10

3 Getting Started

3.1

Installation

RapidSmith?2 is available on Github at: https://github.com/byuccl/RapidSmith2. You can either build
RapidSmith?2 into .class and .jar files for use in any Java environment, or configure RapidSmith2 to work in an IDE
(recommended).

3.1.1

Requirements for Installation and Use
Windows, Linux or Mac OS X all will work (see additional notes below for Mac OS X)
Vivado 2016.2. Later versions of Vivado may work, have not been tested yet. Earlier versions will not work.
JDK 1.8 or later

Tincr

Tincr is a companion project (https://github.com/byuccl/tincr) which is used for importing/export-
ing designs between Vivado and RapidSmith2. Installation instructions for Tincr can be found at the repository linked
above. For getting started (running the example programs on the provided sample designs) you will not need it in-
stalled. Later, as you actually start processing your own Vivado designs you will need to obtain and install it. There
are additional dependencies beyond these required for installation, but they are either provided in the distribution itself
or are automatically retrieved for you as a part of the installation process. Examples of these additional dependencies
include QT Jambi and the BYU Edif Tools.

3.1.2
L.

Steps for Installation

Clone the RapidSmith2 repository at https://github.com/byuccl/RapidSmith2. If you are not
familiar with GitHub, you will need to install Git on your computer, and run the following command in an open
terminal:

git clone https://github.com/byuccl/RapidSmith2

This will copy the RapidSmith2 repository into a local directory.

. Create a new environment variable called RAPIDSMITH_PATH, and point it to your local repository of Rapid-

Smith2 that you setup in step (1). This is needed so RapidSmith2 can find required device files and other items
at runtime.

. Build the RapidSmith2 project. RapidSmith2 is managed using a gradle build system. To build the project,

navigate to your local repository of RapidSmith2 and execute one of the following scripts in a terminal:

./gradlew build (unix)
gradlew.bat build (windows)

The build process could take a few minutes.

. At this point, you have two choices: set up RapidSmith2 for use in an IDE, or run RapidSmith2 from the

command line. Both choices are detailed below.

Running from an IDE The gradle scripts in RapidSmith2 currently support setup for both Eclipse and IDEA
Java IDEs. This section will detail how to setup the Eclipse environment, but similar steps can be taken for
IDEA. If using Eclipse, you must use Eclipse version Neon or later. To create a new eclipse project, execute one
of the following in a terminal:

3.1 |Installation 11

gradlew antlr eclipse (unix)
gradlew.bat antlr eclipse (windows)

Executing these will create an Eclipse .project file. After the project file has been created, you can import the
project into Eclipse by opening Eclipse and selecting:

File->Open Projects From File System

and pointing it to your RapidSmith2 local repository. All Java source files will be found under src/main/java.
NOTE: Your RapidSmith2 git repository should not be put inside your eclipse workspace. It is better to put it
elsewhere, and then import it into your workspace.

Building on the Command Line After step (3) in the installation process, gradlew produces everything that
you will need to run RapidSmith2 from the command line. The following directories are created:

o build/classes/main: This folder contains the RapidSmith?2 class file directory tree.
o build/libs: This folder contains a Jar file of the RapidSmith2 class files.

o build/distributions: This folder has both .zip and .tar files with contains all Jars needed to run RapidSmith2
from the command line. This includes a full jar of the RapidSmith?2 build alond with copies of dependency
Jars (such as QT-Jambi).

After adding the appropriate .class files or Jars to your CLASSPATH, you should be able to run RapidSmith2
tools from the command line. If you make any changes to the RapidSmith2 code, you will have to rebuild before
running the program again (Step 3). CAUTION: An obvious thing to try is to mix and match developing in
Eclipse but then running the resulting apps from the command line. Just be aware that Eclipse puts its compiled
.class files in very different places than where the command line gradle build process puts its .class and .jar files.
Make sure you understand that before you try to combine these two build/execution methods. Our suggested
approach is to choose one or the other, but not both.

3.1.3 Additional Notes for Mac OS X Installation

The instructions above require you to set the RAPIDSMITH_PATH environment variable. If running from the com-
mand line, the environment variables can be added to your .bash_profile file as in any other UNIX-like system. How-
ever, if using an IDE such as Eclipse you either need to define the environment variable for every Run Configuration
you create, or you need to add the RAPIDSMITH_PATH definition system-wide in OS X. This can be done, but how
to do so differs based on what OS X version you are running (and seems to have changed a number of times over the
years). Search the web for instructions for how to do so if you desire. Hint: you will likely have to edit some .plist
files.

3.1.4 Running RapidSmith2 Programs

Some points to keep in mind while configuring and running RapidSmith2 programs:

e The RapidSmith2 code base contains a number of assertions which may be helpful as you are developing code.
These are not enabled by default in Java. To enable them, add -ea as a VM argument. This is highly recom-
mended.

e If you are running on a Mac, when running RapidSmith2 programs that use Qt (any of the built-in programs like
DeviceBrowser) that are GUI-based, you will need to supply an extra JVM switch, -XstartOnFirstThread.

e A common error when running RapidSmith2 programs is failing to have your RAPIDSMITH_PATH defined. If
this is the case when you try to execute a program, an EnvironmentException will be thrown telling you
that you forgot to set the variable.

3.2 Running Real Designs - An Overview

12

o If you are running on Windows, only a 32-bit QT Jar file is included in the RapidSmith2 repository. This means

that you will need to set your JRE to a 32-bit version when running the GUI programs.

e For Linux command line usage, the CLASSPATH environment variable must point to both the full (uncom-
pressed) RapidSmith2 jar in the build/distributions folder as well as all the jar files in the /lib subdirectory. An

example CLASSPATH could look like this:

RAPIDSMITH2-SNAPSHOT/* : RAPIDSMITH2-SNAPSHOT/1ib/ *

3.1.5 Testing Your Installation

At this point you can test your installation by executing the java DeviceBrowser program:

java edu.byu.ece.rapidSmith.device.browser.DeviceBrowser

This can be done either from within Eclipse or from the command line, depending on how you are running Rapid-
Smith2 (if running under OS X be sure to provide the -XstartOnFirstThread JVM argument. If all goes well you should
see a graphical representation showing the details of a physical FPGA device as shown in Figure 3. You may initially

be zoomed far in and might want to zoom out to see the entire chip layout.

B | Device Browser
lpurt Browmer
Selext 4 pont
Wirtesd
. i
bl 00152
edtal 05T
nod bl 2668
et 26363
oodvhasdfiisig
L

bR
W
L= 4

5 _Nirteds

fPrimte Lok

Sete
SUCE YA
SLE 3TV
SLICE 38V
RICE_ X206

it
Wire : Sink Connestions = | 3
BEST LOGK GUTH T
BEST_LOGI_OUTSLINT
BEST_LOGI_OUTSI_INT
BEST_LOGC_OUTS3 T
BEST_LGGI_GUTSE T
BEST_LOGI, OUTSS INT
BEST LOGK CUTSE INT
BEST LOGIE QUTST T
BT
BYOUTO
BYP_INT_BO T
BYPINT_BI_T
BYD_INT B2 BT
EBYP_INT_B3 T
BYP_INT_Bd 0T i bl |
Past. XCAVFXMIOFSIIS T CARGAYI03 (52.66)

Figure 3: DeviceBrowser Sample Display

3.2 Running Real Designs - An Overview

This section will lead you through the required steps to export an implemented design from Vivado and load it into
RapidSmith?2. It will also demonstrate how to export a modified design from RapidSmith2 back into Vivado to com-
plete implementation. Specifically, in this example you will fully synthesize, place, and route a simple Vivado FPGA

