
The websockets Package

Bryan W. Lewis
blewis@illposed.net

November 1, 2011

1 Introduction

HTML 5 websockets define an efficient socket-like communication protocol for the web. The
websockets package is a native websocket implementation for R that supports most of the draft
IETF protocols in use today by web browsers. The websockets package is especially well-suited
to interaction between R and web scripting languages like Javascript. Multiple simultaneous web-
socket server and client connections are supported. The package has few dependencies and is written
mostly in R. Packages are available for all major R platforms including GNU/Linux, OS X, and
Windows.

Websockets are a particularly simple way to expose R to the Web as a service–they let Javascript
and other scripts embedded in web pages directly interact with R, bypassing traditional middleware
layers like .NET, Java, and web servers normally used for such interaction. In some cases, websockets
can be much more efficient than traditional Ajax schemes for interacting with clients over web
protocls. Websockets also simplify service scalability in many cases.

The websockets package provides three primary capabilities:

1. An websocket service.

2. An websocket client.

3. A basic HTTP service.

This guide illustrates each capability with simple examples.

The websockets Package

2 Running an R websockets server, step by step

The websockets package includes a server function that can initiate and respond to websocket
and HTTP events over a network connection (websockets are an extension of standard HTTP). All
R/Websocket server applications share the following basic recpie:

1. Load the library.

2. Initialize a websocket server with create_server.

3. Set callback functions that will respond to desired events.

4. Service the server’s socket interface with service, often in an event loop.

5. Shutdown the server and delete the server environment when done.

We outline the steps with examples below.

2.1 Load the library

library("websockets")

The library depends on the caTools, bitops and a recent version of the digest package. It suggests
that the RJSONIO library be installed, as it is quite useful to have available when interacting with
Javascript.

2.2 Initialize a websocket server with create_server

The R/Websocket service is initialized by a call to the create_server function. (The initialization
method called createContext from older versions of the package is still supported.) The function
takes two arguments, a network port to listen on, and an optional function closure to service
standard HTTP requests (described in greater detail below). The create_server function returns
an environment that stores data associated with the newly created server. “Callback” functions
may be assigned that respond to specific websocket and generic http events. Here is an example
that creates a websocket server on the default port of 7681:
server = create_server()

Multuple websocket servers may be defined, but they must use distinct ports.

The websocket server will respond directly to any websocket client request. For convenience,
the server may optionally also service basic, non-websocket HTTP reuests. For example, the basic

2

The websockets Package

package demo available from demo(’websockets’) serves clients the file basic.html located in the
package installation path. Additional examples are provided below. See the Rook package for an
alternate comprehensive R web service.

2.3 Set callback functions to respond to events

Clients may connect to the websocket service immediately after the server is initialized. The server
may write data to or close client connections at any time. However, one must define functions to
respond to incoming client events.

Each websocket server instance supports the following incoming events:

established: Occurs when a websocket client connection is successfully negotiated.

closed: Occurs when a client websocket connection has been closed.

receive: Occurs when data is received from a connection.

R functions may be defined to handle some, all, or none of the above event types. Such functions
are termed “callbacks.”

The set_callback function may be used to define a callback function in the server environment
returned by create_server. (It simply assigns the functions in that environment.)

The receive callback function must take precisely three parameters that are filled in by the
library with values corresponding to an event that invokes the callback. The required parameters
are: DATA: A vector of type raw that holds any incoming data associated with the event. (It may be
of length zero if the event does not have any data to report.); WS: The websocket client associated
with the event, represented as an R list; HEADER: Header data returned by newer protocol versions,
or NULL for protocol version 00. The complete frame header is returned as described in the IETF
Draft http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17.

The closed and receive functions must each take one argument, a WS websocket client associated
with the event, represented as an R list.

The following example established function sends a text message to each newly-established
connection:
f = function(WS) {

websocket_write("Hello there!", WS)
}
set_callback("established", f, server)

Here is an example receive callback that receives data from a client connection and simply
echoes it back to the client:

3

http://cran.r-project.org/web/packages/Rook/
 http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17

The websockets Package

g = function(DATA, WS, ...) {
websocket_write(DATA, WS)

}
setCallback("receive", g, server)

2.4 Accept requests from web clients

Javascript and other web script clients can very easily interact with the R websockets library
directly from most browsers. The listing below presents a very basic example client web page that
includes Javascript code to open a connection to a local websocket server running on port 7681.
See the demo scripts in the the package installation path for more complete examples.
<html><body>
<script>
socket = new WebSocket("ws://localhost:7681", "chat");
try {

socket.onmessage = function got_packet(msg) {
document.getElementById("output").textContent = msg.data;

}
catch(ex) {document.getElementById("output").textContent = "Error: " + ex;}
</script>
<div id="output"> SOCKET DATA APPEARS HERE </div>
</body></html>

Note: The websockets package presently ignores the sub-protocol (“chat” in the above
example).

2.5 Service the socket interface with service

Incoming websocket events are queued. The service function processes events on a first-come,
first-served basis. The service function processes each event by invoking the appropriate callback
function. It returns after a configurable time out if there are no events to service. Events may be
processed indefinitely by evaluating the service function in a loop, for example:
while(TRUE)
{

service(server)
}

4

The websockets Package

The service function timeout value prevents the R session from spinning and consuming lots of
CPU time. See the service help page for more information.

2.6 Sending data to clients

The websocket_write and websocket_broadcast functions are used to send data to connected
clients. The websocket_broadcast function emulates a true broadcast by sending data in a loop
to all connected websocket clients associated with the specified server.

The websocket_write function may be used at any time to send data to a specific websocket
client. Each websocket server environment returned by the create_server function maintains a list
of connected client sockets in the variable client_sockets. Each client socket is in turn represented
by an R list. The following example assumes that the server environment has been initialized and
contains at least one connected client:
websocket_write("Hello", server$client_sockets[[1]])

Note the use of the double bracket indexing operator to select a single list element
from the client_sockets list.

2.7 Close the server when done

Servers should be closed when done as follows:
websocket_close(server)

2.8 HTTP convenience functions

The websockets package includes two convenience function closures for servicing basic HTTP re-
quests to non-websocket clients: static_file_service and static_text_service. The functions
take either a file name or text string that contains an HTML web page, respectively, and issue a well-
formed HTTP 200 response to the requesting client. They are intended to be used in the webpage
argument to the create_server function. These functions may be used to furnish web browser
clients with an HTML page that contains Javascript code to establish a websocket connection to R.

The following example defines a basic web page:

5

The websockets Package

content='<html><body>
<script>
socket = new WebSocket("ws://localhost:7681", "chat");
try {

socket.onmessage = function got_packet(msg) {
document.getElementById("output").textContent = msg.data;

}
catch(ex) {document.getElementById("output").textContent = "Error: " + ex;}
</script>
<div id="output"> SOCKET DATA APPEARS HERE </div>
</body></html>

'

server = create_server(webpage=static_text_service(content))

The web page text will be issued to any client making an HTTP GET request. To serve content
from files instead, use the static_file_service function. Additionally, the static_file_service
function checks to see if the file has been updated and always uses a fresh version.

Note that both convenience functions mostly ignore the GET RESOURCE and all other GET or
POST request parameters. They always only return the specified HTML content. See the section
on using the package as a generic HTTP service below for more comprehensive examples.

3 R as a websocket client

The websockets package includes the websocket function for creating clients that can interact
with other websocket services. It supports protocol versions 00 and newer protocols up to at least
version 08 (version 00 and 08 are most widely used by web browsers at the time of this writing).

The websocket function returns an environment similar to the create_server function, with a
single list element in the enclosed client_sockets variable corresponding to the client. Set callback
functions on the new client context to handle websocket events just as outlined above for websocket
servers. And use the websocket_write function exactly as outlined about to write data through
the client connection to the connected server.

The following example connects to a publicly available websocket echo server (using the 00
protocol).

6

The websockets Package

> library(websockets)
> client = websocket("ws://echo.websocket.org", port=80)
> set_callback("receive", function(DATA,WS,HEADER) cat(rawToChar(DATA)), client)

> websocket_write("Testing, testing", client)
[1] 1

> service(client)
Testing, testing

>websocket_close(client)

See the websocket man page for more information.

4 Using the websockets package as a basic web server

The websockets package includes functions that may be used to define a basic (non-websocket) web
service. See the Rook package for an alternate comprehensive R web service.

The webpage argument to the create_server function specifies a generic HTTP callback func-
tion. The callback function must take two arguments, socket and header, that represent a low-level
client socket connection and the full HTTP header. Users are free to define arbitrary HTTP handler
functions to respond to the incoming generic HTTP request. The websockets package provides
two helper functions for use in HTTP callbacks:

• http_vars(socket, header)
Parse the HTTP header for GET or POST variables, returning them in a list.

• http_response(socket, status, content_type, content)
Write a well-formed HTTP response back to the client socket, closing the connection when
done.

The following example illustrates a basic HTTP-only service that asks the user for a stock ticker
symbol and produces a historic plot of prices looked up from Yahoo Finance using the quantmod
package.

7

http://cran.r-project.org/web/packages/Rook/
http://cran.r-project.org/web/packages/quantmod/

The websockets Package

library("websockets")
library("caTools")
library("quantmod")

httpd = function(socket, header) {
body = "<html><body><form>Ticker: <input type='text' name='symbol'/></form>"
vars = http_vars(socket, header)
if(!is.null(vars)) {

getSymbols(vars$symbol)
f = tempfile()
jpeg(file=f, quality=100, width=650, heigh=450)
chartSeries(get(vars$symbol), name=vars$symbol, TA=c(addVo(),addBBands()))
dev.off()
img = base64encode(readBin(f,what="raw",n=1e6))
unlink(f)
body = paste(body,"
<img src='data:image/jpg;base64,\n", img,"'")

}
http_response(socket,content=charToRaw(paste(body,"</body></html")))

}

w = create_server(webpage=httpd, port=9999)
cat("Direct your browser to http://localhost:9999\n")
while(TRUE) service(w)

5 Tips and miscellaneous notes

5.1 Binary data

Binary data is supported by IETF websocket protocol versions greater than 00. The websockets
package supports the older 00 protocol with ASCII-only data, as well as binary data transfers with
newer clients. At the date of this writing, the only commonly available web browser supporting
the new protocols is Google Chrome (browser version 14 and greater), which uses the IETF version
draft-ietf-hybi-thewebsocketprotocol-08.

JSON is probably a good non-binary choice to use when interacting with Javascript and the data
size is not too large. The suggested RJSONIO package helps map many native R objects to JSON
and vice versa, greatly facilitating interaction between R and Javascript.

8

The websockets Package

5.2 Setting generic HTTP function handler callbacks

Assign a generic HTTP handler with set_callback function using the callback name “static” as
in the following example:
hello = function(socket, header) {

http_response(socket,content=charToRaw("HELLO"))
}
server = create_server(port=9999)
set_callback('static', hello, server)

Alternatively, use the webpage parameter in the create_server function.

5.3 Limitations

The websockets package does not yet automatically support the IETF WebSocket message frag-
mentation protocol. Users may implement the protocol manually, or limit the package use to
single-frame messages.

The websockets package uses the R options interface to set the websockets_max_buffer_size
variable to a default value of 16777216. Message frames exceeding this value will be truncated.
Users may change the maximum buffer size value by resetting the option.

Extensions as specified by the IETF draft specification are not yet supported.

High-level control of the data framing headers are not yet exposed to users, but will be in a
future package version.

9

	Introduction
	Running an R websockets server, step by step
	Load the library
	Initialize a websocket server with create_server
	Set callback functions to respond to events
	Accept requests from web clients
	Service the socket interface with service
	Sending data to clients
	Close the server when done
	HTTP convenience functions

	R as a websocket client
	Using the websockets package as a basic web server
	Tips and miscellaneous notes
	Binary data
	Setting generic HTTP function handler callbacks
	Limitations

