Permalink
Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
149 lines (124 sloc) 4.89 KB
from contextlib import closing
from matplotlib.pyplot import plot, figure, hold, axis, ylabel, xlabel, savefig, title
from numpy import sort, logical_xor, transpose, logical_not
from numpy.numarray.functions import cumsum, zeros
from numpy.random import rand, shuffle
from numpy import mod, floor
import time
import cloud
from durus.file_storage import FileStorage
from durus.connection import Connection
def bitFreqVisualizer(effectiveAttrIndices, bitFreqs, gen):
f = figure(1)
n = len(bitFreqs)
hold(False)
plot(range(n), bitFreqs,'b.', markersize=10)
hold(True)
plot(effectiveAttrIndices, bitFreqs[effectiveAttrIndices],'r.', markersize=10)
axis([0, n-1, 0, 1])
title("Generation = %s" % (gen,))
ylabel('Frequency of the Bit 1')
xlabel('Locus')
f.canvas.draw()
f.show()
def showExperimentTimeStamps():
with closing(FileStorage("soda_results.durus")) as durus:
conn = Connection(durus)
return conn.get_root().keys()
def neap_uga(m, n, gens, probMutation, effectiveAttrIndices, probMisclassification, bitFreqVisualizer=None):
""" neap = "noisy effective attribute parity"
"""
pop = rand(m,n)<0.5
bitFreqHist= zeros((n,gens+1))
for t in range(gens+1):
print "Generation %s" % t
bitFreqs = pop.astype('float').sum(axis=0)/m
bitFreqHist[:,t] = transpose(bitFreqs)
if bitFreqVisualizer:
bitFreqVisualizer(bitFreqs,t)
fitnessVals = mod(pop[:, effectiveAttrIndices].astype('byte').sum(axis=1) +
(rand(m) < probMisclassification).astype('byte'),2)
totalFitness = sum (fitnessVals)
cumNormFitnessVals = cumsum(fitnessVals).astype('float')/totalFitness
parentIndices = zeros(2*m, dtype='int16')
markers = sort(rand(2*m))
ctr = 0
for idx in xrange(2*m):
while markers[idx]>cumNormFitnessVals[ctr]:
ctr += 1
parentIndices[idx] = ctr
shuffle(parentIndices)
crossoverMasks = rand(m, n) < 0.5
newPop = zeros((m, n), dtype='bool')
newPop[crossoverMasks] = pop[parentIndices[:m], :][crossoverMasks]
newPop[logical_not(crossoverMasks)] = pop[parentIndices[m:], :][logical_not(crossoverMasks)]
mutationMasks = rand(m, n)<probMutation
pop = logical_xor(newPop,mutationMasks)
return bitFreqHist[0, :], bitFreqHist[-1, :]
def f(gens):
k = 7
n= k + 1
effectiveAttrIndices = range(k)
probMutation = 0.004
probMisclassification = 0.20
popSize = 1500
jid = cloud.call(neap_uga, **dict(m=popSize,
n=n,
gens=gens,
probMutation=probMutation,
effectiveAttrIndices=effectiveAttrIndices,
probMisclassification=probMisclassification))
print "Kicked off trial %s" % jid
return jid
def cloud_result(jid):
result = cloud.result(jid)
print "Retrieved results for trial %s" % jid
return result
def run_trials():
numTrials = 3000
gens = 1000
from multiprocessing.pool import ThreadPool as Pool
pool = Pool(50)
jids = pool.map(f,[gens]*numTrials)
print "Done spawning trials. Retrieving results..."
results = pool.map(cloud_result, jids)
firstLocusFreqsHists = zeros((numTrials,gens+1), dtype='float')
lastLocusFreqsHists = zeros((numTrials,gens+1), dtype='float')
print "Done retrieving results. Press Enter to serialize..."
raw_input()
for i, result in enumerate(results):
firstLocusFreqsHists[i, :], lastLocusFreqsHists[i, :] = result
with closing(FileStorage("soda_results.durus")) as durus:
conn = Connection(durus)
conn.get_root()[str(int(floor(time.time())))] = (firstLocusFreqsHists, lastLocusFreqsHists)
conn.commit()
pool.close()
pool.join()
def render_results(timestamp=None):
with closing(FileStorage("soda_results.durus")) as durus:
conn = Connection(durus)
db = conn.get_root()
if not timestamp:
timestamp = sorted(db.keys())[-1]
firstLocusFreqsHists, lastLocusFreqsHists = db[timestamp]
print "Done deserializing results. Plotting..."
x = [(2, 'First', firstLocusFreqsHists, "effective"),
(3, 'Last', lastLocusFreqsHists, "non-effective")]
for i, pos, freqsHists, filename in x :
freqsHists = freqsHists[:,:801]
f = figure(i)
hold(False)
plot(transpose(freqsHists), color='grey')
hold(True)
maxGens = freqsHists.shape[1]-1
plot([0, maxGens], [.05,.05], 'k--')
plot([0, maxGens], [.95,.95], 'k--')
axis([0, maxGens, 0, 1])
xlabel('Generation')
ylabel('1-Frequency of the '+pos+' Locus')
f.canvas.draw()
f.show()
savefig(filename+'.png', format='png', dpi=200)
if __name__ == "__main__":
run_trials()
render_results()