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How to write high-performance
software



Habitability comes before speed

- A habitable code base means automated tests!
- Design should focus on maintainability first.
- Measure using profiling tools to make informed decisions about what to optimise.

- Automated performance tests need a stable environment or cover only the most
basic components.
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Measure before you act
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Figure 1: Repeated concatenation slow down due to mem copies
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Measure before you act
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Figure 2: Repeated concatenation slow down due to mem copies
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Measure before you act
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Figure 3: Memory pre-allocation avoids it making index creation dominant
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Streaming to increase throughput
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Figure 4: Serial process, waiting for data before processing
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Figure 5: Stream next data-block while processing previous one
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GPU vs CPU




Complex control flow

Tree or graph search, sparse matrix
operations

Serial processes

Embarrassingly parallel tasks
Dense matrix multiplication

High memory throughput

|0, compression

Video processing, 3D rendering, high
resolution remote sensing

General purpose tasks

Ul, web services, OS

Specialized tasks

Ray-tracing, video codecs
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The right tool for the right job

CPU
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The right tool for the right job - Examples

Yy

CPU - KD tree query GPU - dB to linear
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CpU

- Maximise instructions per cycle - Maximise total throughput
- Low latency of single core - Streamed processes to hide higher
- Deeper cache hierarchy latency
- Complex instructions - Shallower cache hierarchy
- Simple instructions
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The right tool for the right job

CPU GPU

Image: Jorge Zapata - unsplash.com Image: pastaproductionline.com
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GPU Architecture - Opening the
magic box




Hardware Layout CPU vs.
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Image: CUDA Programming Guide
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Memory latency - One cycle one second metaphor

Register: 1s

Shared Memory: 2s - 4s

L1 Cache: 10s - 30s

L2 Cache: 1min

Device RAM: 2min - 10min
Host to device transfer: hours

Streaming Multiprocessors with shared memory

L2 Cache

DRAM
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Coding Session




Where to go from here?




- Of course, streaming from CPU-RAM to GPU-RAM (VRAM) improves throughput as well

- Avoid stalls from branching using clever distributing across warps or the step
function trick

- Exploit specialised hardware accelerated intrinsic functions, e.g., add-mul
- Use different floating point representations like 16-bit halfs

- Look into additional libraries within the CUDA ecosystem, e.g., cuBLAS, cuSolver...
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Davey Farley’s YouTube Channel Continuous Delivery - Hardware cycles:
https://www.youtube.com/watch?v=0reMvVgn6kRo

Wong, Henry, et al. "Demystifying GPU microarchitecture through microbenchmarking.”
2010 IEEE International Symposium on Performance Analysis of Systems Software

CUDA Programming Guide:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Peng Wang's Fundamental Optimizations in CUDA Presentation:
https://developer.download.nvidia.com/GTC/PDF/1083_Wang.pdf

py-spy: https://github.com/benfred/py-spy
PyResample: https://github.com/pytroll/pyresample

Python Approval Tests:
https://github.com/approvals/ApprovalTests.Python

Special thanks to Raphael Quast for the Latex template
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