A tensorflow implementation of Junbo et al's Energy-based generative adversarial network ( EBGAN ) paper.
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
png
.gitignore
CHANGELOG.md
LICENSE
README.md
mnist_ebgan_generate.py
mnist_ebgan_train.py
model.py

README.md

EBGAN

A tensorflow implementation of Junbo et al's Energy-based generative adversarial network ( EBGAN ) paper. ( See : https://arxiv.org/pdf/1609.03126v2.pdf ) My implementation is somewhat different from original papers, for example I've used convolution layers in both generator and discriminator instead of fully connected layers. I think this isn't important and will not make a big difference in the final result.

Version

Current Version : 0.0.0.2

Dependencies ( VERSION MUST BE MATCHED EXACTLY! )

  1. tensorflow == 1.0.0
  2. sugartensor == 1.0.0.2

Training the network

Execute


python mnist_ebgan_train.py

to train the network. You can see the result ckpt files and log files in the 'asset/train' directory. Launch tensorboard --logdir asset/train/log to monitor training process.

Generating image

Execute


python mnist_ebgan_generate.py

to generate sample image. The 'sample.png' file will be generated in the 'asset/train' directory.

Generated image sample

This image was generated by EBGAN network.

Other resources

  1. Original GAN tensorflow implementation
  2. InfoGAN tensorflow implementation
  3. Supervised InfoGAN tensorflow implementation

Authors

Namju Kim (buriburisuri@gmail.com) at Jamonglabs Co., Ltd.