meu Fation /g §)ia:
¢ does not use Fortran or C-+-+,6 : f All examples are in Qm Tl e J\J_

. . ANSI Cag features.
* does not help with most of the many packages PETSc links to,

* does not do a complete job of teaching the FEM or any other dis-
cretization paradigm for PDEs,

* does not seriously address whether its numerical solutions are

\eyond
* does not consider spatial dimensions except T, Zand 3,

good models of physical problems,

® does not prove anythmg,7 and 7 Theorems are stated precisely when

. appropriate. In examples we give evi-

¢ does not adequately cover what is known about PDEs, much less dence for convergence and scalability
what is not known. when possible.

At the command line

Before we really get started, what “computer skills” do I assume? In
summary, something more than what you need to get started with
MaATLAB, but certainly less than professional programmer abilities.
The numerical programming here is stereotyped C coding using a
modest language subset.

You need to have written and compiled C programs before. Run-
ning and modifying the examples will inevitably expose some sub-
tleties of the C language, but no more than would appear in a first
college course in computer programming using C or a similar lan-
guage. Concepts of compiling and linking, of including header files,
of passing arguments by value and reference, and, perhaps most
importantly, the two concepts of pointer variables and arrays-as-
pointers, should all be familiar.

1
Getting started with PETSc

Get the example codes

Before starting into our first example, please use git to get the exam-
ple C codes:

I $ git clone https://github.com/bueler/p4pdes.git

Codes from subdirectory p4pdes/c/chN/ are for Chapter N of this
book.

A code that does almost nothing, but in parallel

The purpose of the PETSc library is to help you solve scientific and
engineering problems on multi-processor computers. As PETSc is
built on top of the Message Passing Interface (MPL [Gropp et al.,
1999]) library, some of its flavor comes through. Therefore we start
with an introductory PETSc code which calls MPI for some basic
tasks.

Our program e.c, shown in its entirety in Code 1.1, approximates
Euler’s constant by its Maclaurin series:

[o0)
e=)_
n=0

It does the computation in a distributed manner by computing one
term of the infinite series on each process, giving a better estimate of
e when run on more MPI processes. This is a silly use of PETSc, but
it is adseran easy-to-understand parallel computation.

As with most C programs, Code 1.1 starts by including needed
headers. However, as with most codes in this book, only petsc.h is
needed because it includes MPI too.

Like any C program, e.c has a function called main() which takes

| —

- A 2.718281828 (1.1)

=

inputs from the command line, namely argc and argv. The former
is an int holding the argument count and the latter is an array of

GETTING STARTED WITH PETSC 11

www.mcs.anl.gov/petsc/documentation/instatlation.html

to install. You will do steps that look like

export PETSC_DIR=/home/bueler/petsc

export PETSC_ARCH=linux-c-dbg

./configure --download-mpich --download-triangle --with-debugging=1
make all

though the specific configure options may be quite different in your
environment. Here we download the MPICH package, because on .
this machine there'r.;c;_gxisting MPI installation, and the triangle .~ | S
package, because it is used in Chapter 8. We configure a version of
PETSc with debugging symbols because this is essential for un-
derstanding the trace-back which happens at run-time errors. After
above steps work successfully, run “make test” and see if it passes
the tests.

When PETSc is correctly installed the environment variables
PETSC_DIR and PETSC_ARCH point to a valid installation, and the MPI
command mpiexec is from the same MPI installation as was used in

configuring PETSc.t ' Type “which mpiexec” to find which
one you are running. You may need to

modify your PATH environment variable
$ cd pdpdes/c/ to get the right mpiexec.

$ cd chl/
$ make e

Do the following to compile e. c:

Calling “make” uses makefile in the chl/ directory; an extract is
shown in Code 1.2. All the makefiles in this book have this recom-
mended [Balay et al., 2014] form.

ngtract from chl/makefile|

include ${PETSC_DIR}/lib/petsc/conf/variables
include ${PETSC _DIR}/lib/petsc/conf/rules

e: e.o chkopts
—-${CLINKER} -0 e e.o ${PETSC_LIB}
${RM} e.o

Code 1.2: All our makefiles look like
this.

Run the code like this:
$./e

e is about 1.000000000000000 é
rank 0 did 1 flops /_\ -,’k& co 9

The value 1.0 is a very poor estimate of ¢, but=# does better with
more MPI processes:

12 PETSC FOR PDES

$ mpiexec -n 5 ./e
e is about 2.708333333333333
rank 0 did 0 flops
rank 4 did 3 flops
rank 2 did 1 flops
rank 3 did 2 flops
rank 1 did 0 flops

With N = 20 processes, and thus N = 20 terms in series (1.1), we get
a good double-precision estimate:

$ mpiexec -n 20 ./e
e is about 2.718281828459045
rank 0 did © flops

“Double precision,” of course, refers to the 64-bit floating-point
representation of real numbers. This type, which is normally aliased
to PetscReal inside PETSc codes, corresponds to about 15 decimal
digit accuracy [Trefethen and Bau, 1997].

Perhaps the reader is now worried that this book was written
using a cluster with 20 physical processors whereas the reader has a
little laptop with only a couple of cores. Not so. In fact these 5 and
20 process runs work just fine on the author’s 4-core laptop. MPI
processes are created as needed, using an old feature of operating
systems: multitasking. Actual speedup from parallelism is another
matter entirely, to which we will return.

Returning to e. c in Code 1.1, each MPI process computes term

1/n! where n is returned by MPI_Comm_rank().2 Note PETSC_COMM_WORLD

is an MPI communicator [Gropp et al., 1999] containing all processes

generated by using “mpiexec -n N” at the command line. A call to

MPI_Allreduce() computes a partial sum of (1.1) and sends the re-

sult back to each process. These direct uses of the MPI tibsafy are

a part of using PETSc, becauseyt generally avoids duplicating MPI
P~

functionality.
We print the computed estimate of e once, but each process also
prints its rank and the work it did. The formatted print command
PetscPrintf(), similar to fprintf() from the C standard library, is
called twice in the code. The first time it uses MPI communicator
PETSC_COMM_WORLD and the second time PETSC_COMM_SELF. The first
of these printing jobs is thus collective over all processes, and only
one line of output is produced, while the second is individual to each
rank3 and we get N printed lines. The PETSC_COMM_SELF output lines
can appear in apparently random order because the print occurs as
soon as that rank reaches the PetscPrintf() command in the code.

2 A call to MPI_Comm_size() would
return N, the communicator’s size.

API

s pPETSC

3 A process is often just called a rank in
MPI language.

Every PETSc program

Every PETSc program should start and end with the commands
PetscInitialize() and PetscFinalize():

PetscInitialize(&argc,&args,NULL,help);
. everything else goes here ...
PetscFinalize();

As the last argument to PetscInitialize() we supply a help
string. This string is a good place to say what is the purpose of the
code,and thus it is often declared in the very first line of a PETSc
code. To see the help string, and a longer list of possible PETSc
options, do:

| $.7e -hetp
or

| $.7e -help | less

Through option -help, PETSc programs have a built-in help sys-
tem for runtime options that is both light-weight and surprisingly-
effective. For example, to see options related to logging performance,
do

| $./e -help | grep log.

See Exercise 1.2 for an example of how to add a new option to your
Own program.

Unfortunately with respect to source-code aesthetics, all our
PETSc example codes have error-checking clutter. While languages
other than C might help with decluttering, we are stuck with ugly
lines that look like

ierr = PetscCommand(...); CHKERRQ(ierr);

The explanation is that almost all PETSc methods, and most user-
written methods in PETSc programs, return an int“ for error check-
ing, with value 0 if successful. In the line above, ierr is passed to the
CHKERRQ() macro. It does nothing if ierr == 0 but it stops the pro-
gram with a “traceback” otherwise. A traceback is a list of the nested
methods, in reverse order, showing the line numbers and method
names of the location where the error occurred. Traceback is most
effective if PETSc is configured with debugging symbols as we did
above, i.e. with configure option ---with-debugging=1.

This traceback is a first line of defense when debugging run-time
errors, so in this book we always capture-and-check the returned

GETTING STARTED WITH PETSC 13

% Tle g!wc.c.f‘*-‘ “)/(c.ci-..(‘ «f
f&ﬁc Error Cole 1S USe

tn'{' CD“GJS.‘M
to prev ,,,J—'

E
Caﬂo{ Co &':_5 s N L
requtas fuefess o

(o fhe proprass

14 PETSC FOR PDES

error code using the CHKERRQ () macro. However, after Chapter 1 we
wilLst—rif) the “ierr =” and “CHKERRQ(ierr);” clutter from each code ¢ < e Ve
when it is displayed in the text.

Parallel reductions are generally not bit-wise deterministic

The code e.c does a finite sum in parallel, namely an N-term trun-
cation of (1.1) on N processors, by a call to MPI_Allreduce(). Such
parallel reduction operations are also key steps in linear algebra algo-
rithms like GMRES (Chapter 2).

On one hand, floating-point arithmetic is not, frowever; commuta-
tive or associative, though nearly so.4 On the other hand, when done 4See [Higham, 2002, Trefethen and Bau,
in parallel a total order on the sum is not pre-determined, asd Fhis is ;222 ;fer (:?i‘;?’i:rﬁﬁzgii;z foran
similarly true for other parallel reductions #Ke products. For exam- ¢,ch ms
ple, one can suppose when using MPI_Allreduce() for summation
that the terms are collected on the rank 0 processor and that they are
added to a running sum as they arrive; this is the stage at which the
non-determinacy applies. After the sum is done on rank 0 the result
is sent (“scattered”) to all other ranks, without further floating-point
consequences. See [Gropp et al., 1999].

It follows that parallel reductions generally exhibit non-determinacy
coming from the order of operations. Such non-determinacy is well-
known; see for example the entry on “determinacy”, and on “asso-
ciative non-determinacy” in particular, in [Padua, 2011]. Because of
this basic fact a seemingly-deterministic program like e.c could, at
least in theory, have a different outcome at the level of rounding error
when run a second time in parallel.

Though the feetwof non-determinism of parallel reductions may
never bite the reader, it is a numerical fact of life. Stable algorithms,
in particular backward stable ones [Trefethen and Bau, 1997], do not
suffer large output changes between runs as a result of this faet= nen=

Demonstrating the non-determinacy on a simple sum like (1.1) is

difficult because it helps to have many processors> and significant > The example on page 563 of [Padua,
201 1] proposes 10000 processes.

J"‘{-,. “ M \. a (i

noise in the interconnect between processors, so that terms are col-
lected in a different order on each run. These conditions are hard to
achieve using softwere MPI processes on a small (low core count)
machine, so Exercise 1.2 simply demonstrates the non-commutativity
of the addition operation in a serial run.

Looking ahead, Chapter 2 introduces more important “facts of
life,” of which we mention two here. The first relates to floating-
point arithmetic, namely that some linear systems are intrinsically
ill-conditioned. Conditioning is related to the stability of algorithms
[Trefethen and Bau, 1997], but it is not (fundamentally) related to
parallel computations. The need for, and parallel non-determinism

16 PETSC FOR PDES

process but N = 1000 terms, show that that the last couple of dec-
imal digits, in a 16 significant digit display, vary from run to run.
If we did permuted partial sums of series (1.1) would we see the
same variation?

1.3 Program e.c does redundant work, and a terrible job of load-
balancing, because the computation of the factorial #n! on the
rank n process requires n — 1 flops. Modify e.c to a new code
balance.c which balances the load almost perfectly, giving one
divide operation on each rank > 0 process. Use blocking send
and receive operations (MPI_Send(),MPI_Recv()) to pass the re-
sult of the last factorial to the next rank. (Now the code doeslots— O 7/ go\—\'
of unnecessary communication and waiting, so neither e.c nor
balance.c are good examples for future use!)

2
Finite-dimensional linear systems

Some facts of (numerical) life

stante,ansl
dimensional linear system. §61In thig section we both recall basic
ideas of numerical linear algebra and apply PETSc to solve linear

the core of many numerical PDE solutions is a finite-

systems.
Suppose b € RY is a column vector and A € RVN*VN is a square
matrix." The linear system

Au=Db (2.1)
has a unique solutjon u € R¥ if A is invertible, namely
u=A"'b. (2.2)

This is simple in theory.

It is ot so simple in practice, however, to solve linear systems
on atomputer. Here are two facts to keep in mind while working
numerically with linear systems [Trefethen and Bau, 1997]:

A
'\'1

i) /"!:'mff to accuracy: If real numbers are represented with machine
precision € then the solution of (2.1) can only be computed within
an error k(A)e where k(A) = ||A|||| A7l is the condition number of
A (for the induced matrix norm || - ||).

\‘ip' cost of direct solutions: If A is a generic N x N matrix then compu-
' tation of solution (2.2) by a direct method+ikeé Gauss elimination,
whether actually forming A~! or not, is an O(N?) operation.?

Fact i) is about conditioning not methods. Informally speaking,
there are matrices A and A that are the same to within machine pre-
cision € but for which the infinite-precision solutions to (2.2) differ by
an amount «(A)e. Rounding errors, which act somewhat like random

/ s (ol

' PETSc can handle complex matrices,
but all matrices are real in this book.

suc\\ asS

2See Lecture 32 in Trefethen and Bau
[1997] for caveats with respect to
“O(N3).” Nonetheless it is the right
power to state when making this point.

20 PETSC FOR PDES

Because PETSc objects are generally distributed across, and ac-
cessible from, multiple MPI processes, the first argument of an
ObjectCreate() method is an MPI communicator (“COMM”). We will
usually use PETSC_COMM_WORLD; it is the communicator formed from
all N processes when we start a run with “mpiexec -n N.” Because
they are “collective” operations [Gropp et al., 1999], all processes in
COMM must call the ObjectCreate() and ObjectDestroy() methods.

Assembly and parallel layout of Vecs and Mats

A Vec or Mat stores its entries in parallel across all the processes

in the MPI communicator used when creating it. For example, the
create-assemble sequence of a Vec with four entries might look like
this:

Vec Xx; v
PetscInt™ i[4] = {0, 1, 2, 3};
PetscReal v[4] {11.0, 7.0, 5.0, 3.0};

VecCreate{COMM, &x) ;
VecSetSizes(x,PETSC_DECIDE,4);
VecSetFromOptions(x);
VecSetValues(x,4,i,v,INSERT_VALUES);
VecAssemblyBegin(x};
VecAssemblyEnd(x) ;

The four entries of Vec x are set by the call to VecSetValues(),
putting values from array v at the indices given by i. The operation
of setting values in x may require communication between processes,
however, because entries which are to be stored on one process could
be set by another process. Such communication occurs between the
VecAssemblyBegin() and VecAssemblyEnd () commands.

The reader is allowed to think of a PETSc Vec as a one-dimensional
C array with its contents split across the processes in the MPI com-
municator used in the VecCreate() command. For example, if the
above code appears in mycode.c, and if it is run sequentially on one
process, i.e. as

| $./mycode.c

then, at the end of the above create-set-assemble sequence, the stor-
age of x looks like Figure 2.1. However, if run as

| $ mpiexec -n 2 ./mycode.c

r I~ 'H"‘ fe\v\\c wa)(’/La+
etsc Real S5 US™
:o nvc;w\c‘(g\-‘}c«.“’c
éouglb rfﬁc(sf.n vq(U€f
fd’gc Tt osed te
noqu(("c,l/c_;-fn
: 2z bt i
VG(ULSf See flll‘:_ P.ﬁ‘/
Jc5GusSséa I CRS
‘7 on Petscaaft Pt se ea

large @

£or

i=0 |110 Veds ,‘{(cca1t3("'~£[
Pra éh— m S
i=1 | 70
+ rank =0
i=2 | 50
i=3 |30

Figure 2.1: A sequential Vec layout, all
on rank = (process.

FINITE-DIMENSIONAL LINEAR SYSTEMS 21

then the layout looks like Figure 2.2. In this case the argument i=0 |11.0
PETSC_DECIDE in VecSetSizes () is active, and PETSc’s decision will b rank =0
be to put the first two entries of x on the rank 0 process and the other i=1 |70 J

two on the rank 1 process.

PETSc Mat objects are comparable to Vecs, but they are not merely
2D C arrays even in serial (i.e. in one-process runs). Compared to
Vecs they require additional choices regarding parallel distribution
and storage formats. Though this is hidden inside the implementa-
tion of Mat, the most common storage format is parallel compressed

i=2 5.0
|' rank =1

i=3 3.0

Figure 2.2: A parallel Vec layout
on two processes. Because we call

sparse row storage, what PETSc calls the MATMPIAIJ type. In this type “VecSetSizes (x,PETSC_DECIDE,4)”,
a range of rows is owned by each process (parallel row storage), PETSc decides to split the storage in
L e the middle.
within each owned range of rows only the specifically-allocated en-
tries are stored (sparse), and these nonzero entries are stored contigu-
ously in memory using an additional index array (compressed). The
“specifically-allocated” entries are generally the nonzero entries, but
they are always referred-to as “nonzero entries” in sparse representa-
tions even though they occasionally have zero values.
Mat objects are linear operators and their major “purpose” is to
multiply Vecs. Of course, the result Vec from a Mat-Vec product is
a linear combination of the columns of the Mat. Thus, in practice,
parallel row storage of the Mat means these things:
* PETSc internally distributes the rows of the Mat A the same way
as the entries of the intended output (i.e. column) vec. Thus if
Ax = b for some x then row i of A is on the rank m processor if
and if entry i of b is on the rank m processor.4 4 This is the outcome when
. PETSC_DECIDE is used in setting both the
¢ Before PETSc computes a Mat-Vec product, PETSc communicates Vec and Mat sizes and they are of the
(“scatters”) the-wshela.Vec to each process. same dimension.
* After the scatter the Mat-Vec product is a local operation, requiring ,[L e MNed o \ re /'Fl cnf
no further communication.
c)(: Vec

One doesn't really need to know all this to assemble a matrix. For
example, here is one way to create and assemble a 4 x 4 Mat object
one row at a time:

Mat A;
PetscInt i, j[4] = {0, 1, 2, 3};
PetscReal v[4];

MatCreate(PETSC_COMM_WORLD,&A) ;
MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,4,4);
MatSetFromOptions(A);

MatSetUp(A);

i=0; v[0o] =1.0; v[l] =2.0; v[2] = 3.0;
MatSetValues(A,1,&1,3,j,v,INSERT VALUES);

22 PETSC FOR PDES

i=1; v[0] =2.0; v[l] =1.0; v[2] = -2.0; vVvI[3] = -3.0;
MatSetvalues(A,1,&1,4,j,v,INSERT_VALUES);
i=2; v[0] =-1.0; v[1] =1.0; v[2] =1.0; v[3] =0.0;
MatSetValues(A,1,&i,4,j,v,INSERT_VALUES);
jfer =1; jl11 =2; ji21 = 3;
i=3; v[o] =1.0; v[1l] =1.6; v[2] = -1.0; |
MatSetValues(A,1,&1,3,j,v,INSERT _VALUES); ’f,;;,:9}/,
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY); e ~
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY); — s

" i=0

The method MatSetValue sets multiple val ég, in this case a row.

20 | 1.0 | —20|-3.0

-1.0] 1.0 1.0 0.0

The “1,&1” arguments sa¥ that we are setting one row with global =1
index 1. The “3,j” or “4, j” arguments sa¥ that integer array j has 55
the 3 or 4 global column indices.

If the above lines appeared in mycode. ¢, and if it were run i3

1.0 1.0 | —-1.0

} rank -

I $ mpiexec -n 2 ./mycode

then the layout would be as in Figure 2.3.

Figure 2.3: A parallel Mat layout on

PETSc can show us the entries in the Mat in different formats at two processes. Blank entries are not

i allocated.
runtime:

$./mycode -mat view
Mat Object: 1 MPI processes

row 0: (0, 1) (1, 2) (2, 3)

row 1: (0, 2) (1, 1) (2, -2) (3, -3)

row 2: (6, -1) (1, 1) (2, 1) (3, 9)

row 3: (1, 1) (2, 1) (3, -1)

$./mycode -mat view ::ascii_dense

Mat Object: 1 MPI processes
type: seqaij

1.00000e+00 2.00000e+00 3.00000e+00 0.00000e+00
2.00000e+00 1.00000e+00 -2.00000e+00 -3.00000e+00
-1.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00
0.00000e+00 1.00000e+00 1.00000e+00 -1.00000e+00

e —

The first view shows the compressed sparse storage, with values
as pairs with column index and value. The second view is a tradi- |
tional (“dense”) display where all zero values are shown, whether '
allocated or not. Other possibilities for outputting a Mat, not shown/ {1\
include “-mat_view ::ascii_matlab,” which dumps in Matlab’s / i)
text format, and “-mat_view bimary--viewer-binary-filename" 1A
ardat” which saves to file a.dat in PETSc’s scalable binary for-
mat. In any case, -mat_view output happens at the completion of the
MatAssemblyBegin/End() calls.

In the last two cases shown above, the matrix was stored in serial
compressed sparse row format, the MATSEQAILJ type, because of the

&
¢ 61 325

S ¥ i
type: seqaij l}\uw‘ J

t rank =0

1

FINITE-DIMENSIONAL LINEAR SYSTEMS

one-process run. If the code is run in parallel, i.e. by mpiexec -n N
./mycode, then -mat_view reports type: mpiaij corresponding to

Mat type MATMPIALJ, the “parallel compressed sparse row storage”
described above.

Numerical linear algebra 1: residual and iterations

Direct methods like Gauss elimination [Trefethen and Bau, 1997] are
one way to solve a linear system. The most powerful methods for ea@ P D Es

[AlEEPDE-soFAmg-tses, however, are iterative. Fheyuse-the residual of

By definition, the residual of ug in linear system (2.1) is the vector
e N ¥
rg =b — Aug. (2.3)

Evaluating the residual for a known vector ug requires only applying
A to it, an O(N?) operation at worst. Because most discretization
schemes for PDEs generate matrices A that are sparse, with many
more zero entries than nonzeros, and because often the number of
nonzeros per row is typically small and independent of N, the opera-
tion Aug can often be done in O(N) operations.
The Richardson iteration,> simply adds a multiple w of the last 5 Also called simple iteration [Green-

residual at each step, baum, 1997].

e = we +w(b — Aug). (2.4)
If significantly fewer than O(N?) steps were needed to make uy an
adequate approximation of the exact solution u, then the Richardson — 4 o S—} Cases
iteration could improve on Gauss elimination. : 7 the =

Richardson iteration may not converge, as in the next Example.

Example. Consider the linear system

10 -1 [wm] _[8] _
S

which has solution u = [1 2] T. If we start with estimate ug = [0 0]"
then the w = 1 Richardson iteration (2.4) gives a sequence of vectors

uy = [8] sup = {ﬂ U2 = [_963] U3 = [E?Z] PR (2.6)

This sequence is not heading toward the solution.

Au =

23

24 PETSC FOR PDES

If we rewrite (2.4) as
U1 = (I —wA)uy + wb (27)

then it is easy to believe that the “size” of the matrix [— wA will
determine whether limy_,, uy exists. To make this precise we recall
important definitions.

A complex number® A € C is an eigenvalue of a square matrix
B € RNV if there is a nonzero vector v € CN so that Bv = Av. The
set of all eigenvalues of B is the spectrum o(B) of B. The spectral radius
p(B) is the maximum magnitude of the eigenvalues of B. The singular
values are the square roots of the eigenvalues of the matrix 5FB ,a
symmetric and positive-definite matrix with nonnegative eigenvalues.
Singular values are geometrically-defined as the lengths of semi-axes
of the (hyper-)ellipsoid in RV that results from applying B to all
vectors in the unit (hyper-)sphere of RN [Trefethen and Bau, 1997].

Properties of a matrix described in terms of its eigenvalues or sin-
gular values are generically called “spectral properties.” For example,
||B|2 is the largest singular value of B and ||B~!||, is the inverse of
the smallest singular value of B, so these are spectral properties. The
2-norm condition number x(B) = ||B||2/||B~!|| is thus also a spectral
property; it is visualized as the eccentricity of the ellipsoid above.

Exercise 2.2 asks you to show that the Richardson iteration (2.4) or
(2.7) will converge if and only if all the eigenvalues of B = [— wA
are inside the unit circle:

(2.4) converges if and only if p(I — wA) < 1. (2.8)

One can also show that p(B) < ||B|| in any induced matrix norm, so
that (2.4) converges if || — wA| < 1.

Numerical linear algebra 2: preconditioning

Considering spectral properties brings us to an important general ob-
servation about linear systems. Namely, that there are many systems
which are equivalent to (2.1). In fact, if M € RN*N is an invertible
matrix then the systems

(M 1Au=M"b (2.9)

and
(AM™)(Mu) =b (2.10)

have exactly the same set of solutions as (2.1). However, matrices
M~1A and AM™! generally have different eigenvalues, condition
numbers, and so on—different spectral properties—from A.

¢ Though B is real, A may be complex.
Also, if A is an eigenvalue of a real ma-
trix B then so is its complex conjugate
A

FINITE-DIMENSIONAL LINEAR SYSTEMS

While the accuracy of the approximate solution to (2.1) cannot be
improved beyond the x(A)e level by switching to systems (2.9) or 4,
(2.10), as fact i) on page 17 cannot be bypassed, methHods may take 4-\ 7 L3 'f ~mS
advantage of better spectral properties of M~ 1A or AM™!, com-
pared to those of A, to generate approximations to the solution more
quickly. This idea is effective if M~! is easy to apply in the sense
that (substantially) fewer operations are needed to solve the system
Mv = ¢ than to solve the original system.
Systems (2.9) and (2.10) are referred to as preconditioned ver-
sions of (2.1), with (2.9) called left-preconditioning and (2.10) right-
preconditioning. The next example shows how preconditioning can
make the Richardson iteration converge. In this case the diagonal of
A is used as M, an example of Jacobi preconditioning.

Example, continued. Suppose we extract the diagonal of A from
(2.5):
M= lloo ﬂ . (2.11)

Being diagonal, M is easy to invert and apply. The preconditioned
Richardson iteration using M, namely

W1 = Uy + w(M_lb — M_lAuk), (2.12)
a !
is better behaved. With uy = [0 0]* and w = 1 again we get this" & o b 4 e
sequence from (2.12):
u_011_0.81170.911__0.98 (2.13)
O ol T o™ T {1s| ™ T J1e0| =
e G A
This sequence is apparently goig&u = [1 2]*. The explanation is ¢ onve’] }
not hard to see; compare ———

p(I-A)=-91 and p(I-M A)=032, (2.14)

and recall (2.8).

Intuitively speaking, the vector norm of a residual ||rg|| = ||b —
Aug|| measures how “wrong” is ug as an approximation to u =
A~1b. This idea is incomplete in two senses, as follows.

First, we surely would want the norm of the error itself, i.e.

eg=uy—u (2.15)

as the direct measure of how wrong ug is. However, exact knowledge
of the error eq is equivalent to exact knowledge of the solution u

25

26 PETSC FOR PDES

itself ~if~we-already-havethre-appreximatior+g. Thus only bounds on

lleo]| might be reasonably be expected, even though we can compute
the full residual vector ry = b — Aug at will.

Secondly, errors are most meaningful if they are relative. For in-
stance, knowing “||eg|| < 104" does not tell us that ug is an accurate
solution to the system Au = b if [A~!|| = 1and ||b|| = 107, in
which case we would know in advance that |juf| < 107°.

These ideas both relate to the conditioning of A. Indeed, the
connection between the relative norm we can compute, namely
llro]| /{Ib]|, and the relative norm we want is well-known:

~1llroll _ [leol| [Ixoll
K(A) IEETs < < x(A) T, (2.16)
ol = Tl ="o
where «(A) = ||A||||A7|| is the condition number in the induced

norm. Proving (2.16) is Exercise 2.3; it requires only straightforward
manipulations with norms.

Numerical linear algebra 3: Krylov space methods

The most powerful iterative methods for solving system (2.1) gener-
ate optimal” estimates u; which are linear combinations of vectors

v, Av, A%v,..., A¥"ly. Here v is a fixed vector; oftenv = b orq is the
initial residual.

These methods are collectively called Krylov space methods be-
cause the span of such vectors is a Krylov space. Examples include the
Richardson iteration, conjugate gradient (CG), and minimum residual
methods (MINRES or GMRES).8 The effectiveness of a given Krylov
method on a given system depends on the eigenvalues or singular
values of the matrix A, i.e. on its spectral properties. Many Krylov
space methods are besitrto~anek fully-supported by PETSc, and we
will use them in aff later Chapters.

To be concrete, for a square matrix A € RN*N and a vector v €
RN, a Krylov space is defined as

Kn(A,v) =span{v, Av, A2v,...,A”_1v}. T (217)

We will use just “K,,” when the context is clear. Suppose it € K.
Then
= cov+ ClAV + C2A2V +-- 4+ Cn_lAnilV

for some coefficients c;, or equivalently
= py_1(A)V

for the n — 1 degree polynomial p,_1(x) = cp +c1x + - +cp_1x" !
applied to A.

7 In various senses. See Table 2.1 below
for two such.

8 We will address these methods in
this and the next chapter. See Green-
baum [1997] or Saad [2003] for details,
algorithms, and many more methods.

e ——————

FINITE-DIMENSIONAL LINEAR SYSTEMS 27

Thus if we want @ to approximate u, the solution to (2.1), then we
want to find a polynomial p,_; so that

pn1(A) ~ A7, (2.18)

at least in the action of applying p,_1(A) to v. Krylov space methods
do this.
One can prove that if p,_1(z) is close to 1/z on the finite set of
eigenvalues of A, i.e. on the spectrum ¢(A) in the complex plane,
then (2.18) follows. Thus, whether p,_; is a “good” polynomial
for approximately inverting A is a spectral question about A, and
Pn-1(z) = 1/z is by no means required on large domains (open sets)
of the complex plane.
The construction of a “good” p,_1 would be a question of ap-
proximation theory on finite subsets of the complex plane if only
the spectrum o (A) were known, but in fact that is asking too much.
We typically know A either through its entries or action on vectors,
and we might have general spectral information about A through
the context in which it was generated.9 Accurately computing the ¢ As the discretization of a PDE with
full spectrum o (A), however, is at least as difficult as solving a linear iaown gpestraijpropestieg) (grioemple.
system Au = b.
For an example in which a polynomial is generated during a
Krylov iteration, consider again the Richardson iteration (2.4) with
w =1, namely u;; = u, + (b — Auy). A straightforward calculation
starting with up = b shows

up = q(A)b with gey1(x) =14 (1 x)gx(x) (2.19)

and go(x) = 1. Figure 2.4 shows these polynomials. It is easy to
“check that g4(x) — 1/xforx € (0,2), and the{f"-igure suggests it
teer On the other hand, (2.8) says g, (A)b — A~!b if the spectral aS)
condition p(I — A) < 1 holds. The latter condition says exactly that
all eigenvalues of A must be within distance one of 1 + 0i in the
complex plane, and thus that all real eigenvalues of A must be in
(0,2).
Though the Richardson iteration generates u, which are from a
Krylov space, and thus uy are polynomials in A applied to b, they are
by no means the best such approximations. We now give a “gloss”
of two other well-known Krylov methods. They generate the same
kind of polynomial approximations, but for polynomials p, which

Va(l’"?\—'

minimize vector norms over a Krylov space.

Define P} to be the set of all real polynomials p of degree n such
that p(0) = 1. For a real square matrix A € RV*N and v ¢ RY,
define the affine space (set)

Ki(A,v) = v+ span{Av, A%v,... A" v}. (2.20)

28 PETSC FOR PDES

ka-these-tesms, Table 2.1 compares three Krylov methods, namely the
Richardson iteration (2.4), conjugate gradients (CG), and generalized
minimum residuals (GMRES). For CG and GMRES as algorithms, see
Greenbaum [1997] or Saad [2003].

In practice, GMRES uses “restarts” to avoid filling memory with
its internal representation of the Krylov space. (This mechanism
stops practical GMRES from being a “pure” Krylov method.) The
PETSc default is to restart after 30 iterations, so GMRES uses ~ 30N
memory locations on an N-dimensional problem, compared to 3N for
CG and 2N for Richardson.

The classical Jacobi and Gauss-Seidel iterative methods [Greenbaum,
1997] are not Krylov space methods as they stand. They involve ex-
tracting parts of (entries of) A, as a matrix, which cannot be done by
operations Av. These classical iterations can, however, be regarded
as preconditioned forms of the Richardson iteration [Greenbaum,
1997]; see Exercise 2.1.

We get access to the many Krylov methods implemented in
PETSc any time we create a KSP object. Which method is used can
be controlled at runtime, as long as we call the KSPSetFromOptions ()
method (below)

Runtime experimentation with Krylov methods is always appro-
priate. For the Poisson problem in Chapter 3, for example, precon-
ditioned CG is effective, though we will see that the most emphasis
should be put on the preconditioning stage.

Figure 2.4: The w = 1 case of the
Richardson iteration (2.4) approximates
u = A~!b by u, = g;(A)b for polyno-
mials g4 (x) which approximate 1/x on
the interval (0, 2).

FINITE-DIMENSIONAL LINEAR SYSTEMS 20

NAME SYMMETRY OPTIMALITY SO
CONDITION
Richardson any none p(l —wA) <« 1

s ot e, minimizes . pl 1
ymin f(v)= (V, Av) exist py€P, sma

cG i pi<P)
positive-definite over veKL(A,) on o(A)C(0,00)

Iy Mminimizes)) |

GMRES any F(v)=|v||> over exist py €P, small

veKl(4,b) onv(A)CC

Our brief introduction of iterative linear algebra is now dor,
though it is hardly adequate, and we return to PETSc codes and
concrete linear systems. In the upcoming material the reader can
initially treat PETSc’s KSP linear solver object as a black box, but then
explore how it works through runtime options, recalling the above
material as needed.

A small linear system

We already know how to create, fill, and destroy Vec and Mat objects.
Code 2.1 shows vecmatksp. c which does these steps for the linear

system
12 3 0] |x 7
2.1 =2 3| |a| _ |1 (2.21)
-1 1 1 0 X2 1
0 1 1 =1| |x3 3

A KSP object solves the linear system, with the specific method
chosen at runtime. It has the expected Create/SetFromOptions/Destroy
sequence. In addition, at the set-up stage for the linear system we tell
the KSP about the matrix via the command

KSPSetOperators(ksp,A,A);

Why do we list A twice in calling KSPSetOperators()? The reason

is that at runtime we generally choose a preconditioning method
which builds M1 in equation (2.9) or (2.10) from A or from an ap-
proximation of A. For example, incomplete LU factorization of A
(“ILU(0)”) can be used in generating M1, or M could be the diago-
nal of A as in the example on page 25. The second matrix argument
to KSPSetOperators() is this Mat from which M ! is built.

Table 2.1: Comparison of three well-
known Krylov methods for the problem
Au = b. “Symmetry” means required
properties of A to apply the method.
“Spectral condition” informally states
spectral properties of A which lead to
rapid convergence. Recall ry = b — Auy
and e, = u; —u.

(¢ W/ {f' ;/C

34 PETSC FOR PDES

® The default PC is bjacobi, i.e. application of approximate diagonal-
block inverses as M~ 1.

* Inside the PC is a sub_pc object, also a PC, which is ILU(0),"" and
this generates the approximate diagonal-block inverses.

The reader can confirm the situation by running
| mpiexec -n 2 ./vecmatksp -ksp_view

Surely that’s enough runtime options for now. Of course there will
be more, especially in later Chapters when we solve PDEs.

A sparse system of arbitrary size
We have seen how PETSc code sets up and solves linear systems,

but there is more to say. The next example tri.c, split into Codes 2.2
and 2.3, introduces the following additional concepts and associated

function calls: — e e———

B
i) Creating an integer option by PetscOptionsXXX() calls, so that the
“ size of the linear system can be controlled at runtime.

sing VecDuplicate() for allocation.

iii) /Assembling a system of arbitrary size across an arbitrary number

/

(/of processes, using MatGetOwnershipRange () to only set locally-
_owned rows.

o

."‘/..’-‘

iv) /Using VecAXPY (), VecNorm(), and PetscPrintf() to compute and
display the numerical error in a case where the exact solution is
known.

First we build and run the code:

$ make tri

$./tri -ksp_monitor -a_mat_view ::ascii dense

Mat Object:(a_) 1 MPI processes
type: segaij
3.00000e+00 -1.00000e+00 0.00000e+00 0.00000e+00
-1.00000e+00 3.00000e+00 -1.00000e+00 0.00000e+00
0.00000e+00 -1.00000e+00 3.00000e+00 -1.00000e+00
0.00000e+00 0.00000e+00 -1.00000e+0Q 3.00000e+00
0 KSP Residual norm 3.302822756884e+00
1 KSP Residual norm 5.519370044893e-16

error for m = 4 system is [x-xexact|_2 = 5.1e-16

" There is even a sub_ksp object, but it
is preonly.

Joe. '+ N
yYWhis

2 e e #
clanf

FINITE-DIMENSIONAL LINEAR SYSTEMS

Next we assemble the matrix A. This is a boring tridiagonal ma-
trix with 3 on the diagonal and —1 in the super- and sub-diagonals.
Though boring, we want to assemble it efficiently in parallel, some-
thing that will be important when solving 2D and 3D PDEs in later
chapters. However, only when tri.c is run do we know how many
processes are in use. The method MatGetOwnershipRange() tells our
program, running on a particular process (rank), what rows it owns
locally. In the case of a many structured matrices like this one, we
can avoid all interprocess communication by assembling exactly the
rows we own. As seen at the top of Code 2.3, we call

MatGetOwnershipRange(A,&Istart,&Iend)

to ,g(t the starting and ending row indices for the local process. These

are used as limits in a for loop over the locally own rows. We use
MatSetValues() to actually set the entries of A and MatAssemblyBegin/End ()
to complete the assembly of A.

We need to assemble the right-hand side b of the linear system

and also the exact solution Xexact to the linear system (Axexact = b).
The easiest way, for demonstration purposes here, is to choose Xexact
and then compute b by multiplying by A. Thus, we set (unimportant)
values for xexact, and call VecAssemblyBegin/End() on it. Then we

compute b by calling MatMult (A, xexact,b).

As in vecmatksp. c before we set up the KSP and then call KSPSolve()
to approximately solve Ax = b. Option -ksp_monitor prints the
residual norm ||b — Axg||» at runtime. In this case we also want to see
that the actual error

”X - xexactHZ

is small when the KSP completes its work. So, after getting x from
KSPSolve () we compute the error with two commands,

VecAXPY(x,-1.0,xexact) : x — —Ixexact +x
VecNorm(x,NORM_2,&errnorm) : errnorm <+ |[|x],.

and then print errnorm by calling PetscPrintf().

A first look at performance

The linear system assembled by tri.c is about as easy to solve as
they get. It is tridiagonal, symmetric, diagonally-dominant, and pos-
itive definite.’> So PETSc ought to be able to solve it quickly, almost 2 See Exercise 2.8.
all Krylov methods should apply, and parallelization ought to be
effective.
We can time a one-process solution:

$ time ./tri -tri_m 10000
error for m = 10000 system is |x-xexact|_2 = 8.0e-13

37

FINITE-DIMENSIONAL LINEAR SYSTEMS 39

KSP PC N=1 time (s) N=4 time (s)
preonly Lu 10.74
cholesky 5.84
richardson jacobi 13.48 5.45
gmres none 9.99 5.30
jacobi 10.23 4.49
ilu 4.77
bjacobi+ilu 2.99
cg none 7.22 3.18
jacobi 7.49 3.31
icc 4.81
bjacobi+icc 2.87

-sub_pc_type icc, respectively. As already noted, the first of these

is the parallel default, and the Table suggests why this is.

¢ Counting floating point operations shows the leading-order work

for Cholesky is m®/3 while for LU it is 2m3/3 [Trefethen and Bau,

1997]. This is reflected in the direct-solve results using -ksp_type
preonly.

¢ A diagonally-dominant tridiagonal problem is very well-behaved
for direct methods because no fill-in or pivoting occurs when
they are applied; but the.reader should not assume that generic
= 101;11men510n bybtems e good- candidates for direct solves. |

° (.holesk ,)md CG mcthodb ;hame KSP method cg nd! PC meth- /
ed M1C0)"),

IS choles ky and mncompléte- y, also denote
:eapectwel A apply to symmetric positive- defmlte mamces‘mx
~We see some benefit to using CG on one-process runs, compared
to the general (non-symmetric) method GMRES, but the matrix
here is so well-behaved that exploiting symmetry gives no notica-
ble benefit.

® There is some speed-up from N = 1 to N = 4 processes on this
single node 4-core WORKSTATION. The two (or slightly more)
times speed-up is relatively uniform across methods. But appar-
ently using four cores does not guarantee anywhere near four-
times speed-up.

In future Chapters, “real” linear and non-linear systems will be
generated by discretizing PDEs. Then we will create timing tables
like Table 2.2, and re-consider the results.

It is worth noting at this point that PETSc can generate graphics

showing convergence of the above iterative (Krylov) methods, at least

if X11 windows are installed. The line graph in Figure 2.5, from

Table 2.2: Times for tri.c to solve sys-
tems of dimension m = 2 x 107. In this
case the matrix is tridiagonal, symmetric,
diagonally-dominant, and positive definite.
All runs were on WORKSTATION (see

page 38).
5»‘7)V ¥
§q‘(j %
K Lzb
‘/ ;
eJC i (,\J S
V\ Le \V\\ . L'\
v] ¥ t
?{:/\“56)
t
/UJM: W
>
e ; P
! ..‘\‘
; \

Figure 2.5: PETSc can use X windows
to produce line graphs at run time.
(This is not to say they are pretty.)

40 PETSC FOR PDES

$./tri -tri_m 1000000 -ksp_rtol 1.0e-10 -pc_type jacobi \
-ksp_monitor_lg_ residualnorm -draw_pause 1

shows the residual norm logarithm versus the iteration number.

Parallel preconditioning

There is one more “fact of life” to point out, again relating to numeri-
cal linear algebra. We can demonstrate it using tri.c runs:

$ mpiexec -n N ./tri -tri_m 100 -ksp_type cg -pc_type bjacobi \
-sub_pc_type icc -ksp_converged_ reason

Compare N = 2 and N = 20. We get convergence to the default
tolerance in 3 and 5 iterations, respectively, and the final reported
numerical error is quite different in the two cases.

In general, we observe there is a

— =

[iv) processor-count dependence of preconditioning: Many Iprecondition—
~——ing schemes, including block-Jacobi and Schwarz methods (Chap-
ter 7), act differently depending on the number of processors.

Note that this processor-dependence has a stronger influence on
final answers than the other parallel-only “fact of life”, namely that
parallel reductions are not deterministic (Chapter 1).

The difference does not arise in the Krylov iteration implemen-
tation. Rather, the preconditioning matrices M ! applied at each
Krylov iteration are actually different matrices in the N = 2 and
N = 20 cases. In particular, on N processes the block-Jacobi matrix is

-1
My
(2.22)
—1
My,

where each block M; is the product of the incomplete=Chebyshev
factors acting on those rows which are owned on the rank i process.
For any nontrivial preconditioner, even one based on diagonal blocks
of a tridiagonal matrix as here, different sets of rows “communicate”
at the preconditioning stage depending on the processor count.
What if you do not want this dependence? On the one hand, you
can make the reported numerical error nearly processor-count-
independent by asking that it be small (e.g. -ksp_rtol 1.0e-14),
but then the difference in iteration count is even stronger (3 and 13
iterations on N = 2 and N = 20 processes, respectively). On the
other hand, if you replace “-pc_type bjacobi -sub_pc_type icc”
with “-pc_type none” or “-pc_type jacobi” then runs on N =2 and

L CC

FINITE-DIMENSIONAL LINEAR SYSTEMS 41

N = 20 processes all get identical numerical error results after 12 iter-
ations.'4 These preconditioners do not communicate any information
between rows at all, and thus they exhibit no dependence. However,
good preconditioners, as we will see, cannot be that trivial.
Fundamentally, preconditioning is useful if can both be applied
quickly and if it has a significant spectral effect. Quick parallel appli-
cation requires avoiding inter-processor communication, but signifi-
cant spectral effect requires using multi-row information from those
rows owned by a processor. We will not fight against this situation,
but we must be careful to evaluate parallel preconditioner effective-
ness by measuring execution time, or execution time per degree of
freedom, for example, and not only counting Krylov iterations.

Exercises

2.1 Suppose a square matrix A with nonzero diagonal entries
is decomposed into diagonal and lower/upper triangular parts
as A = D+ L+ U. Show that the Jacobi iteration ug,; =
D71 (b — Lu; — Uuy) is the same as the w = 1 Richardson iter-
ation (2.4) applied to the left-preconditioned system (2.9) with
M = D. Formulate and prove a corresponding statement about the
Gauss-Seidel iteration ug,; = (D + L)~! (b — Uuy).

2.2 Show (2.8).

2.3 Show (2.16).

2.4 On page 27 we note that a Krylov space approximation p,_1(A)b

to the solution A~'b is close if p,,_;(z) is close to 1/z on the
spectrum of A. Prove this for invertible diagonalizable matrices
A = SAS™!, with A diagonal, by showing

Ipn-1(A) — A7 < (S) max |pp-1(A) = A7}
Acu(A)

where x(S) = ||S||||S7!| is the condition number.'5

2.5 For the w = 1 Richardson iteration (2.4) and ug = b we géf
u; = qx(A)b for polynomials gy given by (2.19). Show that if
limy 0 G = Goo exists then geo(x) = 1/x. On the other hand, by
setting y = 1 — x and defining Qk(y) = qx(1 — y), show Qi (y) is
the partial sum of a well-known series with a well-known radius

of convergence.

2.6 Consider Richardson iteration in the example

| J/tri -trim 100 -ksp_monitor -ksp_type richardson

4 Le. all four runs show the same
numerical error and iteration count.

O l)"(”"-n,

5 Here || - || is any induced matrix norm
[Trefethen and Bau, 1997]. However, if
A is normal then S can be chosen to be
unitary, in which case «(S) = 1in the
2-norm.

42 PETSC FOR PDES

nvo AP

“Xn-preconditioned Richardson iteration fails (i-e. add -pc_type
none); explain. The default preconditioner succeeds (i.e. -pc_type
ilu), but ILU(0) is cheating because it becomes a complete LU
factorization on this tridiagonal and diagonally-dominant A4; we
are really seeing a direct solve. The same can be said for ICC(0).
Confirm that, as in the example on page 25, Richardson iteration
succeeds with -pc_type jacobi. Explain.

2.7 The accuracy of direct solves (e.g. -ksp_type preonly -pc_type
cholesky) in tri.c, as measured by the reported error norm
|IX — Xexact ||2, decreases with increasing dimension. Confirm and
explain.

2.8 Un-preconditioned GMRES solves the linear system in tri.c
reasonably efficiently. We can explain this by asking PETSc to

compute the eigenvalues of A by using option'® “ The relevant PETSc manual page
i says this option is “intended only for
-ksp-compute_eigenvalues assistance in understanding the con-

vergence of iterative methods, not for
. 1 . . eigenanalysis. For accurate compu-
ditioned operator M~"A, add -pc_type none. Try dimensions tation of eigenvalues we recommend

N = 10,100, 1000. Why does the run using the excellent package SLEPc.” See
slepc.upv.es.

Because otherwise it computes the eigenvalues of the precon-

| ./tri -tri_n 1600 -pc_type none -ksp_compute_eigenvalues

only show 11 eigenvalues of this 1000 x 1000 matrix? How do
these eigenvalues explain the good behavior of unpreconditioned

GMRES?Y7 7 See [Trefethen and Bau, 1997] for help
. . with both of these questions.
2.9 Table 2.2 includes a number of blanks. For each one, explain

why it is blank, experimenting if needed.

2.10 Table 2.2 gives execution times not iteration count. Generate
the corresponding table of KSP iteration count by adding option
-ksp_converged_reason to the run commands. Note the large
number of “coincidences” in iteration count, i.e. cases where iter-
ation counts are identical; explain. Which preconditioners have a
strong or weak effect on iteration count?

211 As the reader will undoubtedly experience, segmentation
faults and memory leaks are inevitable when one develops PETSc
codes. A standard tool for detecting/diagnosing these is valgrind.®® *#See valgrind.org.
We recommend using it. As an exercise, run

| valgrind ./vecmatksp

to see what valgrind shows for a leak-free program. Then comment-
out a VecDestroy() call in vecmatksp.c and rerun to see a com-
mon type of memory leak.

POISSON PDE ON A STRUCTURED GRID 47

da output: the resulting distributed array object

In Code 3.1, the second and third arguments are DM_.BOUNDARY_NONE
because our Dirichlet boundary conditions do not need communi-
cation to the next process’ domain, nor periodic wrapping. In the
fourth argument we use DMDA_STENCIL_STAR because only cardinal
neighbors of a grid point will be used when forming the matrix.> The
two PETSC_DECIDE arguments which follow tell PETSc to distribute
the grid over processes according to the size of (number of processes
in) the MPI communicator using PETSc internal logic as illustrated
above. The next two arguments, in the ninth and tenth positions, say
that our PDE is scalar (dof= 1) and that the FD method will only
need one neighbor in each direction (s= 1). The next two arguments
after that are NULL because we are not telling PETSc any details about
how to distribute processes over the grid; it DECIDES for itself. Finally,
the DMDA object is created as an output (i.e. pass-by-reference).

The call to DMDASetUniformCoordinates() in Code 3.1 sets the
domain to be [0,1] x [0, 1] in the sense that the DM object knows the
spacing and locations of the grid points. The last two arguments are
ignored in this case; they would set limits on the third dimension if
da were created with DMDACreate3d().

. Local Node

") Ghost Node

.

B T Ty T T T PP P Y i)

-

e LT T

-
t‘.
s @
K
S o
i
.0
x
: ® ®
:
: @
L @
:
,
.!
e

.

-

9 O

2

:

:

The standard PETSc view of what DM s “look like” is in Figure
3.6. The code in Code 3.1 generates something like the left figure,
namely a structured-grid DM, except that the one shown in Figure
3.6 has DMDA_STENCIL_BOX stencil type, unlike ours. On the right is
an unstructured grid, of the type created in Chapter 8 for the finite
element method. In both cases the Figure shows the nodes owned
by a given process (“local” nodes) and those other nodes that are
accessible by the local process (“ghost” nodes).

* Figure 3.7 below shows the “stencil” of
our FD method.

':f". AN € ’ ; _{)
a UL 2r
:‘:’f“‘.f__. |'.f’ v 3

z’uv//f/ clf'rt'{—w"' | ﬂ‘x_)'?u

{ UseS NULC o

L ﬂ"j"

&

Figure 3.6: PETSC’s parallel decompo-
sition of structured (left) and unstruc-
tured (right) grids, showing owned
(“local”) and accessible (“ghost”) nodes
for one process.

48 PETSC FOR PDES

Finite difference method

. H L S 4] /ﬂ }V" 1 |
We were trying to approximate PDE problem (3.1) and (3.2), not A i)
just build a grid. The following FD method leads to the next stepgr {__’_,--g—
creating and assembling a Mat and Vecs, for the linear system corre-
sponding to the PDE.
By a well-known Taylor’s theorem argument [Morton and Mayers,
2005], if F(x) is sufficiently smooth then

_ F(x+h)—2F(x)+ F(x—h)
= »

as h goes to zero. This formula, applied to partial derivatives, will ap-
proximate the Laplacian in equation (3.1). In fact, if u;; is the gridded
approximation to the value u(x;, ;) of the exact solution u(x,y) at

a grid point and if f;; = f(x;,y;), then from (3.4) we have this FD 3 This is an important phrase! We
compute values u;; from the finite
difference equations. We generally do
not know the values u(x;, y;).

F'(x) o) ()

approximation to equation (3.1):

Uiy — Wi+ tiy; Wi — 2Uj5 + Ui
a 2 o 2
2 "

= fij- (35)

Equation (3.5) applies at all interior points, where 1 < i < M —2 and
1 <j < N —2. The boundary conditions (3.2) become

Ug,j = 0, UM-1,j = 0, up=0, unN-1=0, (3.6)

foralli,j.
At grid location (x;, y;), equation (3.5) relates the unknown u; ; to

its four cardinal neighbors u; 1 ;, u;_1,, %;;1, and u;; ;. This pattern

(Figure 3.7) is a stencil, in particular a “star” stencil. By contrast, a
“box” stencil would additionally involve the four diagonal neighbors. i Pe ®

In 2D, a star stencil relates five unknowns, while a box stencil relates
nine.
We will treat all values u; ; as unknowns, whether on the boundary

or in the interior, so we have L. = MN unknowns. Equations (3.5) and

(3.6) form a linear system of L equations,]

1
Au =D, (3-7) Figure 3.7: This “star” stencil simply
illustrates FD scheme (3.5).
where A is a L X L matrix and u, b are L x 1 column vectors.
However, to show entries of A and b in linear system (3.7) we
must globally-order the unknowns. Such an ordering is implemented
inside a PETSc DMDA, and indeed our code (poisson.c below) will

use only the grid-wise coordinates (i, j).# Here we expose the order- 1 The ability to assemble Mats and Vecs
with (i, j)-type indexing is one reason

. . . . structured-grid codes using DMDA can be
The ordering used in a one-process (serial) run by a 2D DMDA is quite short.

ing for the purpose of displaying the system in matrix-vector form.

shown in Figure 3.8. On an M by N grid one could write it as

Ug =u;; where k=jM+i (3.8)

POISSON PDE ON A STRUCTURED GRID 49

fori =0,1,...,. M—1landj=0,1,..., N—1,s0k=0,1,...,MN — 1.

PETSc does such index transformations inside the DMDA implementa-

tion.

Example. Inthe M = 4and N = 3 case (Figure 3.8) we have grid
spacing hy = 1/3 and hy = 1/2. Only the k = 5 and k = 6 equations
are not boundary conditions (3.6). The linear system (3.7) is

1 1 Tuge] [0
U1,0 0
U0 0
Uz o 0
1 Uup,1 0
b a b C u1,1 . fl,l
b a b Uz fa1
1 Uz 0
1 Up2 0
1 U2 0
1 U2 0
I 1§ {us2] 0]

where @ = 2/h3 +2/h; =26,b = —1/h} = —9and c = —1/h} = —4.

The matrix A is not symmetric. Furthermore it is not well-scaled,
for such a small example, because the 2-norm condition number is
©(A) = [|A[l2[| A7 1|2 = 43.16.

Before assembling system (3.5) and (3.6) by writing PETSc code,
there are two nontrivial observations about it. These observations
lead to an equivalent linear system that is easier to solve both in the
sense that we have more options for solving the system,> and in the
sense that the condition number is smaller.

First, equations (3.5) have very different “scaling” from equations
(3.6). For example, if M = N = 1001, so that by = h, = 0.001,
then the coefficient of u; ; in (3.5) is 4/ (.001)? = 4 x 10%, while the
coefficients from (3.6) are equal to 1. To make the equations better
scaled, we multiply (3.5) by the grid cell area h,hy to }9/

2(a+b)uij—a (i1 +uim1,j) — b (wija +ugjo1) = hehyfi

where a = hy/hy and b = hy/hy. Using (3.9), all the equations in the

system will have coefficients of comparable size, unless the cell aspect
ratio hy/hy is very large or small. If hy = hy then diagonal entries are

4 and off-diagonal entries are —1.

(3.9)

8 9 10 11
, 4 S) 6 74
] 1
0 1 2 3
0 1 2 3

i
Figure 3.8: Ordering of unknowns (3.8)
onaM = 4and N = 3 grid. Index k
from (3.8) is shown in bold.

5 More KSP and PC choices, and more
that converge.

gb/kmhn

52 PETSC FOR PDES

the rank 1 and 3 processes have info.xs = 3 and info.xm = 2. There
are similar y ranges.

= Figure 3.9: A DMDALocalInfo struct
> describes the indices for a local process’
=) N
g —e— e - - " . " . - - part of a 2D grid, plus the global grid
= size.
o
-
L] L] L] L L L . L] L L]
L ° L L L L - L ° .
L - L ° °
- L2 ° L L]
E
>
(=] . . . L] L]
Y=
e
-
L L . L L]
v
>.’ —— L Ll L] °
o
Y=
c
- . ® . L] ° . . ° ° °
(o] + L2 ° + . ° . ° ® *
0 info.xs info.mx-1
info.xm

The local-ownership index ranges from info are used in the for
loops which re-appear every time we do operations on a structured
2D grid:

for (j=info.ys; j<info.ys+info.ym; j++) {
for (i=info.xs; i<info.xs+info.xm; i++) {
DO SOMETHING AT GRID POINT (i,j)
}

Still considering the code in Code 3.2, the Mat object A assembled
by formdirichletlaplacian() has ranges of rows owned by each
process, the standard parallel layout MATMPIALJ of Mat objects in
PETSc (Chapter 1). However, because we work with the locally- y
owned subgrid using (i, j) indices, we can fogget the actual layout of (ér wort
a Mat and only focus on the part of the grid owned by the process,
instead of worrying about the matrix itself.
In particular, local indices (i, j) can be used when inserting entries
into Mat A, which is really a dynamical data structure for matrix as-
sembly. Thus in Code 3.2 we see one use of MatSetValuesStencil()

POISSON PDE ON A STRUCTURED GRID 53

for each locally-owned grid point. For a generic interior point this
command inserts five coefficients into the matrix. The key data struc-
ture is of type MatStencil, an apparently-trivial struct

typedef struct {
PetscInt k,j,1i,c;
} MatStencil;

In our 2D case, with a single degree of freedom at each node,” we 7 The Poisson equation (3.1) is a scalar
only use the i and j members of MatStencil. From (3.9), the actual gon oMW At caCEEI RO
. . . is the scalar u; ;. A system of equations
matrix entries are a;; = 2 (hy/hy + hx/hy) on the diagonal, and like Navier-Stokes would have dof> 1
ayj = _hy/hx or a;; = ,hx/hy for off-diagonals. when we call DMDACreateXd (), and the
’ ’ “c” member of MatStencil would get
used.

A particular problem, an exact solution

At this point we need a specific Poisson problem so our example
code can solve it. To do this we choose® an exact solution, taking care 8 For the code tri.c in Chapter 2 we

that it satisfies homogeneous Dirichlet boundary conditions (4 = 0 did something similar, i.e. choosing
exact solution u before computing

along a8): b = Au by matrix multiplication.

u(x,y) = (2 — x)(y* - y?). (3.10)

Then we merely differentiate to get f = ~—V?u. Thus (3.10) solves
(3.1) with right side

flry) =2(1—6x?)y*(1—y*) +2(1 —6y*)x*(1—x). (3.11)

From now on we will refer to u in (3.10) as “uey”, the exact solution.

This same problem and solution appears in Chapter 4 of [Briggs : be
et al., 2000], so these formulas are not original. T 1,\ C x N _ 21 \‘\1
. . . WA\ ry NIESEN SN
Observe that the truncation error term O(h?) in equation (3.4) has -~ ¥). 7 egreas
/ N = |) / . _{_. -
a coefficient proportional to fourth derivatives [Morton and Mayers,
4 1
1

2005] so our FD method will not be exact on this problem. That is,
1oy has nonzero fourth derivatives. This is good for testing, and we
would not want to use the simpler form u(x,y) = (x — x2)(y* - y),
for example, to test convergence rate of the code, because we want

the decay of numerical error with refining grids to be generic.

Code 3.3 shows how (3.10) is implemented as formExact() and /
how (3.11) is implemented as formRHS (). We will reuse these parts in Z
Chapters 6 and 7. ,/""_ (/\“ R

POISSON PDE ON A STRUCTURED GRID 5§

DMDAVecRestoreArray(), and we explicitly ask for the Vec objects to
be assembled by calling VecAssemblyBegin/End(),% as in Chapter
1. ‘

ch3/poisson.c part I|

static char help[] = "A structured-grid Poisson problem with DMDA+KSP.\n\n";

#include <petsc.h>
#include "structuredpoisson.h"

int main(int argc,char x=*args) |
DM da;
Mat A;
Vec b, u, uexact;
KSp ksp;
PetscReal errnorm;
DMDALocalInfo info;

PetscInitialize (&argc, &args, (char+)0,help);

// default size (9 x 9) can be changed using —da_grid x M -da_grid y N
DMDACreate2d (PETSC_COMM_WORLD,

DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DMDA_STENCIL_STAR,

-9,-9,PETSC_DECIDE, PETSC_DECIDE, 1,1, NULL, NULL,

&da) ;
DMDASetUniformCoordinates(da,0.0,1.0,0.0,1.0,-1.0,-1.0);

// create linear system matrix A
DMCreateMatrix(da, &A);
MatSetOptionsPrefix (A, "a_");
MatSetFromOptions (A) ;

// create right-hand-side (RHS) b, approx solution u, exact solution uexact
DMCreateGlobalVector (da, &b) ;

VecDuplicate (b, &u) ;

VecDuplicate (b, &uexact) ;

// £ill known vectors
formExact (da,uexact);
formRHS (da, b) ;

// assemble linear system
formdirichletlaplacian(da,1.0,A);

Code 3.4: Set up DM, Mat, and Vec
objects, and assemble the linear system.

Solving the PDE

Code 3.4 shows how poisson.c creates the various objects needed to
solve the Poisson problem, namely one DM, one Mat, and three Vecs.
A DM object can compute matrix and vector sizes from the grid di-
mensions, so we call DMCreateMatrix() and DMCreateGlobalVector()

POISSON PDE ON A STRUCTURED GRID 57

1 KSP Residual norm 2.656923348626e-02
2 KSP Residual norm 8.679141000397e-03
3 KSP Residual norm 1.557150861763e-03
4 KSP Residual norm 2.239919982542e-04
5 KSP Residual norm 2.519822315367e-05
6 KSP Residual norm 2.152764600588e-06
7 KSP Residual norm 2.650467236964e-07 30 31 32 33 34
on 9 x 9 grid: error |u-uexact|_inf = 0.000763959
b5 Bs b7 P =
Recall that a default 9 x 9 grid was chosen in calling DMDACreate2d ().
We see seven iterations of the KSP method, a small final residual = & g2 B2 P4
norm, and an apparently small numerical error. It is reasonable to e s v ha B
think that we have solved the problem, but further inspection is defi-
Lo 11 L2 i 14

nitely in order.
Options -da_grid_x M -da_grid_y N set the grid at runtime, and s . n . "
we can examine both the grid (i.e. the DM object) and our assembled

Mat graphically to check these objects. If X11 sretwr-wittttomsng is
correctly linked in your PETSc installation then

L
=
™
AT
=

Figure 3.10: PETSc can show the
structured-grid DMDA at runtime, here

| $./poisson -da_grid x 5 -da_grid_y 7 -dm view draw -draw_pause 5 .
for a single-process run.

gives Figure 3.10, same as the M = 5, N = 7 grid in Figure 3.2, n
including the global node ordering by formula (3.8). Options uy

| $./poisson -da_grid x 5 -da_grid_y 7 -a_mat_view draw -draw_pause 5 -.‘.
L]
a" "

show a graphic similar to Figure 3.11. These views suggest that we 3 .‘ .
have the right kind of matrix structure for the Poisson problem, = s
namely a symmetric sparse matrix with tridiagonal blocks along " -‘. "u,
the diagonal and a banded structure. . "-
As a specific check on our matrix assembly, this sparse matrix .
view is easily checked to be identical to the matrix in the linear sys- .
tem on page 50:
Figure 3.11: PETSc can show the

$./poisson -da_grid x 4 -da_grid.y 3 -a mat view matrix structure too. The actual graphic
Mat Object:(a_) 1 MPI processes is in color, but here the two dark shades
type: seqgaij show positive and negative entries

while the light shade shows allocated

row 0: (0, 1 1, 0 4, 0
() A b) locations which are zero.

row 1: (8, 0) (1, 1) (2, ©) (5, 0)

row 2: (1,) (2, 1) (3, 0) (6, 0)

row 3: (2,) (3, 1) (7, 0)

row 4: (0, ©) (4, 1) (5, @) (8, 0)

row 5: (1, @) (4, 0) (5, 4.33333) (6, -1.5) (9, 0)
row 6: (2, 0) (5, -1.5) (6, 4.33333) (7, ©) (10, 0O)
row 7: (3, 0) (6, 0) (7, 1) (11, 0)

row 8: (4, 0) (8, 1) (9, 0)

row 9: (5, 0) (8, 0) (9, 1) (1@, 0)

row 10: (6, 0) (9, 0) (10, 1) (11, 0)
row 11: (7, 0) (10, 0) (11, 1)
on 4 x 3 grid: error |u-uexact|_inf = 0.0085927

58 PETSC FOR PDES

Additionally, a “movie” of the KSP iterates {uy} comes from run-
ning
| $./poisson -da_grid x 100 -da grid_y 100 -ksp_monitor_solution

(not shown). Alternatively, as in Chapter 2, a line graph of the (pre-
conditioned) residual norm is from -ksp_monitor_lg_residualnorm
(also not shown). These various viewing options should be used on
under-development PDE-solving code on a structured grid.

There are two ways to specify grid refinement. One is to specify
the grid dimensions directly as above, but the other is to have the
DM refine the grid by factors of two. More precisely, the number of
subintervals is increased by a factor of two. For example, this option
replaces our default grid of 8 subintervals (i.e. 9 x 9 grid points) by 16
subintervals (i.e. 17 x 17 points) in each direction:

$./poisson -da_refine 1
on 17 x 17 grid: error |u-uexact|_inf = 0.000196764

Choices of solver and parameters can be made at runtime, once
we have adequately-described the problem in terms of PETSc ob-
jects. We have delayed questions of convergence and efficiency until
runtime, but here is what we might want to know now:

¢ is our numerical method correctly implemented? (convergence)
* what is going on inside PETSc? (exposure)
* how to get high performance? (efficiency)

In the next three sections we address these in turn, with only a super-
ficial stab at efficiency. Attaining efficiency requires a better under-
standing of this goal, and better choices for preconditioners, than we
have now.

Convergence 135
4

We want to see the nusmerical-errors.decrease as we refine the grid.
Such decrease is expected because the finite differences become better
approximations of the corresponding derivatives, but we want to
see it, so we know our actual implementation is correct. The rate at
which the error decreases should match what we expect from theory.
Recall that poisson.c already generates the max norm error (Code
3.5), and we know how to refine the grid by factors of two, so here is
a bash loop refinement study:

$ for Kin ® 12 3 45 6; do ./poisson -da_refine $K; done

on 9 x 9 grid: error |u-uexact|_inf = 0.000763959
on 17 x 17 grid: error |u-uexact|_inf = 0.000196764

POISSON PDE ON A STRUCTURED GRID

ILU(0) as the preconditioner, while in parallel the defaults are GM-
RES and block Jacobi as a preconditioner, but where each diagonal
block—there are four in the above parallel run—is preconditioned
with ILU(0). In Chapter 2 we pointed out that this parallel precondi-
tioner, like most of them, gives processor-count dependent results.

The serial PETSc defaults for KSP and PC give a certain timing and
a certain number of iterations on a given grid:

$ timer ./poisson -da_refine 5 -ksp_converged_reason

Linear solve converged due to CONVERGED_RTOL iterations 506
on 257 x 257 grid: error |u-uexact|_inf = 1.73086e-06

real 1.39

That is a lot of iterations, and it is not clear if this timing is fast or
slow. Without thinking too hard, experimentation should show us
better options. Table 3.1 below was generated by running

| $ timer ./poisson -da_refine 5 -ksp_converged_reason -ksp_type KSP -pc_type PC
The iteration count is also worth noting when it can help explain the

timing, though at this stage we are identifying the un-defined term
“efficiency” as just “execution time.”

61

Ksp PC time (s) iterations Table 3.1: Times and number of KSP
iterations for serial runs of poisson.c
gmres r.10ne CH 2 on 257 x 257 grids. The assembled
ilu 1.35 506 matrix is symmetric, dingonally-dominant,
ilu + restart=200 1.46 174 and positive definite. All runs were on
- 0.52 606 WORKSTATION (see page 38).
none '
jacobi 0.57 606
icc 0.33 177
icc + rtol=10"1 0.38 261
precnly cholesky 8.66 1
minres none 0.76 579

From Table 3.1 we see that for GMRES, having a preconditioner is
essential. That is, ILU(0) substantially reduces both iteration count
and time compared to no preconditioner. . | \/\ &
The number of iterations suggests that GMRES went through
several restarts, which it does by default every 30 iterations. Forthe
current problem memory overflow is no issue, so we ﬁyo‘ia’ restart
using option -ksp_gmres_restart 200. This reduces iteration count
but not execution time, and we do not recommend such a procedure vqe e
for bigger-problems. V& {
The system matrix A is symmetric and positive definite, so we re-
call from Chapter 2 that the CG (conjugate gradients) Krylov method
should apply, and that Cholesky and incomplete Cholesky €i&(@))-are
available as preconditioners. In Table 3.1 we compare these methods

62 PETSC FOR PDES

also. Because -ksp_preonly -pc_type cholesky is a direct solver, fair
comparison to iterative methods suggests we should solve the equa-
tions accurately, so we add the tighter tolerance -ksp_rtol 1.0e-10
to all iterative runs in Table 3.1, except for the run where this was
further tightened to -ksp_rtol 1.0e-10.

We see that Jacobi preconditioning has little benefit over un-
preconditioned CG, because the diagonal is effectively constant,™
but that IC(0) for CG is the best so far. The direct Cholesky solver is
slower, presumably because of fill-in of the band seen in Figure 3.11.

We have so far not mentioned the minimum residual method
[Greenbaum, 1997, MINRES] which applies to indefinite symmetric
matrices, but it is implemented in PETSc too. We see that it seems
to do no better than CG, at least in their un-preconditioned form.
Elman et al. [2005, p. 88], however, states that “when solving discrete
Poisson problems the convergence of MINRES is almost identical to
that of CG.”

If we were to stop now we might conclude that we have found a
good KSP and PC combination for the Poisson equation, namely CG
+46(Q), and proceed to harder problems. This conclusion would be
premature.

The scaling flaw in CG iterations

Unfortunately, even with the preconditioners tried above, CG has a
distinct flaw.”* Namely, the iteration count grows with refined grids,
so that [Elman et al., 2005, p. 76]

for uniformly refined grids, the number of CG iterations required
to meet a fixed tolerance will approximately double with each grid
refinement.

This is exactly what we see from the following bash loop:

$ for NN in 1 2 3 4 5; do

Linear solve converged due to CONVERGED_RTOL iterations 36
on 17 x 17 grid: error |u-uexact|_inf = 0.000196729

Linear solve converged due to CONVERGED_RTOL iterations 73
on 33 x 33 grid: error |u-uexact|{_inf = 4.91819e-05

Linear solve converged due to CONVERGED_RTOL iterations 148
on 65 x 65 grid: error |u-uexact|_inf = 1.22921e-05

Linear solve converged due to CONVERGED_RTOL iterations 299
on 129 x 129 grid: error |u-uexact|_inf = 3.07512e-06
Linear solve converged due to CONVERGED_RTOL iterations 606
on 257 x 257 grid: error |u-uexact|_inf = 7.69971e-07

Of course, this is un-preconditioned CG. While it is not surprising
that -pc_type jacobi does no better (Exercise 3.3), it is easy to check

* See Exercise 3.3.

" At least from a 21st-century point of
view. Table 3.1 might have satisfied in

1970.

> ./poisson -da_refine $NN -ksp_type cg -pc_type none -ksp_converged_reason; done

POISSON PDE ON A STRUCTURED GRID 63

that our favorite method so far has the same poor scaling. Figure
3.13 shows that though 40T gives somewhat faster solves and lower
iteration counts, the scaling of those counts is the same as -pc_type
none: the number of iterations doubles with each factor-of-two grid

refinement.

1000
% % -pc_type none
* ® @ -pc_type icc
*
4] e
[] e
S ~ *
- “
. 100 ° '\.\
2 O™
& QRT) *
U \\
[] S
L *
o "~
i []
.803 .01 .03 1
h

A theoretical bound on the number of CG iterations would help to

understand these results, but stating such a theorem requires prepa-

ration. Suppose that A is an N x N, symmetric, and positive-definite

matrix. We can define a new norm, the A-norm, on v € RV,

Ivlla = (v, 4v)'/2 = (vT Av)'/2. (3.12)

Recall that the eigenvalues A;(A) of such a matrix A are positive and
identical to the singular values, so that the 2-norm condition number

of A is the ratio of the largest and smallest eigenvalues,

)\max (A) >1.
Amin(A) o
Finally, recall that ey = u; — u denotes the error of uy as a solution
to Au = b. In these terms we can state the following conceptually-
useful theorem giving the sense in which CG is optimal'? and sup-
plying an error bound.

K (A) =

Theorem. Suppose u; are the iterates from un-preconditioned CG. Then:

(i) Let P].l be the space of all real polynomials p(x) of degree at most j such

that p(0) = 1. Then

lejlla = min [[p(A)eo| 4.
peP/-

1

Figure 3.13: As the grid is refined
(h — 0), un-preconditioned CG scales
poorly on our Poisson problem, and
J€E(0) preconditioning does not improve (;, C C

the scaling.

2 In fact this sense was already stated
in Table 2.1.

64 TPETSC FOR PDES

(ii) The relative A-norm of the error at the jth iteration is bounded by
an amount which is computable from the 2-norm condition number
k = Kp(A), namely

. o]
llejll 4 <2<ﬁ 1) ‘
lleoll 4 VE+1

(iii) The relative 2-norm of the residual is likewise bounded:

. N
Iile e (=1
Iroll Vi

Part (i) of the Theorem is proved by Greenbaum [1997, p. 50]. Part (]
(i) follows from (i) by using Chebyshev polynomials to'construct a
polynomial which is small on the interval [Amin(A), Amax(A)] [Green- 2. - ()
baum, 1997, p. 51]. Part (iif) follows from (ii) by understanding the 6
norm || - || 4 in terms of the 2-norm and the matrix v/A; see Exercise
3.5. We state part (iii) for the simple reason that ||r||, is a quantity
computed by PETSc while ||ex|| 4 is not. Parts (ii) and (iii) are not
optimal bounds, though such can be found [Greenbaum, 1997, p. 51].

Consideg-the-number of iterations j needed to reduce ||e;|[4 by a
factor of e < O.;slote (x—1)/(x+1) =1—-2/(x+1), and recall
that In(T—¥) ~ —x for small x. If V/x is large then part (ii) of the
Theorem says that ||e;|| 4 is reduced from its initial value ||eo||4 by a
factor of € if

In(e/2) N (6/2)(\/—+1)

~

- 2
i (1 a \/E+1)
In summary,
leilla ij(Kz(A)). (3.13)
lleoll

The same conclusion applies to reducing ||r;||2 by a factor of €,
though the analysis is not so simple; see Exercise 3.5.
Though the theorem states a key connection between condition
number and iteration count, the precise condition number of a
discretized-PDE matrix Ay, coming from a mesh with spacing h,
is not typically available. On the other hand we can ask PETSc to
approximate eigenvalues of Ay, as the Krylov iteration proceeds." 13 We need the iteration to use the

Doing this will largely explain the poor scaling of CG iteration count i precenCiHOREUICRCTAIorRen SOm
puting eigenvalues, so use -pc_type

for our symmetric-matrix, structured-grid, Poisson problem case: none ofTIght-side-preconaitioning
. . —<Ksp_pc_side RIGHT™
$./poisson -ksp_type cg -pc_type none -ksp_compute_ eigenvalues (
Iteratively computed eigenvalues —— -—;—-“" _—J J\
L fhn

0.304482 + 0i] G
2 don !t g
7.69543 + 0i i /
on 9 x 9 grid: error |u-uexact| inf = ©.00076388 [)Se r o

pil] 2oe”

POISSON PDE ON A STRUCTURED GRID

In fact 17 eigenvalues were printed, because there were 17 KSP it-
erations and the method computes one additional eigenvalue per
iteration. We suppressed all but the first (smallest) and last (largest),
as they suffice for approximating the condition number. Thus, on the
above grid with spacing h = 1/8:

7.69543

Kz(Ahzl/g) ~ m = 25.274.
Re-running with option -da_refine N for N=1,2 we’gie't": V4 1// ’¥ AN
7.92311
Ay N = .
¥2(An-116) ~ G 768589 — 100
7.98073
Ay— N = 34.
%2(An-1/32) ~ Goiogery — 41434

We now see the issue clearly. Each time the grid is refined by a factor
of two (i.e. h — h/2), the condition number x;(Ay) increases by
a factor of four. Then (3.13) says we should expect an increase in
iteration count by a factor of two.

In fact, as an a priori statement, the 2-norm condition number of
the discrete Poisson matrix Ay on a uniform rectangular grid with
spacing h is known to be

r2(Ap) = O(h™2), (3-14)

exactly as seen experimentally above. This can be shown by exact
analysis using the eigenvectors of the discrete Poisson problem in
the uniform rectangular case [Briggs et al., 2000]. A more robust
and general FEM error analysis which applies to unstructured grids
having a mesh-uniformity bound [Elman et al., 2005] also applies. In
either case, combining (3.13) and (3.14) shows that we should expect
to need

j=0(™, (3.15)

iterations to solve our discrete Poisson problem to a given relative

tolerance using un-preconditioned CG. CC
We have also seen that [(48] preconditioning reduces the time and I

iteration count, but that it does not improve on scaling (3.15); recall

Figure 3.13. Detailed analysis of the effects of incomplete Cholesky

precondition [g_ug_@_g difficult, and it will certainly not be pursued

here, but we do now have the correct context to understand this

Af L

claim about the result Elman et al. [2005, p. 82]:

One known result [for CG for the Poisson equation] is that the asymp- j C C/
totic behavior of the condition number usingf[,@@] preconditioning is
unchanged: x(M~'A) = O(h~2). =

So %}P{O) is not as promising a preconditioner as we had first hoped. j; < </

65

66 PETSC FOR PDES . pAW‘V\ 5 l-ri <

Krylov is not enough . .. good preconditioning is needed

When solving the sparse linear systems from discretized PDEs, _
Krylov iterations € CG and preconditioning methods like{}E(())\- 7
are useful tools because they can improve upon naively-applied-di-
rect linear algebra methods. However, besides the bad news above
that CG iterations scale badly with refining grids, there is more “bad
news” for our Krylov approach. Namely, that smartly-applied di-
rect linear algebra techniques can also beat CG+IC(0), at least in the
two-dimensional case of this Chapter.

Specifically, suppose we run poisson with option -da_refine 7,
to give a 1025 x 1025 grid and about 10° degrees of freedom. Sup-
pose we compare IC(0)-preconditioned CG iterations with two other
methods:

$./poisson -da_refine 7 -ksp_type cg -pc_type icc
$./poisson -da_refine 7 -ksp_type preonly -pc_type cholesky -pc_factor_mat_ordering type nd
$./poisson -da_refine 7 -ksp_type preonly -pc_type lu -pc_factor_mat_ordering_type nd

(To be precise, we added options -ksp_converged_reason and -ksp_rtol Lo'(' “ t" 0
1.0e-10 to the CG run.) We get'the first three rows of Table 3.2, the o

first of which requires no further explanation because it is the best-

so-far way of using CG. The second and third runs, which are faster,

are direct methods.

Code KSP PC time (s) iterations Table 3.2: Time and-iteration count
. . e for -da_refine 7 runs, a 1025 x 1025
polsson 9 ee 27 50 . grid on a single MPI process on WORK-
preonly cholesky + nd 24.96 1 sTATION. The fish2 code appears in
lu + nd 16.33 1 Chapter 6.
fish2 cg mg 2.60 5

. Whieate®
Option -pc_factor_mat_ordering_type nd asks that the direct \
method be applied using the nested dissection ordering [George, 1973].
While we give no details, in outline the unknowns and equations are
re-ordered to reduce the cost of the factorization. For LU factoriza-
tion the nested dissection ordering is actually the PETSc default for

single-processor runs.'# In any case, the two direct solvers in Table " And for this reason, the result of the
-ksp_type preonly -pc_type lu was

3.2 are clearly competitive with IC(0)-preconditioned CG. not in Table 3.1.

At this point the impulsive reader might give up on Krylov meth-
ods, but that also would be premature. We do need to find a better
preconditioner if we are going to have scalable solutions of this Pois-
son PDE problem. Finding such methods will eventually show that
properly-preconditioned Krylov iterations give both efficient and
parallel-scalable solutions of large nonlinear and variable-coefficient
elliptic PDE problems in 2D and 3D, something direct methods of

68 PETSC FOR PDES

forN e {1,...,6} and X € {none,jacobi}. Explain. Now confirm
that IC(0) preconditioning gives lower iteration counts but the
same bad scaling.

3.4 Add -log_summary to an un-preconditioned CG run, e.g.

I $./poisson -ksp_converged_reason -ksp_type cg -pc_type none -log_summary

By looking at the “Count” column, and noting that the iteration
count comes from -ksp_converged. reason output, confirm that
the computational work of one CG iteration consists of two inner
products (VecTDot), three vector updates (VecAXPY and VecAYPX),
and one matrix-vector product (MatMult). Find a pseudo-code for
CG in some textbook, and confirm this work pattern.

3.5 Let A be a symmetric positive-definite N x N matrix. Note A
is diagonalizable and has positive eigenvalues.
(i) Show that (3.12) defines a norm on RN

(ii) Define the matrix v/A as the unique symmetric and positive-
definite matrix such that (v/A)2 = A. Show that ||v]|4 =

[VAv|2 and that x, (\/Z) = /1o (A).
(iif) Recalling that Ae = —r, show that
1

VA2

(iv) Prove part (iii) of the Theorem on page 63.

Iell2 < llella < VA2

3.6 If you have difficulty reproducing timings like those in Table
3.2, note that they come from a PETSc configuration with “opti-
mized” configuration option'> -with-debugging=0. If you have not > Not runtime option!
already done so, see the PETSc installation page

www.mcs.anl.gov/petsc/documentation/installation.html
and generate a new configuration, with a new PETSC_ARCH value,

with this “optimized” configuration option. Generate your own
version of Table 3.2.

3.7 Use DMDACreate3d() and etc. in a code poisson3D.c which
solves a 3D Poisson problem on the unit cube C = [0, 1]* using the
same DMDA and KSP methods as in poisson.c. Looking forward,
how is the approach taken in Chapter 6 different from your code?

6 '/Lﬁ
_ % l\f\(,&(g 9+(\/(/{ Ufag Fﬂ -1 ~. ;
! mar /(‘\' \,\'\’ L 5{‘c\{ - un ‘\%) K
U e an < .
(e W[J” <

)5 C(x,vj . \“2)(]/>

é,w\pv'{b ’HQ cors CAS /f(/—lr 71%

o \/V\€§(/" WL\V’ AO /OU |
b(,\/\{&\/{"‘(u

I

4
Nonlinear equations

The simplest thing to say about nonlinear equations is that they
change the functional form of the residual, compared to the linear
case. For a linear system the residual r is a certain function of the
unknowns u, namely r = F(u) = b — Au. Now we consider cases in
which F is a higher-order polynomial, a transcendental function, or
some more general function.

Ir-faet-letug-si FJuppose for now that F : RV — RV is
differentiable. The input x and output F(x) are column vectors," so
in that sense F acts like square-matrix multiplication x +» Ax. Just
as a linear solver like GMRES (Chapter 2) reduces the linear residual
ry = b — Ay, to zero by generating a sequence uy, for nonlinear F we
want to solve

F(x) =0 (4.1)

by iteration, generating approximations x; so that F(x;) goes to zero.

Newton’s method linearizes (4.1) around the most recent iterate
x, and then “moves” to the location x; ;1 which solves the linear
problem. The new location is, we hope, closer to the solution. Each it-
eration requires solving a linear system, and we already have PETSc
technology for that. However, the cost of performing the lineariza-
tion must be taken into account, choosing a smart distance to move
will require additional choices, and all existing choices regarding the
linear solver—especially preconditioning—remain active. Solving a
nonlinear problem generally requires all the tools for linear systems
considered in Chapter 2, and more.

Large systems of nonlinear equations often arise in applications
from PDE-type physical models with nonlinearities. However, the
current Chapter is largely about finite-dimensional systems of nonlin-
ear equations (4.1) as problems of their own. Late in this Chapter we
do give an example of a discretized one-dimensional nonlinear PDE.

' Our name change u — x comes from
now thinking more geometrically about
the location of x.

Example. Given parameter b > 1, the nonlinear equations

1bx

y=5e" FLHy=1,

form intersecting curves in the plane. The curves intersect twice, as
shown in Figure 4.1. These equations are put in standard form (4.1)

by writing
[1 be —
\ e X1
F(x)= |1t 6
(x) x(zJ 1 x% . 1] (4.6)
for x € R? a column vector: x = [xp x;] . Thus
[Lbx
e’*o -1
Jed) =150, 2x1] (47)

As also shown in Figure 4.1, for b = 2, if we start the Newton itera-
tion with xg = [1 1] then the sequence of iterates from (4.5) is
1 0.619203
Xg — S e ’
1 0.880797

_ [0.394157
27 10948623 |’

Using SNES with call-backs

We will compute the Newton iterates in the(W by using
a nonlinear solver object of type SNES? from PETSc. Note SNES has
the usual Create/SetFromOptions/Destroy sequence. Our code pro-
vides a function F which is a “call-back” in the sense that we supply
it to the SNES, which then calls it with argument x when it needs F(x)
during the Newton iteration.

Later we will also provide the SNES with a function which com-
putes the Jacobian function Jg. However, the Jacobian can be approx-
imated by repeated F evaluations because a derivative can also be
approximated by finite differences. Thus our first code avoids such a
Jacobian “call-back”-fer-nou.

The whole of expcircle.c, to solve the above Example, is in Code
4.1. The main() method starts by allocating Vec x of fixed dimen-
sion 2 which will hold beth the initial iterate xg. (Once the Newton
iteration is ended it holds the converged estimate of the solution.)
Because both components of xg are 1, it is initialized using VecSet ().
Next a duplicate Vec r is created because the SNES needs it as space

—for the (nonlinear) residual.

Then the SNES is created and configured. Formula (4.6) is in

method FormFunction(), which is supplied using SNESSetFunction()

“\.\\‘h

—

e

+o

NONLINEAR EQUATIONS 71

Figure 4.1: Newton iterates x; approach
a solution of F(x) = 0 for F in (4.6) and
b=2.

2 SNES stands for “scalable nonlinear
equation solver.”

A o

72 PETSC FOR PDES

We call SNESSetFromOptions () because it odla-gives us run-time con-

trol on how the Jacobian is calculated3 and on how the length of) Options -snes_fd and -snes_mf are
the step s is actuety determined.4 Then (4.1) is solved by a call to alewied; 5es Table 4-aibelon:

1 Finallv th 1 . blv th d + Through -snes_linesearch_type and
SNESSolve(). Finally the new values in x, presumably the converge related options; see page 98.

solution, are printed at the command line using VecView() with a
STDOUT viewer.

chd/expcircle.c

static char help[] = "Newton’s method for a two-variable system.\n
"No analytical Jacobian. Run with -snes_fd or -snes_mf.\n\n";

#include <petsc.h>

PetscErrorCode FormFunction (SNES snes, Vec x, Vec F, void =*ctx) {
const PetscReal b = 2.0, xax;
PetscReal *al;

VecGetArrayRead (x, &ax) ;

VecGetArray (F, &aF) ;

ar([(0] = (1.0 / b) % PetscExpReal(b » ax[0]) - ax[1l];
arF[l] = ax[0] * ax[0] + ax[1l] = ax[l} - 1.0;
VecRestoreArrayRead (x, &ax) ;

VecRestoreArray (F, &aF) ;

return 0;

int main (int argc,char sxargv) {
SNES snes; // nonlinear solver context
Vec X, r; // solution, residual vectors

PetscInitialize (&argc, &argv,NULL, help);
VecCreate (PETSC_COMM_WORLD, &x) ;
VecSetSizes (x, PETSC_DECIDE, 2) ;
VecSetFromOptions (x) ;

VecSet (x,1.0);

VecDuplicate (x, &r);

SNESCreate (PETSC_COMM_WORLD, &snes) ;
SNESSetFunction(snes, r, FormFunction, NULL) ;
SNESSetFromOptions (snes) ;
SNESSolve (snes, NULL, X) ;

VecView (x, PETSC_VIEWER_STDOUT_WORLD) ;

VecDestroy (&x) ; Vecbestroy (&r) ; SNESDestroy (&snes);
PetscFinalize ();
return 0;

In order to match the calling sequence of SNESSetFunction(),
FormFunction() must have a particular “signature” as a C function:

Code 4.1: A first SNES-using code.
Solves nonlinear system (4.1) with F
given in (4.6).

74 PETSC FOR PDES

0.319632
0.947542

Thus after 5 iterations the Newton method has reduced the residual
norm by a factor of 10° and stopped with solution xy = 0.319632 and
x1 = 0.947542. Compare Figure 4.1.

The above run-#sd’uses option -snes_fd, the purpose of which
the reader may already see. Clearly the Newton iteration (4.5) re-
quires the Jacobian, but we have only supplied the SNES with an
implementation of function F(x), not with Jg(x). As mentioned, the
entries of the latter matrix are derivatives which can be approximated
by finite differences. Specifically, let § # 0 and let e; € RV denote
the standard unit vector with entry one in the jth position and zeros
otherwise. An entry in matrix | = Jg(x) is approximated

B aFl Fi(X+5e,‘) —Fi(X)
Jij = a_x] = 5 . (4.8)

When using -snes_fd, PETSc chooses § internally and applies
(4.8). For example, 6 = /€, where € is machine precision, gives a
reasonably-accurate approximation if the inputs to F are all of order
approximately one and the function F can be accurately-evaluated
[Kelley, 2003].

Inside SNES

It is helpful to describe Newton iteration from the point of view of
the actions taken by the SNES solver object. In outline, it does these
steps:

(i) from the current iterate x;, F(x;) is evaluated using a call-back
function as set in SNESSetFunction(), e.g. FormFunction() above,
(if) the Jacobian J = Jp(xy) is
a. computed and assembled by a call-back to user-supplied code, if
it is available, as set using SNESSetJacobian(), e.g. FormJacobian()
in code ecjacobian. ¢ below, or
b. computed and assembled by evaluating F(x; + Je;) for j =
0,...,N —1, thus calling FormFunction() N times, and then
using formula (4.8) N? times to compute all entries of], or
¢. computed and assembled by calling FormFunction() substan-
tially fewer than N times to compute F(x; + év) for special vec-
tors v, by using a graph-coloring algorithm based on the sparsity
pattern of | to construct the vectors v, and using formula (4.19)
below, or
d. not assembled, but, in a Krylov iterative method for solving
system (4.5a), the action [y, of the Jacobian on vectors y, is com-
puted by finite-differences,

NONLINEAR EQUATIONS

(iii) linear system (4.5a) is solved for s by some KSP object, using
whatever additional preconditioning matrix has been chosen,

(iv) vector update (4.5b) is done, with possible reduction or expansion
in the length of s according to the line-search object, as addressed
starting on page 98, and

(v) a convergence test is made, and we repeat at (i) if not converged.

Our single run above of expcircle.c used option (ii)b for the
Jacobian, but option (iid) also works. Our next code will allow option
(if)a as well. The graph-coloring technique (if)c will be addressed
starting on page 88.

If you run expcircle.c without option -snes_fd or -snes_mf then
you get an error message about an un-assembled matrix:

$./expcircle

[O]IPETSC ERROR: ==cvcmccocccnennnnnn Error Message --------------=----------
[O]PETSC ERROR: Object is in wrong state

[O]PETSC ERROR: Matrix must be assembled by calls to MatAssemblyBegin/End();

This message is somewhat opaque unless you are conscious of the
need to form the Jacobian matrix at each Newton iteration. That
is, something must supply a Jacobian at step (ii), and the supplied-
Jacobian-code case (ii)a does not work for expcircle.c.

The benefit of using options (ii)b—(ii)d above is that we do not
need to write any error-prone code based on taking derivatives of
our function F. Avoiding writing and debugging Jacobian imple-
mentations may speed implementation by reducing the time you
spend on the task. One possible disadvantage is likely to be apparent
to the reader, namely that formula (4.8) is only an approximation of
a Jacobian entry. Eiswseser, fin most cases using a finite-difference-
approximated Jacobian in the Newton step is not problematical [Kel-
ley, 2003].

On the other hand, there is a significant performance problem in
using (4.8) naively for PDE-type applications of Newton’s method.
In steps (i) and (i))b together we do N + 1 calls to FormFunction()
per Newton iteration. This is a worrying amount of work if N is
large, as it would be for a system of nonlinear equations coming from
discretizing a PDE. We will therefore return to this issue later in the
current Chapter, and provide more detail on (if)c and (if)d.

Evaluating F can dominate the work in the Newton iteration, and
there are systems where it is an intrinsically-expensive function to
evaluate. The work done in solving linear system (4.5a) is the other
main concern. A good PETSc habit, to start right now, is to use
-log_summary to see which kind of work actually dominates.

75

NONLINEAR EQUATIONS

which we want to send to zero. In particular, we want to stop the
Newton iteration when x is a good approximation of x*. Of course,
e, is just as hard to compute as x*; we do not generally have exact
access to either one. Instead we have computable quantities x; and
1, = F(x) available for inspection. Thus both parts of the following
theorem are important.

Theorem. [Kelley, 2003, Theorems 1.1 and inequalities (1.13)] Suppose
that F : RN — RN is differentiable, Jg is Lipschitz near x*, and Jg(x*) is
a nonsingular matrix. Let || - || denote a vector norm and its induced matrix
norm, and let k(A) = ||A7||||A|| denote the condition number of an
invertible matrix A. If xq is sufficiently close to x* then, in exact arithmetic,

(i) thereis K > 0 such that for all k sufficiently large,

llexll < Kllegl?, (4.10)

(ii) and if x = x (Jp(x*)) then

lexll o NEOll delexl

< < : (4.11)
4xfleo] ~ IF(xo)ll = Ileol

By definition, a sequence {x;} in RN converges quadratically to x* if
the sequence of errors {e;} satisfies (4.10) for some K > 0. Thus the
Theorem says that, under strong assumptions about the regularity
and nonsingularity of the Jacobian, the iterates converge quadrati-
cally to a solution of (4.1). Heuristically, once ||e| gets reasonably
small then, frem=therron;-the number of correct digits in x; doubles
with each additional iteration.

We seem to see quadratic convergence in Figure 4.2, but actually
it shows the residual norm ||F(x;)||> and not the error norm ||eg||2.
However, the second part of the Theorem says that the residual de-
crease at the kth iteration (i.e. ||[F(xy)||/||F(xo)||) is within a factor,
determined by the conditioning of the Jacobian at the solution, of the
error decrease (||ex|| /| eol])-

The Theorem confirms that residual norm decay like that shown
in Figure 4.2 corresponds to quadratic convergence of x, to a solu-
tion x*. If we want to reduce the (generally-unknowable) error e;
by a given amount then it can suffice to reduce the residual norm
by a comparable amount. The factor 4x by which the two relative
norms differ in (4.11) is large if the conditioning of the Jacobian at
the solution is poor, but, just as in the linear case, a large Jacobian
condition number would also mean lost precision in solving (4.1) by

any numerical means.8 8 Recall the numerical facts-of-life in
Chapter 2.

77

Input Vec x and pointer void *ctx have the same meaning as in
FormFunction().

The difference is that we must set a Mat as output, based on for-
mula (4.7) in this case. In settimg-tp the output Mat the roles of
MatSetValues(), real array v[4] for the entries themselves, and in-
teger arrays row[2] and col[2] as global indices, are all the same
as in Chapter 2. Also $mat as before, when reading x we can use
VecGetArrayRead() and VecRestoreArrayRead().

NONLINEAR EQUATIONS 81

%t Tﬁq U/ﬂ

|ch4/ecjacobian.c part II

int main(int argc,char xxargv)

{

SNES snes; // nonlinear solver context
Vec X, T; // solution, residual vectors
Mat J;

AppCtx user;

PetscInitialize (&argc, &argv, NULL, help) ;
user.b = 2.0;

VecCreate (PETSC_COMM_WORLD, &x) ;
VecSetSizes (X,PETSC_DECIDE, 2);
VecSetFromOptions (x) ;
VecDuplicate (x, &) ;

MatCreate (PETSC_COMM_WORLD, &J) ;

Mat SetSizes (J,PETSC_DECIDE,PETSC_DECIDE, 2, 2);
MatSetFromOptions (J) ;

MatSetUp (J) ;

SNESCreate (PETSC_COMM_WORLD, &snes) ;
SNESSetFunction{snes, r, FormFunction, &§user);
SNESSetJacobian(snes, J, J,FormJacobian, &éuser) ;
SNESSetFromOptions (snes) ;

VecSet (x,1.0);
SNESSolve (snes, NULL, X} ;
VecView (x, PETSC_VIEWER_STDOUT_WORLD) ;

PetscFinalize () ;
return 0;

VecDestroy (&x); VecDestroy (&r) ; SNESDestroy (&snes); MatDestroy (&J);

An interesting detail appears here, however. There are actually
fwo output Mats for FormJacobian() to set. The first, called J here,
corresponds to the Jacobian matrix itself, which, in this simple
case, we want to supply. The second, called P here, is the “mate-
rial” we supply to build a preconditioner. It might, at least in other

Code 4.3: This main() method allocates
a Mat to hold the Jacobian.

84 PETSC FOR PDES

then the ability of the diffusion term to “damp-out” maxima may
be exceeded by the increasing production from large values of u, so
that these terms cannot balance, which is (4.12). If R is negative and
increasing then the analogous concern applies to minima of u. These
concerns are demonstrated by the example R(u) = Ae* with A > 0 in
Exercise 4.8; that problem is not solvable for sufficiently-large A.
Equation (4.12) is a nonlinear elliptic PDE,*? but in one-dimension. 2 By mild abuse of the letter “P”.
Elliptic PDE techniques show the problem is well-posed if R is a
non-increasing function [Kinderlehrer and Stampacchia, 1980, pages >+
gj‘-};}"j:ﬁ 0 be concrete, consider Dirichlet boundary conditionﬁ-f" b) ‘ 4/((e fd, ‘(e
N b r T

»>

(We have chosen a convenient interval x € [0, 1], but for other inter;/f---/ |‘+ efe V'O

vals we can shift and scale x as needed.) If R is cont}irgmusﬂﬁ”rﬁn- lﬂ" q< p1 A el
increasing then the nonlinear operator in {4-12)7s strictly-monotone

[Kinderlehrer and Stampacchia, 198(’ﬂﬁ3,ecause it is also coercive

on the appropriate function space,’> which says intuitively that the “ Namely the Sobolev space H}[0,1],
highest-order (diffusion) term is effective at damping out large vari- after a linear change of variables to set

u(0) =a and u(l)=4. (4.14)

o=p3=0.
ations in # which correspond to a large norm ||/ ||,, abstract argu- b
ments show unique existence of a solution.
Now we consider the example
—u”" + pv/u=0. (4.15)
This is of form (4.12) with R(u) = —py/u and f(x) = 0. Because R is
non-increasing and continuous if p > 0, the corresponding Dirichlet
problem is well-posed. |
Ll vse

We are.agtuatly=using (4.15) as a first example, however,.because

we want to verify our numerical solution using an exact solution,
and its form makes this easy. The solution is found [Ockendon et al.,
2003] by noting that both second-derivative and square-root oper-
ations convert certail}ﬁ4£h degree polynomials into quadratic poly- \)(an
nomials. We also geft the boundary conditions from the exact solu- 2
tion. THerefore-we Substitute u(x) = M(x + 1)* into (4.15) to find
M = (p/12)?, and.weset x = M and = 16 M.

On an N point grid, the finite-difference scheme we=pfipbse for
(4.12) is

Uiy —2uj+ujq
h?

where h = 1/(N — 1) > 0is the grid spacing, x; = jh for j =
0,1,...,N—1,and u; =~ u(x]-).

Code reaction.c shown in Codes 4.4 and 4.5 solves this problem.
We use scheme (4.16), a SNES object for the Newton iteration, and a
DMDA object for the grid.

~ R() = f(x)) (4.16)

NONLINEAR EQUATIONS

These are “Local” methods in the sense that their inputs are
C pointers for arrays instead of Vecs, and our implementation of
InitialAndExactlLocal() explains how the Local methods work. As
seen in Code 4.5, before this method is called we use DMDAVecGetArray()
on the Vecs u and uexact. This gives PetscReals pointers which are
then handed to InitialAndExactlocal(). Also note that a DMDALocalInfo
struct is passed in so that the local part of the grid (i.e. info.xs and
etc.) and the global grid size (i.e. info.mx) can be accessed through
this struct without needing the DMDA object itself.* The call-back 14 Recall Figure 3.9.
done by SNES on FormFunctionLocal() and FormJacobianLocal()
works the same way.
In main() we use DMDASNESSetFunctionLocal() instead of
SNESSetFunction ()5 because our local call-back functions have a s Compare ecjacobian. c.
different signature based on DMDA-derived pointers. The Jacobian is
set by a similar method DMDASNESSetJacobianLocal(). Also, though
we implement a Jacobian, we do not allocate a Mat to hold it because
the DMDA object has enough information about the grid and stencil so

as to _g,réf'—éllocate g Mat internally. -A‘-é_ﬁfﬂ"'d

(s L

Convergence under grid refinement

On a modestly-refined grid we can compare the number of reaction.c
Newton iterations from both analytical and finite-difference Jaco-
bians. Recalling that the resolution of a structured grid can be set

with either -da_grid_x Mor -da_refine N, we do:

$./reaction -snes_converged_reason -da_refine 6

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
on 513 point grid: |Ju-u_exact|_inf/|u|_inf = 4.62255e-08

$./reaction -snes_converged reason -da_refine 6 -snes_fd

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
on 513 point grid: |u-u_exact|_inf/|u|_inf = 4.62255e-08

The results are identical. One can also see the Newton iterates graph-
ically by

| $./reaction -da_refine 6 -snes_monitor_solution -draw_pause 1

One sees that the first Newton step moves us close to the solution
(not shown).

Noting that our finite difference method has local truncation er-
ror O(h?), and because an exact solution allows computation of the
numerical error, we should generate convergence data to check the
implementation. The result of this bash loop

$ for Nin © 2 4 6 8 10 12 14 16; do
> ./reaction -da_refine $N -snes_rtol 1.0e-10; done
on 9 point grid: |u-u_exact|_inf/ju|_inf = 0.000188753

87

88 PETSC FOR PDES

107° : :
[]
,
s
,
e
107° } ®
td
s
)
.I
2 .’ 2092
s 1077 + OR*2)
= 4
’,
@ o
< o
T 107 .
ﬁ #
= [4
rd
&
s
1 —11 B s
01 o ,®
s
’,
L 4
10_13 = _ i L -
107" 0 10" 10* 10 107
h
on 33 point grid: |u-u_exact|_inf/|u|_inf = 1.1825e-05
on 131073 point grid: |u-u_exact|_inf/{u|_inf = 7.05476e-13
on 524289 point grid: |u-u_exact|_inf/|u|_inf = 6.04273e-12

is shown in Figure 4.4. If we ignore the result on the finest grid then
the convergence rate is O(h?).1® We also see consistent evidence of
quadratic convergence by adding - snes_monitor to the above runs.

Thus we conclude our implementation is correct.

Finite-difference Jacobians by “coloring”

-Hmexgr‘,\.\y\(hen we look closer at the -snes_fd results from finite-
difference Jacobians we see that it is not really working. There are far
too many function evaluations per Newton step to be practical. This
is because, in contrast to the earlier fixed-dimension examples, dis-
cretizing a PDE generates an arbitrarily-large number of unknowns.

An analytical Jacobian run on a grid of about 8ooo nodes requires

three Newton iterations and 0.04 seconds:

$ timer ./reaction -snes_converged_reason -da_refine 10

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
|u-u_exact|_inf/|u|_inf = 1.75603e-10

on 8193 point grid:
real 0.04

Figure 4.4: This convergence evidence
suggests reaction. c is correctly-
implemented.

¢ Error stagnation always occurs at
some level of refinement because of
accumulation of round-off error.

00 TETSC FOR PDES

| $./reaction -da_grid_x 7

Figure 4.5 shows this grid and the three-point stencil for the numer-
ical discretization scheme (4.16). The stencil (equation) at X; generi-
cally involves three unknowns, namely u;_1, u;, and u j+1- Thus the
jth row of the Jacobian] has three nonzero entries. Exceptions oc-
cur at the boundary nodes, where only two unknowns are involved.
In any case, option -mat_view ::ascii_dense allows one to see the
Jacobian matrices themselves during the Newton iteration.

X0 X1 X2 X3 X4 X5 X6

.—Q—O——*——.

We take the unknowns, or the corresponding grid nodes, to be
the vertices of a graph G = G(J), as shown in the top of Figure
4.6. Graph G has an edge between two vertices if the corresponding
unknowns both appear in at least one equation, i.e. in one instance of
equation (4.16) in this case.

cotored graph G O OSSOSO 020

colored columns of J: 0 1
0 1 2
1 2 0
2 0 1
0 1 2
1 2 0

Now suppose we color the vertices so that any two vertices which
share an edge have distinct colors. The coloring in the Figure uses
¢ = 3 colors. In the case of this simple graph, ¢ = 3 is the minimum
number needed, so that in this case x(G) = ¢ where x(G) is the
chromatic number of G [Chartrand et al., 2011]. <
“Howewer; optimally-coloring a graph is a hard problem which
PETSc does not attempt to solve. The PETSc-implemented “incidence-
degree ordering” [default] and “smallest-last ordering” graph-coloring
algorithms are relatively-near to optimal in the provable sense that
we get ¢-colorings for which ¢ < aN'/2x(G(J)) [Coleman and Moré,

Y J%(va\ 4((/\6/

AN |

Figure 4.5: reaction. c uses discretiza-
tion (4.16) at each interior node of the
grid. This corresponds to a three-point
stencil, as shown.

Figure 4.6: Graph G(J) is built from the
stencil and the grid, with an edge for
every pair of unknowns that appears in
an equation in system (4.1). Coloring
this graph—c = 3 colors suffice in this
case—also assigns colors to the columns

of .

Sec I’LO{/C/

Tese A Te ot
Vet «

NONLINEAR EQUATIONS 091

1983], for some constant & > 0, where N is the number of equations
in (4.1). More importantly, these algorithms do very well in the infor-
mal sense that c is quite close to x(G(J)) for a large selection of test

matrices.[Coleman and Moré, 1983]. S / /
5 - 7 /
[

-""’T—‘Lirhtertﬁafé',j these algorithms run in a time proportional to the 2
sum-of squares of the number of nonzeros in each rows of J. Thus =

we get a reasonably-good coloring not just in polynomial time in N,
but in substantially-less time than O(N?) and often in O(N) time
for problems coming from discretized PDEs. (Recall we are trying to
improve on the existing O(N?) cost of the -snes_fd method.)

We now also have a coloring of the columns of], as shown in
the bottom of Figure 4.6. Each row has distinct colors, which is
one way to describe our purpose here. Next we generate vectors
vo,V1,...,V._1 € RN by the rule that v has a 1 in entry j if k is the
color of unknown j, and is otherwise zero. In this ¢ = 3 case,

1 0 0
0 1 0
0 0 il
vo= |1}, vy = [0f, v, = |0 (4.17)
0 1 0
0 0 i
1] 0] 0]

In fact, a function maps from node/unknown index j to color k,

k= k(j), (4.18)

and (vi); = O k(j)- Note k(j) = j mod 3 in this case.
Finally we replace (4.8) with

_oF _ hlx+dvy;)) — (X

= a—x, & 5 (4.19)

Jij

The right sides of (4.8) and (4.19) compute exactly the same entries
Jij, but the latter requires far fewer evaluations of F. In particular,
all columns of | with color k are computed by (4.19) just using the
smallest j for which k(j) = k. Thus, given a c-coloring of G(J) there
are exactly c evaluations F(x + dv;)), plus one more for F(x), to fill |
using (4.19).

The news is good when we actually try it. The result is almost as
fast in this 1D PDE case as using the analytical Jacobian:

$ timer ./reaction -snes_converged reason -da_refine 10 -snes_fd_color
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 3
on 8193 point grid: |u-u_exact|_inf/|u|_inf = 1.75633e-10

real 0.06

02 PETSC FOR PDES

Compare the run on page 88.
Actually counting the number of function evaluations in the vari-
ous cases is a good idea, and there is no need to alter reaction.c to
do s0.'9 Use -log_summary and look at the output. Because we want % Do not add print statements!
the “SNESFunctionEval” lines, grep extracts the count for the runs
above:

$./reaction -da_refine 10 -snes_fd -snes_max_funcs 100000 -log_summary | grep SNESFunctionEval
SNESFunctionEval 24586 1.0 3.3170e+00 1.0 ...
$./reaction -da_refine 10 -snes_fd_color -log summary | grep SNESFunctionEval

SNESFunctionEval 13 1.0 4.7762e-03 1.0 ...
$./reaction -da_refine 10 -log summary | grep SNESFunctionEval
SNESFunctionEval 4 1.0 9.3341e-04 1.0 ...

The exact number of F evaluations was 24586, 13, and 4, respectively.
Before proceeding, consider the structured 2D grid used in Chap-
ter 3, and in particular finite-difference scheme (3.9) for the Poisson
equation (3.1). How would the corresponding graph-coloring ap-
proach work? The stencil of the scheme involves five unknowns
Ui 1, Uio1,j, Wi j, Uip1,j, 4ij1 (Figure 3.7). Therefore the graph G(J) in
this case includes a complete graph on five vertices, a K5, as a sub-
graph at each (generic interior) node in the structured grid, as shown A o
in Figure 4.7. Clearly x(G(J)) > 5. However, when PETSc does the ol A (/
default incidence-degree-ordering coloring algorithm then it finds \ rote
that indeed five colors suffice to color G(J), at least in refined-grid _jC; ; /7476, '/]7 O s
cases. We will be able to test verify this behavior when we have a -
SNES-based 2D PDE example to work with, as in the next Chapter.

Figure 4.7: For the 2D finite-difference
scheme used in Chapter 3, the graph
G(J) has a K5 at every node because the
stencil (thick) involves five unknowns.

Jacobian-free Newton-Krylov (JFNK)

W/

Besides the finite-difference Jacobian approach above, using equation N
(4.8) or (4.19) to compute the entries of the matrix, there is a different 0(»
approach which requires no assembled Jacobian matrix at all. It

approximates matrix-vector products by a finite difference formula,

kNQA xhe

ov\hw
P C
)0\

NONLINEAR EQUATIONS 03

and uses a Krylov-type method to solve (4.5a) from a space
K = span{r, Jr, Jr, ... ,]m_lr}. (4.20)

Here | = [p(x,) is the Jacobian at iterate k and r is a (linear) residual
in equation (4.5a).

It goes by the name “Jacobian-free Newton-Krylov” [Knoll and
Keyes, 2004] or just “JENK”. To give more detail, suppose we use ini-
tial estimate 0 for the solution to (4.5a). The residual is r = —F(x) —
JO = —F(x). To compute Jr, J>r = J(Jr), ...in (4.20), recall definition
(4.2) of the derivative of F. It implies that if v is any vector then
v ~ F(x+dv) — F(x)

6
for small § # 0. Approximating the Jacobian-vector product by (4.21)

(4.21)

avoids evaluation of any entries of J.

Computing r = —F(x), to get the Krylov method started, requires
evaluating F. Then each successive vector in basis (4.20) requires an
additional evaluation of F, namely

—
Jr~ F(x+ 6] (Slr) — F(x) (4.22)

for £ = 1,...,m. Equation (4.22), the central calculation in JENK,
uses m evaluations of F to compute the whole Krylov basis (4.20). By
contrast, use of finite difference formula (4.8) to compute a generic \g
N x N Jacobian] requires N evaluations of F. Thus JFNK js‘efficient C A €
if (4.5a) is solved to desired tolerance in m < N Krylov iterations.

However, there are a few basic points to consider. First, once you
have a matrix you can do many things, such as incomplete matrix
factorizations, other than computing a matrix-vector product or a
Krylov basis, so giving up on matrices may be premature. Second,
and related, we may need to precondition linear equation (4.5a), in
which case we want the Krylov space for the linear operator M 1],
not for | itself. Also, in cases such as structured-grid PDE schemes
where it can be applied, we have seen that coloring greatly reduces
the cost of using (4.8) to assemble J. JENK is a good strategy to the
extent that it actually works, and to the extent it beats the competi-
tion.

Note JENK is implemented in PETSc and invoked by option
-snes_mf, where “mf” in stands for “matrix-free.” We shall see be-
low, in the important and even essential preconditioned case, that
there may be a matrix involved in JENK anyway. The method never
involves fully-assembling the Jacobian matrix itself, however, and
thus the “Jacobian-free” label is justified.

The issues above can be pursued in more detail on a concrete ex-
ample, so let us give it a try on a very coarse grid in the 1D diffusion-

O\‘SO L\d\\/{/ \DETQC/ ?yﬂclé@lﬂﬂ,
\‘V*U/Qﬂccﬁ # el ,//r! vioe

oY ¢ ﬂfcvxc

reaction PDE example reaction.c:

NONLINEAR EQUATIONS Q5

Also recall that preconditioning matrices M and M~ are usu-
ally never assembled. Even if an assembled preconditioner-material
matrix P is present, M is generally constructed nontrivially from P.
For example, if we supply some assembled matrix P as the precon-
ditioner material, but we ask for ILU(0) preconditioning, then M is
actually the product of the ILU(0) factors of P, not P itself.

Jacobian cases

At this point we risk overwhelming the reader with options, so

we pause to review the possibilities before testing them on the ’\/
reaction.c problem. ‘Q’ o (‘(‘ \o v

Table 4.2 summarizes options relating to residual and Jacobian U ‘ 5 _ [
call-backs in SNES-using codes. If no Jacobian or approximate Jaco- \Y : %

. v,g/
A

bian routine is provided in the user-written code then only finite-
difference evaluation of an assembled Jacobian matrix (i.e. -snes_fd
or -snes_fd_color) or finite-difference evaluation of the Jacobian-
veC’For product 1n51c.le the Krylolv method (-snes_mf, i.e.]FNI.<) are -~ Snes - QQ, Co \0 v
available. If a Jacobian routine is provided then the Newton itera- \/

v/
net N eched

tion itself occurs when no option is given. However, the provided

Jacobian may be used only to precondition the JFNK Jacobian-vector
product, which is option -snes_mf_operator. This last option may
give quadratic convergence even if the provided Jacobian is inexa
that is, even if P is a somewhat-poor approximation of

no option -snes_fd “-snes.mf -snes_mf_operator Table 4.2: Jacobian options when using
== \/ \/ SNES, compared by need for user-
only F error error implemented functions. Symbol “P”
denotes an easy-to-invert approximate
Fand P \/ v v \/ Jacobian while “J” denotes the actual
Fand | \/ N/ 0 Vi Jacobian. A big check mark shows

recommended usage.

From the code side, at a minimum a method for F must be imple-
mented in all cases, as there is no other way for PETSc to know what
equations you are solving. There are two ways of providing F: If the
problem is based on a structured grid, as in reaction.c above, use
DMDASNESSetFunctionLocal(). In general, use SNESSetFunction().

If only F is provided, do not create or preallocate a Mat for the Jaco-
bian, as this is done internally by the SNES for -snes_fd runs, while
no assembled Jacobian Mat exists for -snes_mf runs.

If an exact (J) or approximate (P) Jacobian function is imple-
mented then there are two cases:

(i) On a structured grid, provide the function (e.g. “FormJacobianLocal()")
using DMDASNESSetJacobianLocal(). In this case the Mat holding the

Testing [FNK with preconditioning

We now do refined-grid runs of reaction.c to show the -snes_mf_operator
option in action. We have already seen that the -snes_fd_color op-
tion is effective for reducing evaluations of F if a Jacobian is not im-
plemented, but in the same case the un-preconditioned JENK method
-snes_mf has serious difficulties as it requires unreasonable num-
bers of Krylov iterations and function evaluations. Now we can show
that -snes_mf_operator using only a rough approximation of the
Jacobian as a preconditioner gives good performance.

Specifically, suppose we modify this line in reaction.c (Code 4.4),

col[l] = i; v[1l] = 2.0 - hxh *x dRdu;

to remove “- hxh * dRdu”, corresponding to the nonlinear term p\/u

in (4.15), to ge¥

col[l] = i; v[1l] = 2.0;

This change, which we call a “J->P” below, keeps the tridiagonal
sparsity pattern of the Jacobian. Furthermore it preserves many char-
acteristics of the spectrum of the linearizations of the operator in
(4.15) by keeping the highest-order term u".

With this change, convergence is slowed for no option, that is,
when we try to use the new approximate Jacobian as though it were
exact. Specifically, on a coarse grid the number of iterations goes
from 4 to 15, and the residual norms suggest that convergence is no
longer quadratic:

$./reaction -da_refine 4 -snes_monitor # before change
0 SNES Function norm 1.671129624018e-02
1 SNES Function norm 3.609252641302e-04
2 SNES Function norm 4.167490508951e-07
3 SNES Function norm 4.935230509260e-13
on 129 point grid: |u-u_exact|_-inf/|u|_inf = 7.39662e-07
$./reaction -da_refine 4 -snes_monitor # with J->P change
@ SNES Function norm 1.671129624018e-02
1 SNES Function norm 3.822032062916e-03

14 SNES Function norm 3.879363487638e-10
15 SNES Function norm 1.119521798815e-10
on 129 point grid: |u-u_exact|_inf/|u|_inf = 7.3815%e-07

This loss of Newton method performance from a significantly incor-
rect Jacobian is expected in theory [Kelley, 2003].

However, for this modified Jacobian case, -snes_mf_operator is
now a fast option for higher-resolution grids, fully competitive with

—

NONLINEAR EQUATIONS g7 ™

Vi E%’\/u/\

98 PETSC FOR PDES

the exact Jacobian and finite-difference-by-coloring cases already
seen. Again on a 8000 point grid, using the approximate Jacobian
“as is” causes too many Newton iterations and less-than-quadratic
convergence:

$ timer ./reaction -snes_converged_reason -da_refine 10 # with J->P change
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 15

on 8193 point grid: |u-u_exact|_inf/|u|_inf = 1.36236e-09

real 0.13

Now we try -snes_mf_operator, which is designed for this approximate-
Jacobian situation:

$ timer ./reaction -snes_converged_reason -da_refine 10 -snes _mf_operator # with J->P change
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 4

on 8193 point grid: |u-u_exact|_inf/|u|_inf = 1.80588e-10

real 0.05

The number of iterations and the time are significantly reduced, and
both are comparable to the exact Jacobian case (page 88).
One might give the following summary advice on SNES usage:

Before implementing a Jacobian, try finite-difference evaluation
-snes_fd first, including a look at whether coloring (option -snes_fd_color)
applies to your case. As a general rule, it can be applied and it is often
effective on a structured grid, but on an unstructured grid (Chapters

8 and 10) the coloring method requires additional work. Note JENK
with no preconditioning (option -snes_mf) is rarely effective, though
easy to try. Now consider implementing the exact Jacobian J. If that
seems like too much work or is too error-prone, consider a simpler
approximate Jacobian P used with option -snes_mf_operator. In PDE
cases, in particular, P might only capture the highest-order derivatives
in J. To test convergence with P, compare “no option” runs which use
P as though it were], but wherein less-than-quadratic convergence is
expected, and -snes_mf_operator runs where quadratic convergence

should be recovered. /A AJ /(/,+ V2o 2 n
Line search Newton methods [7)1 N ’9 = CD'/A 1 +@ e,
Once the Newton step sy solving equation (4.5a) is computed, the A “"j \ &77 ‘ Vl7 3% N
new iterate x,1; = x; + s from (4.5b) may not be what we want. recca) ‘ JL atioan o -X/
For example, the residual norm ||F(x; + s;)|| may exceed ||[F(x)||, ¢
suggesting that no progress is being made in solving (4.1). Improv- Jaco biau U S vtg
ing this situation is the problem of globalizing the convergence of the -

< - ' (
. . 5 —— \/\ < — M - s p5]
Newton iteration, so that the iterates x; are more likely to head to- - e E/ O /2 VA \' d

ward the sometimes-small region of quadratic convergence around
the solution to (4.1).

The line search globalization technique [Dennis and Schnabel, 1983]
is to replace (4.5b) with

X1 = Xk + AgSy. (4.26)

112 PETSC FOR PDES

The coefficient v, is equal to v,s = v(xr,ys) for (x,,ys) € [; j cor-
responding under the element map to (g, #7¢) € . Also, on the
reference element the (x, y) gradient has formula:

3 3
(Vy0)(&, 1) < Zveaaxg hzy aam> (5.24)
{=

Quadrature

We do not plan to exactly-compute the integrals in (5.11), or in the
corresponding sum for (5.8). Instead we will use numerical integra-
tion (quadrature). One reason is that for general p it would be quite
challenging to exactly-integrate the term “|Vu|”.”

First, change-of-variables transfers the integral to the reference
element. Suppose v(x, y) is any integrable function on element (J; ;.
Using the element map and (5.18) we have

hyh
o(xy)dedy = =2 [o(En)dgd 2
J, peoaxay = = [o(en) ded (5:25)
where (¢, 1) = v(x(8, 1), y(¢,7))-
Next, recall Gauss-Legendre quadrature on integrals in one dimen-
sion [Greenbaum and Chartier, 2012]:
1 n—1
| @z ¥ wyf(z). (526)
£ o
The degree n rule (5.26) is exact for polynomials of degree 2n — 1 and
less. For degrees n = 1,2, 3, the quadrature nodes z; and weights wy
for integration over the interval [—1,1] are given in 5.1. Such a one- . \,\ A S
dimensional rule extends to tensor product formulas for integrals Jj€&~ o
(5.25) over [, namely

/ o(&,n)dEdy ~ Z Z wy,wsv(zy, Zs). (5.27)
r=0 s=

n nodes Zg weights Wy Table 5.1: Nodes and weights for low-
degree Gauss-Legendre quadrature

1 0 2 .
rules, for integrals (5.26).

2 L 1,1

\/_ t7
3 SJion/i 383

Formulas (5.23), (5.24), and (5.25) are used to evaluate the inte-
grand in (5.11) on the reference element using the nodal values of u
and f. Informally, we define

G(&n) = EWW ~fu} (5.28)

*

NONLINEAR OPTIMIZATION, AND A FINITE ELEMENT METHOD 113

The details are in Exercise 5.5.
In these terms, using quadrature (5.27), formula (5.11) becomes
computable:

_ hehy ’”V
M= =YY [Gen)dgdn
i= 0/ 0

hxhy my My n—1n—

YY) Z wrwsG(zr, 2s) (5.29)

i=0j=0r=0 s=0 &

This is enough for a prototype implementation.

Implementation with objective only

Our code is displayed in full in six parts, Codes 5.1—5.6. However,
the last part, which implements (5.8), is shown after we get the code
running initially using only an implementation of the objective (5.1).

The first part (Code 5.1) configures the problem. Options choose
the exponent p and whether we want to use a manufactured solution
for verification. The corresponding variables are stored in a context
struct called “PLapCtx” so they can be passed among our functions
as needed. Code 5.1 also includes a method to print basic informa-
tion available at the end of the solve.

The exact solution is constructed in Code 5.2. It is about as simple
as possible for the p-laplacian, and we only construct it in the p = 2
and p = 4 cases.% In brief summary, the exact solution u(x,y) is
chosen exactly as in Chapter 3, namely equation (3.10):

u(x,y) = (2 =)y - %), (5:30)

and f is set accordingly by (5.9). In cases where we do not test
against a manufactured solution, we simply set f = 1. For now,
only zero Dirichlet boundary values g(x,y) = 0 are implemented.
The by-hand derivative calculation which generates f(x,y) from
the exact solution u(x, y) is acceptably simple in the restricted cases
p = 2,4, but it is still error-prone. However, because by-hand calcula-
tion errors are likely to be un-correlated to implementation errors in
other parts of the code, agreement is likely to reflect correctness.

81f p = 2 then the strong form (5.9) is
the linear Poisson equation addressed
in Chapter 3.

7
Parallel scaling and performance

Percent completed: 50/ 0.

Diis cves petsctat of 6y b#
S cu

Cafere” for lxegpe

Aud

pf/{—fCRCo/ O‘l[_,...p/oa/' —é‘y ///bé(cwj

COoyJ("/l‘oa Ao é{/_(‘ CU(P/P

//o é/f wr §

&/c"'((’\ lau/?e /
6‘(, b(")t cfoaé(t’ | < ,,(571 .enou/ p

8
An unstructured finite element method

. . C. I/\“l 4] _fi ’
(A./ 1 \ ‘::‘
The cliched Poisson problem gafi be exploited some more. It gives)
us the opportunity to use PETSc for important tasks we have not \0 O L(@u\' S &

yet seen, including reading an unstructured mesh into PETSc Vecs,
symmetric implementation of boundary conditions, and explicit
preallocation of a Mat in parallel.

Example: The Poisson problem

Let O C R be a bounded (open) region. Suppose its boundary 902
is well-behaved, for instance that it is Lipschitz-continuous [Ciarlet,
2002, section 1.2] or even polygonal. Suppose 0(2 is decomposed into
(measurable) disjoint subsets dp (2 and dn() whose union is the entire
boundary 9Q). The Poisson problem, in strong form and including

nonhomogeneous Dirichlet and Neumann boundary conditions, is u=yg
—Vu = f onf, (8.1)
u=g ondp(),
d
a—:: = on dn(2

where n is the outward unit normal on dQ) and du/dn = n- Vu.
The data of problem (8.1), besides the region () and its boundary,
includes a source term f € 12(Q)), Dirichlet data g € 12(dyQ2), and
Neumann data v € L?(ayQ2).

As (8.1) is stated there may be no solution where “V?u” makes
sense as a continuous function, even for polygonal regions, continu-
ous boundary values, and continuous source functions. In particular,
there may be no u € C%(Q) which is continuous up to the boundary
(i.e. u € C(Q))) and so that V?u = f. There is, however, a solution

if we change to a weak formulation." Furthermore, if dp() has positive " A proof of this well-posedness claim
is in Ciarlet {2002] and in Evans [2010].

These are technicalities for us, however,
solution of the weak formulation is unique. We will state the weak as our goal is computational perfor-
mance in cases where the Poisson prob-
lem is mathematically well-behaved and
easily approximated.

size, in an appropriate sense [Ciarlet, 2002, Theorem 1.2.1], then the

128 PETSC FOR PDES

formulation after glossig]g_tl1e-defirtitit:ms-of-the-needed---hmctiqnf’/)
f_'_’_,d-"' —— — — 1

spaces.
Reealling L?(Q2) is the space of all square-integrable real functions

L] \ jf/l
on (), define / O&,\(”& 7/ 72‘_’\@ 5

4 or <
SHY Q) = {u € L*(Q)|Vu exists a.e. and Vu € L2(Q)},) \L. m R
. = - Nl : j »‘ -3 " C-é .,

which is a Sobolev space [Evans, 2010]. This space has two subsets \ > }) .
we use, namely functions with value g on dpQ2 and those with value : w i - -‘ \/\’» >
0 on dp{}, respectively, which we denote H;,(Q) and H}(Q)). Note e V! \C C
that H}(Q2) is a linear subspace of H!((2). While H;(Q) is gener- {“‘x_ R) X n l‘—\ .
ally not a subspace (e.g. because the zero function is not in it), it is) _ A BN
an affine subspace, and we refer to both H;, (Q)) and H}(Q?) as “sub- ns S‘f - V\A\r o
spaces”. S Y\' A ¢

To get to the weak formulation of the Poisson problem we suppose " \/\/\ °
we already have a classical solution u of (8.1). Then we choose any OLCL o
v € H}(Q), multiply the first equation in (8.1) by v, and integrate by
parts:

ou
/QVM-VU—/aQ%v:/QfU.

Next we use the other data, namely that v = 0 on dp(2 and that there Main ideas of strong and weak formula-

is Neumann data y on dy: tions:
o Ifue H; () solves the strong form

(8.1) then it solves (8.2) also.

Vo = f H(O). 8.
/Q Yo /Q f"U * /aNQ T orany v ety () (2) o Ifuc HSI,(Q) solves the weak form

(8.2) then we accept it, by definition,
Equation (8.2) is the weak formulation of the Poisson problem. as a solution of the Poisson problem.

Any u € Hél, (1) satisfying (8.2) is called a weak solution. A key obser-
vation is that u itself incorporates the Dirichlet boundary condition,
because it lives in Hg, (Q)), while both the Neumann boundary data vy

and the source function f appear in equation (8.2). \jr e~
(e

A finite element method (FEM) for the Poisson problem in the plane L™ 1 X \—\ \ “{j)
B A & Al

An FEM for the Poisson problem comes from requiring the weak f 4 \n lk Vel

formulation (8.2) to be true for u in a much smaller, indeed finite- N\ 11 x(|

dimensional, subspace of Hé(Q), and for test functions v ranging % Yol " I/|l| g

over a finite-dimensional subspace of H}(Q)). In the “Galerkin” all UJ A

method here, these subspaces will be essentially the same. We will . % p F e

build these subspaces, in the current example, using an unstructured \ \ e ‘r Le ¥

triangulation on Q) C R?; from now on in this Chapter we restrict to N (& 27N /‘

d = 2 dimensions. W~
Furthermore, to make our finite-dimensional spaces true sub-

spaces of H!(2)—to make our FEM conforming—we require that)

be polygonal, with 9() a closed polygon. Segments of dQ2 must have

positive length, and be either entirely in dp(2 or entirely in dn Q.

AN UNSTRUCTURED FINITE ELEMENT METHOD 129

We also assume dp() is a closed set so that, at vertices of dQ) where
the Dirichlet boundary and Neumann boundary meet, the vertex is
Dirichlet.

By definition, a trigngulation is a finite set of non-overlapping,
non-empty open triangles A, C R? which tile)

To={t | UB=0 and OunO=0ifk#1}.

We index the K triangles in 7, by k = 0,...,K — 1. The N vertices
(nodes) in T, are indexed by j = 0,1,..., N — 1, with locations

Xj = (x},y])

An example triangulation is shown in Figure 8.1.

For now the reader can regard the subscript “h” in “7,” as merely-
traditional notation. It denotes the typical or maximum size i (e.g. di-
ameter) of the triangles, and it serves as a reminder-that-we-want to

7
approximate the solution in the limit h —70. Also note that, in con- Figure 8.1: A tll‘lan%ubtlon Tu Wllt)h .
o . \ K = 22 tri t
tr_als;_t. to"[-,h'nalﬁ-}ha.l.wl—ch we ger_t_gnj]ly follow, and other k=0 lrlan‘?(e_s ge(f:;;r;i)dn;]ui elrg
/_references on the FEM or its imﬂéﬁ‘eﬁfﬁtion in languages like MAT- nodes numbered j = 0,1,...,N -1

(blue). Nodes xg, x;, X2, X3 are in the

" LAB, our indexing is zero-based. This i ecause we implement
/ & sissob p Dirichlet boundary dpQ).

/ in C and we want to avoid any confusion when comparing text and

/ e <l
codes. Breaking long mathematical traditions, rows and columns of / /L \ 7 Lj c eV (
1 Ve.ctors and matrices will alsp ha_ve_ numbering starting with zgro in \ Fi + , Cl/(i (er’
_this book. __——— e —— l ALS © //

“We informally call the triangles elements, though there is more to
the definition of “element.” We are going to approximate the Pois-
son problem with Py finite elements, which means that our finite-
dimensional subspace contains only piecewise-linear functions which
are linear on each triangle A\;.

For each node j there is a Py basis function, or “hat” function,
(p]-(x, y) which is linear on each triangle, continuous on all of Q, and

equal to one on only one node j: ¢i(xj) =1
AT
¢j(xi) = dij. N
The functions ¢; are in H'(Q)), with piecewise-constant partial 27 A s,

derivatives d¢;/dx and 0¢;/dy. Also, the set {¢;}; o, n 1 is linearly- P & N :"\\ /

independent. On each triangle, ¢; has three degrees of freedom,
because on A\, there exist coefficients Ay, B, Cr € R so that $j(xi) =0

¢](x) = A+ Bx+Cy on Ny,

where x = (x,y).

We can immediately use these basis functions to approximate
the Dirichlet data g and extend it to the region (2. We will assume
from now on that the Dirichlet boundary 9p(2 is closed, and index

130 PETSC FOR PDES

the L nodes which are in the Dirichlet boundary by x; € dp(2 for
1=0,...,L—1. (Figure 8.1 shows an example with L = 4 and j; = |
for 1 = 0,1,2,3, but any subset of boundary points can be Dirichlet
as long as the index values j; are well-defined.) Now we can define
an extended interpolant ¢ of ¢ as the function which has the correct
value on the Dirichlet boundary nodes and which extends to all of (2
in a continuous and piecewise-linear way:

§(x) =Y. g(x;)¢;,(0). (83)

[=0,...,.L M
finite-dimensional subspaces of H! (Q):2 > Traditionally, basis functions for
Sg are called the trial functions, and

By using ¢ and the basis functions ¢;, we can now describe thrée

sh — spa_n{(p‘ | all i } basis functions for Sf! are called fest
/ functions. We will generally just use the
P g V]
S = sPan{‘PLl X; ¢ aDQ} c Sy, labels ”Sg” and “Sk.”

P S
S e=sirges. P S T

Then dim(S") = N while dim(S}) = dlm(Sh) = N — L, with Sh only 5‘(0 J (€
an affine subspace of S". 4/\/ s VYV

Our FEM requires that the weak formulation (8.2) be true of 1), € [/\ N é‘{/
ng’ forallv € Sf. Thus we first write u, in the basis for S; using W (/\ e LD
N — L unknown coefficients u;: \ Ca {' //%,

4} e’ At € X
() = g0+ Y u;9;(x). @4) s face <
X £3p Q)) /
X
Then we require that the weak formulation hold for all ¢; in the basis V\
of Sk. That is, using definition (8.3) and expansion (8.4), we require > @
wi [Ve Vo= [fo+ [a0 (55)
X; ¢a Q InQ
- E g(xh) ,/Q V(P][V(Pl
1=0,...,L

for all i such that x; ¢ dpQ). The coefficients u;, for all j such that
x; ¢ dp(}, are the unknowns in this equation.

Note that the support (i.e. nonzero set) of ¢; includes only the
node x; and all triangles (elements) Ay for which x; is a node of Ay.
Thus the integral “ [, V¢; - V¢;” in (8.5) is usually-zero-Specifieally, Je /\'/

-itisezero if x; and x; are not both nodes of at least on tnangle in the (,(j\ vee s /
: (n &/ twa , e > .

triangulation. Theg V5 “the /J' v f’/‘/f / 1 SNGE W\//\)(/\ e

Triangular meshes from TRIANGLE

PETSc itself does not include any tools for triangulating regions of il

the plane(' sowe'use the widely-available and easy-to-use TRIANGLE3 " See www.cs.cmu.edu/~quake/ trian-
. gle.html for documentation and source
B code. TRIANGLE may be available as a

S— =
T — e

—— package in your operating system.

AN UNSTRUCTURED FINITE ELEMENT METHOD

software [Shewchuk, 1996] for this task. TRIANGLE is both limited to
planar regions and only capable of writing ASCII files. Thus it is not
a choice for performance, but of convenience.
TRIANGLE uses a simply-formatted ASCII file (extension .poly)
as input to describe a polygonal region (), and to indicate Dirichlet
and Neumann portions of the boundary d(}. For example, consider
the input file bump. poly shown in Code 8.1. This example polygon, a
rectangle with a triangular bump in the base, is shown in Figure 8.2.
It will reappear several times in this book as we solve more interest- ' L
ing PDEs gf it. The two apparently-unnecessary vertices introduced (o] “]L \
along the’bottom help identify the Neumann part of the boundary,
but note that bump.poly includes a Dirichlet/Neumann flag along
each boundary segment.

| ch8/bump.poly ‘

A polygon with nine vertices, in 2D, no attributes, and no markers for
these vertices.

9200
Outside rectangle has these vertices:
1 -3.0 0.0

2 -3.0 3.0

3 3.0 3.0

4 3.0 0.0

Triangular bump has these vertices:

5 1.0 0.0

6 1.0 1.0

7 0.0 0.0

These added vertices help mark Neumann boundary segments
8 2.0 0.0

9 -1.5 0.0
There are nine segments on the boundary, each with one marker.
Marker values: 2 = Dirichlet, 3 = Neumann.

91

W~ WwN
W 1 oy U1 00 W N~
O d o o WwN
W W NN WwWwWwNDNDN

Zero holes. It is a simply-connected region.

131

Code 8.1: A description of the bound-
ary polygon in Figure 8.3, suitable for

reading by TRIANGLE.

The triangulation shown in Figure 8.3 came from a single com-
mand which asks TRIANGLE to take bump.poly and generate a tri-
angulation which has a polygon output file (option -p), relatively-

AN UNSTRUCTURED FINITE ELEMENT METHOD

| $ c3convert -f bump.l

This reads ASCII files bump.1.{node,ele, poly} and writes a PETSc-
formatted binary file bump.1.petsc.

We will not show c3convert. ¢, but we summarize the high points.
First PETSc is initialized and we,%he rank of the current (MPI)
process. We only ask the first process (“rank zero”) in the MPI com-
municator to do any work.> This part of the code first reads the
header information in the .node file, and allocates PETSc Vecs ac-
cording. We use VecCreateSeq to allocate the a sequential Vec vx,
which contains the x-coordinate of the nodes, only on the rank zero
process. Then VecDuplicate is used to allocate two more Vecs with
the same layout, vy and vBT. This last Vec will contain a flag {0,2,3}
for each node, where 0 is an interior node, 2 is a Dirichlet boundary
node, and 3 is a Neumann boundary node.

Then we read the node locations from the .node file. The read-
ing itself is done with the standard C library call fscanf. Then
VecSetValues is used to set one entry at a time. After setting these
values, which stores a list of entrys into an internal PETSc dynamic
data structure, we ask PETSc to assemble the Vecs.

The next part of c3convert. c reads boundary polygon information
from the .poly file. Each segment of the boundary polygon corre-
sponds to two node indices. We store the segments in a Vec with
blocksize 2. Then we read the header information in the .ele file and
allocates a Vec called vE for the elements. This part of the code is an
important transformation of the data structures. In fact, vE has block
size 1 5,6 and, in contrast to the format from TRIANGLE, it contains all
the information about each element that we need to do assemble the
matrix equation. Each of its blocks is the C struct shown in Code
8.2.

| extract from ch8/readmesh.h |

133

C?iy{iﬂs/yv

5 This code can be invoked “mpiexec
-n NN c3convert”, but it behaves as a
serial code.

¢ A PETSc Vec is designed to hold
PetscScalar data types, i.e. double. So
we are being quite wasteful for integer
indices and boolean flags.

typedef struct {

PetscScalar j[3], // global indices of vertices (nodes)
bN{3], // boundary type of node: bN[O], bN[1],
bE({3], // isboundary for edge: DbE[0], bE[1],

// where bE[0] = <0,1>, bE[1] = <1,2>,
x[3], // node x-coordinates x[0], x(11, x[2]
v[3]; // node y-coordinates y[0], y(1l], y[2}
} elementtype;

jrol,

bE[2} in {0,1},

jr11, jfz2]
bN[2] in {0,1,2}

bE[2] = <2,0>

In the next part of c3convert.c we fill the Vec for elements with
all of the information read so far, including the node indices for each

Code 8.2: The elementtype struct.

134 PETSC FOR PDES

element which we read from the .ele file. This stage is fundamen-
tally serial, because we must look at the entire mesh to find the node
coordinates and node/segment boundary type for each node and
edge of each element. In this part there is an important detail about
triangulations, which affects the data structure for elements. Namely,
we cannot tell if an edge of an element is in the boundary just by
whether both endpoints are in the boundary. For example, the ele-
ment (triangle) labeled “5” in Figure 8.3 has an edge from node 5 (on
the Dirichlet boundary) to node 7 (on the Neumann boundary). But
triangle 5 is not a boundary element. Thus we need to have list of
flags for the boundary segments themselves. Thus the elementtype
structure above has both a boundary type for each node of each ele-
ment and a boundary type for each edge of each element. o + (re
At this point we have the whole triangulation infe PETSc Vecs. an

The almost-last part of c3convert.c simply creates a PETSc “viewer’
and “view” all of the Vecs which contain the mesh. We will be able

4+ S vz To s l'(“

s - i
to reread these Vecs in parallel -asfong-as-we re=read-them-in-the- VN /0 ETSc s
same-order, The final bit of c3convert. c checks if option -check is b ST -
. . SrEe e . ety Loy med
given, and if so we read back the binary file in parallel. This part of N

c3convert.c calls two methods from a separate code (and re-used
component) readmesh.c (Codes 8.3 and 8.4).

The first method getmeshfile() finds a PETSc binary file from
the - f option. The other major method readmesh (), in Code 8.4,
creates and reads three Vecs in parallel from it, using utility methods
createloadname() and getcheckmeshsizes(). Note that prefixes are
set on each Vec so that the block size is correctly read.

| ch8/readmesh.c part I|

PetscErrorCode getmeshfile (MPI_Comm comm, const char suffix[],
char filename(], PetscViewer xviewer) ({

PetscBool fset;
PetscOptionsBegin(comm, "", "options for readmesh", "");
PetscOptionsString("-f", "filename root with PETSc binary, for reading", "", [|'",

filename, PETSC_MAX_ PATH_LEN, &fset);
PetscOptionsEnd(};
strcat (filename, suffix);
PetscPrintf (comm," opening mesh file %s ...\n",filename);
PetscViewerBinaryOpen (comm, filename, FILE_MODE_READ, viewer) ;
return 0;

Code 8.3: Determine the filename of a
PETSc binary file that has a mesh.

AN UNSTRUCTURED FINITE ELEMENT METHOD 135

/,’”‘_“'
ch8/readmesh.c part II ot - Jl -
PetscErrorCode createloadname (MPI_Comm comm, PetscViewer viewer, const thq% prefix{f} \
const char name([], Vec *v) { / H
VecCreate (comm, v) ; / \
VecSetOptionsPrefix (+v, prefix);
VecLoad (+v, viewer) ;
PetscObjectSetName { (PetscObject) («v),name);
return 0;
}
PetscErrorCode getcheckmeshsizes (MPI_Comm comm, Vec E, Vec x, Vec vy, H
PetscInt *N, PetscInt %K, PetscInt +bs) |
PetscInt Ny;
if (N) |
VecGetSize (x,N});
VecGetSize (y, &Ny) ;
if (Ny != xN) { SETERRQ(comm,3,"x,y arrays invalid: must have ggqual lengthl); }
}
if (K) |
VecGetSize (E,K);
if (*K % 15 != 0) { SETERRQ(comm, 3,"element array E invalid (!= 15 K entrigs)"); }
*K /= 15;
}
if (bs) {
VecGetBlockSize (E, bs);
if («bs != 15) { SETERRQ(comm, 3, "element array E has invalid kleck size (!¥ 15)"); }
! \
return 0;
|
PetscErrorCode readmesh(MPI_Comm comm, PetscViewer viewer, Vec #*E, Vec #*x, Vec
PetscInt bs,N,K; e
PetscPrintf (comm," reading mesh Vec E,x,y from file ...\n");
createloadname (comm, viewer, "E_", "E-element—-full-info", E);
createloadname (comm, viewer, "x_", "x-coordinate", Xx};
createloadname (comm, viewer, "y_", "y-coordinate", y);
getcheckmeshsizes (comm, *E, *x, xy, &N, &K, &bs) ;
PetscPrintf (comm, " block size for E is %d\n",bs);
PetscPrintf (comm, " N=%d nodes, K=%d elements\n",N,K);
return 0;
}

Code 8.4: Read the mesh in parallel
from the file.

Constructing the FEM linear system

Now that we can get a triangulation into PETSc, we can return to the
finite-dimensional weak formulation (8.5). This linear system

Au=b, (8.6)

has A € RN*N and u,b € RN, where N is the number of nodes. We
will write a code which assembles A and b and solves for u. PETSc

AN UNSTRUCTURED FINITE ELEMENT METHOD 137

(8.6) in this Neumann case we will have to inform PETSc about the
null space of constant functions.

In general, the next step is to edit A in each Dirichlet row, that is,
for each i where x; € dpQ). For each such row we replace the whole
row with the corresponding row of the identity, and also we replace
b; with b; = g(x;). Furthermore, in each column j for which x; €
dp(), we move all entries 4;; where i is not a Dirichlet row index over
to the right-hand side, multiplied by the negative of the boundary
value g(x;). We can write

Ei — E,‘ . g(x])d,] (8.9)
for these transformations. After the completion of this “editing” stage

we get A and b. Since this part of the matrix assembly is a key stage
in our FEM codes, we now give a concrete example. 1 2

Example. Figure 8.4 shows a triangulation of the unit square with
five nodes. The matrix A has the following nonzero pattern; the zero -
entries are shown as spaces:

X X X X 0 3
X X X X Figure 8.4: A triangulation of a square
A= X X X X with five nodes. The top segment is the
Dirichlet boundary.
X X X X
X

X X X X

Note a;; = 0 only where the integral [, V¢; - V¢; is zero, a rare event
in this small (coarse)-mesh case. Now, because the i = 1,2 nodes live
in the (closed) Dirichlet boundary dp(2, we highlight the i = 1,2 rows

and j = 1,2 columns which will be edited: Caution: The first row or column of any
matrix in this book is numbered “0.”

* X * X
x X x 0x
A=| x x x X
* >_< x X
X X X X X

The underlined blue entries are changed to 0 or 1 so that these rows
become rows of the identity; the old computed values 4;; are tossed
out. The underlined red entries, specifically the four entries dg1, 432, i T

-\ & e | =
d41, and dgy, are moved over to the right side using transformation - f‘ f g = ML
(8.9); these d;; values get used. The final linear system Au=b,is -~

=
-

X X X Up EQ — g(xl)ﬁm
1 251 g(xl) il/\ A
1 uy| = 2(x2) -
X X X Us Eg—g(XZ)ﬁgz Pre v o0 -2
X X x] Lug by — g(x1)da1 — g(x2)aaa \P e,

"\ ﬂ\p

AN UNSTRUCTURED FINITE ELEMENT METHOD 139

" T
A standard approach to computing the element-wise integrals ™.
a(k,q,r) is to refer triangle A\, to a reference triangle A, with ver- 4
tices (0,0), (1,0), (0,1), as shown in Figure 8.5. The linear map from
A, to A with vertices (xg,y0), (x1,¥1), (x2,y2), as shown in the Y
Figure, is

(x2,y2)

xg.fffﬂ) = xg + (1 — x0)¢ + (x2 — x0)77, (8.12)

.;f'(é‘, 1) =yo + (1 — ¥0)& + (y2 — yo)11-

|
Furthermore, orﬁ A\, any linear function is a linear combination of
these three local basis functions: (x1,y1)

xO(C,v)=1'?'~C\11, xi@mn =6 x@mn =1 613

On /\;, each of the basis | fthhe ma Pp;d.-.ve'féi_on of the
corresponding x,: =

Figure 8.5: Mapping of a triangle A
from the reference triangle A,.

. S5 ¢
T é“jcu}

¢q(x (1), y(&) = xq(S,77). (8.14) 'S
| j//‘f‘:\/‘

From (8.12) and (8.14) one can confirm that ¢,(xy, y,) = 0y A or S
Now is a good point at which to observe that the set of ¢;, over A\ Y " A
(M, ok

allnodesj = 0,1,...,N, is a partition of unity. We can see this by I\
switching to local node coordinate g and using xo +x1 +x2 = 1, ({ e LYo
which is obvious from (8.13). That is, if x € Ay then i_ {, cA\' A
VN
coJVi .
Lo = 5 ad= Y xg=1 815) Vs
j q=0,1,2 q=0,1,2
The Jacobian® of map (8.12) is 8 By definition, the Jacobian | = J(x)
of a smooth map F at a point x is its
ox dx linearization at x. That is, if y = F(x)
3z 3. and y + Ay = F(x + Ax) then J(x)
J= 9% 9y _ |[f1 %0 X2 %o) (8.16) satisfies Ay = J(x)Ax + o(|Ax]).
9y dy Y1—-Yo Y2 Yo
a; oy
Recalling both the change-of-variables formula for integrals? and the 91f F is a smooth map from x € U to

y € F(U),] is the Jacobian of F, and g is
integrable on F(U), then

a(k,q,r) = /A Vg -V (8.17) /F(u) g(Y)dy:/ug(F(x))Idet(})Idx-
k

o a’abff a‘Pr a‘f’rr a‘Pr
~Jag 9x 9x - dy dy dxdy

- [(%3_5+3M%) <3Xr%+a2cr8_n>

chain rule, by (8.14) we can write

9¢ dx = an ox) \ o ox = on ox
g 05 g (3xr O | Ixr 3N
H(Fn o) (F5 5 gy) | aan

The last expression is the low point of this calculation. From now
on the formulas simplify because the integrand is constant for the

Bibliography B M@\ W

(‘\ \ ".‘
R. Adams and J. Fournier. Sobolev Spaces. Academic Press, 2nd ’

/ ‘I
edition, 2003. \/)@é\ﬁ ‘

S. Balay et al. PETSc Users Manual. Technical Report ANL-95/11 -
Revision 3.5, Argonne National Laboratory, 2014.

D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in
Elasticity Theory. Cambridge University Press, 3rd edition, 2007.

W. Briggs, V. E. Henson, and S. McCormick. A Multigrid Tutorial.
SIAM Press, 2nd edition, 2000.

G. Chartrand, L. Lesniak, and P. Zhang. Graphs & Digraphs. CRC
Press, 5th edition, 2011.

P. G. Ciarlet. The Finite Element Method for Elliptic Problems. SIAM
Press, 2002. Reprint of the 1978 original.

~)

T. F. Coleman and]. J.Meré=Estimation of sparse Jacobian matrices /4
and graph color{iﬁg blems. SIAM]. Numer. Anal., 20(1):187-209,
1983. .

J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Prentice-Hall, 1983.

E. Doedel, H. B. Keller, and J. P. Kernevez. Numerical analysis and
control of bifurcation problems (I): bifurcation in finite dimensions.
Int.]. Bifurcation and Chaos, 1(03):493-520, 1991.

H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and
Fast Iterative Solvers: with Applications in Incompressible Fluid Dynam-
ics. Oxford University Press, 2005.

L. C. Evans. Partial Differential Equations. Graduate Studies in
Mathematics. American Mathematical Society, 2nd edition, 2010.

A. H. Gebremedhin, F. Manne, and A. Pothen. What color is your
Jacobian? Graph coloring for computing derivatives. SIAM Review,

47(4):629—705, 2005.

