C-SCALE

High-performance software - Easy gains with simple CUDA

Bernhard Raml

TU Wien
Department of Geodesy and Geoinformation
Research Area Remote Sensing

bernhard.raml@geo.tuwien.ac.at Vienna | April 24,2023

How to write high-performance
software

Habitability comes before speed

- A habitable code base means automated tests!
- Design should focus on maintainability first.
- Measure using profiling tools to make informed decisions about what to optimise.

- Automated performance tests need a stable environment or cover only the most
basic components.

C-SCALE tutorial | High-performance software - Easy gains with simple CUDA 1/12

Measure before you act

me Order [DEftiHeawy| ® sandwich Thread
3:20 6:40 10:00 13:20

3:20 6:40 10:00 13:20

<module>
get_neighbour_info
vstack
vstack

concatenate

16:46

16:48

20:00

20:00

get_neighbour_info
vstack
vstack

concatenate

23:20

23:20

26:40

Figure 1: Repeated concatenation slow down due to mem copies

C-SCALE tutorial | High-performance software - Easy gains with simple CUDA

30:00

30:00

get_neighbour_info

_quer.kdtre _g.re

Quar ge.at
_r.b —
stur _r.b
_P.e stur
_P.e e
_P.e

2/12

Measure before you act

xport [l Import @
26:40 30:00

& Tine order [ESFEIHEaWN @ Sandwich

| 3:20 6:40 10:00 16:40 20:00 23:20

13:20

‘ e — — 220 26000 20500

[z
T e ATETIERD
— b Ottl enec k i e
e < L]

ack
concatenate

stur _r.b

Figure 2: Repeated concatenation slow down due to mem copies

C-SCALE tutorial | High-performance software - Easy gains with simple CUDA 3/12

Measure before you act

- Left Heavy ®

20.00s 40.00s 1 1 2:00 2. 2 3:00 3 3:40
20.00s 40.00s 1:00 1:20 1:40 2:00 2:20 2:40 3:00 3:20 3:40

<module>

get_neighbour_info get_n.r_inf get.nf

_query_resample_kdtree _query_resample_kdzree _quer..kdtre append_row app.ro

query query query query - get_lonlats tat e

_run_jobs RawArray Raw.ray - | _call__

start RawArray Raw.ray - _run_jobs

_Popen start

_Popen _Popen

__init__ _Popen

Figure 3: Memory pre-allocation avoids it making index creation dominant

C-SCALE tutorial | High-performance software - Easy gains with simple CUDA

4112

Streaming to increase throughput

-

(fetch H process H fetch '

Figure 4: Serial process, waiting for data before processing

- =
i
=

(fetch) (fetch) (fetch

-
I

(process) (process
L]

Figure 5: Stream next data-block while processing previous one

C-SCALE tutorial | High-performance software - Easy gains with simple CUDA 5/12

GPU vs CPU

Complex control flow

Tree or graph search, sparse matrix
operations

Serial processes

Embarrassingly parallel tasks
Dense matrix multiplication

High memory throughput

|0, compression

Video processing, 3D rendering, high
resolution remote sensing

General purpose tasks

Ul, web services, OS

Specialized tasks

Ray-tracing, video codecs

C-SCALE tutorial | High-performance software - Easy gains with simple CUDA

The right tool for the right job

CPU

6/12

The right tool for the right job - Examples

Yy

CPU - KD tree query GPU - dB to linear

m E‘EO1 C-SCALE tutorial | High-performance software - Easy gains with simple CUDA 7/12
N

CpU

- Maximise instructions per cycle - Maximise total throughput
- Low latency of single core - Streamed processes to hide higher
- Deeper cache hierarchy latency
- Complex instructions - Shallower cache hierarchy
- Simple instructions

m EEa C-SCALE tutorial | High-performance software - Easy gains with simple CUDA 8/12
N

The right tool for the right job

CPU GPU

Image: Jorge Zapata - unsplash.com Image: pastaproductionline.com

C-SCALE tutorial | High-performance software - Easy gains with simple CUDA 9/12

GPU Architecture - Opening the
magic box

Hardware Layout CPU vs.

Core

L1 Cache

GPU

Core

L1 Cache

Core

L1 Cache

Core

L1 Cache

L2 Cache

L2 Cache

L3 Cache

Image: CUDA Programming Guide

C-SCALE tutorial | High-performance software - Easy gains with simple CUDA

L2 Cache

Memory latency - One cycle one second metaphor

Register: 1s

Shared Memory: 2s - 4s

L1 Cache: 10s - 30s

L2 Cache: 1min

Device RAM: 2min - 10min
Host to device transfer: hours

Streaming Multiprocessors with shared memory

L2 Cache

DRAM

\EEa C-SCALE tutorial | High-performance software - Easy gains with simple CUDA 1/12
wieN]\

Coding Session

Where to go from here?

- Of course, streaming from CPU-RAM to GPU-RAM (VRAM) improves throughput as well

- Avoid stalls from branching using clever distributing across warps or the step
function trick

- Exploit specialised hardware accelerated intrinsic functions, e.g., add-mul
- Use different floating point representations like 16-bit halfs

- Look into additional libraries within the CUDA ecosystem, e.g., cuBLAS, cuSolver...

C-SCALE tutorial | High-performance software - Easy gains with simple CUDA 12/12

Davey Farley’s YouTube Channel Continuous Delivery - Hardware cycles:
https://www.youtube.com/watch?v=0reMvVgn6kRo

Wong, Henry, et al. "Demystifying GPU microarchitecture through microbenchmarking.”
2010 IEEE International Symposium on Performance Analysis of Systems Software

CUDA Programming Guide:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Peng Wang's Fundamental Optimizations in CUDA Presentation:
https://developer.download.nvidia.com/GTC/PDF/1083_Wang.pdf

py-spy: https://github.com/benfred/py-spy
PyResample: https://github.com/pytroll/pyresample

Python Approval Tests:
https://github.com/approvals/ApprovalTests.Python

Special thanks to Raphael Quast for the Latex template

https://www.youtube.com/watch?v=0reMVgn6kRo
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.download.nvidia.com/GTC/PDF/1083_Wang.pdf
https://github.com/benfred/py-spy
https://github.com/pytroll/pyresample
https://github.com/approvals/ApprovalTests.Python

	How to write high-performance software
	GPU vs CPU
	GPU Architecture - Opening the magic box
	Coding Session
	Where to go from here?
	Appendix

