X

X

X

MASTER SYSTEM AND NETWORK ENGINEERING

UNIVERSITY OF AMSTERDAM

CYBERCRIME AND FORENSICS PROJECT

Forensic analysis of Chromecast and
Miracast devices

Peter van Bolhuis Cedric Van Bockhaven
peter.vanbolhuis@os3.nl  cedric.vanbockhaven@os3.nl

March, 2014



Chromecast and Miracast Forensics Abstract

Abstract

Google’s Chromecast and Miracast dongles are gadgets that allow
people to stream movies and other media content to an HDMI-capable
device. This paper atempts to find out what forensically interesting
information is stored on both devices and how this information can be
retrieved.

The Chromecast makes it difficult to obtain the NAND memory by
encrypting the contents with a unique per device key. Attempts to
retrieve this memory failed. However, contents of crash logs show
that information with absolute timestamps is logged on the device. It
suggests that information, including wireless access points and MAC
addresses, is logged.

The Miracast dongle researched during this project, the Measy A2W,
runs the EZCast firmware. EZCast contains multiple software vulner-
abilities that may lead to shell access on similar devices. However, the
method used to access the memory and flash on the Measy A2W was
via the UART interface. A memory dump could then be retrieved over
the network using netcat or via UART using hexdump. The memory
of the Miracast contained information including partial images, links of
visited websites, and MAC addresses of nearby and connected devices.



Chromecast and Miracast Forensics Contents

Contents
1 Introduction 3
2 Research 4
2.1 Infrastructure . . . . . . ... ... ... .. . 4
2.2 Chromecast . . . . . . .. .. . L 4
2.2.1 Firmware binary . . . .. . ... ... L0 5)
2.2.2 Attack surfaces . . . .. ... oL 5
2.2.3 Attacking the Chromecast . . . . . . ... ... .... 6
2.2.4 Forensically processing the Chromecast . . . ... .. 7
2.3 Measy A2W Miracast . . . . . . . .. ... ... ... 8
2.3.1 Miracast technology . . . .. ... ... ... ..... 8
2.3.2 Specifications . . . . ... oo 8
2.3.3 Firmware binary . . . .. ... ... ... ... .. 9
2.3.3.1 Bundled software . . ... .. .. ... .. 10
2.3.3.1.1  Software with vulnerabilities . . . . 10
2.3.3.1.2  thttpd CGI binaries . . . .. .. .. 11
234 ADFUmode .. ... ... ... ... ......... 12
235 UART . . ... 13
2.3.6 Reading out the memory . . ... ... ... ..... 13
2.3.6.1 Using netcat over Wi-Fi . . . . . ... .. .. 14
2.3.6.2 Using hexdump over UART . . . . . . .. .. 14
2.3.6.3 Finding MAC addresses . . . . . ... .. .. 14
2.3.6.4 Carving links from the memory . .. .. .. 15
2.3.6.5  Carving images from the memory . . .. .. 15
2.3.7 Imaging the NAND . . ... ... ... ... ..... 16
2.3.7.1 Filesofinterest . . . . . ... ... ... ... 17
2.3.8 Forensically processing the Measy A2W . . . . . . .. 17
3 Conclusion 19
3.1 Chromecast conclusions . . . . ... .. ... ... ... .. 19
3.2 Miracast conclusions . . . . . .. ... L Lo oL 19
3.3 Futureresearch . . . . ... ... ... ... ... ... ..., 20
4 References 21
A GitHub 22
B Chromecast logs 22
A Kernel/dmesglog . . . . ... ... 22
B Systemlog . ... ... ... 23
C Mainlog . . . . . . . o 23



Chromecast and Miracast Forensics 1 Introduction

1 Introduction

HDMI dongles enable everyone to watch streaming content on their tele-
vision. The Google Chromecast and the Measy Miracast are two of these
devices. From a forensic point of view, these devices are interesting, given
the fact that they are likely to contain information about the watched videos
(e.g. cached fragments of media).

At the moment of writing, there is no public information about the forensic
properties of these devices. This is why this research project sets out to find
out what information is stored on the Google Chromecast and the Measy
A2W Miracast. The research question is defined as:

What data can be extracted from Chromecast/Miracast devices that can be
used in forensic cases?

To answer the research question, the following subquestions have been
defined:

e How do both devices protect against access to the filesystem? In which
cases is access to the filesystem possible?

e What data can be gathered in a live environment without modifying
the device in any way?

e What data can be acquired with access to the NAND memory of the
device?

e Is access to the RAM possible?

The report is divided in the explanation of the setup we used, and our
findings for both the Chromecast and Miracast.



Chromecast and Miracast Forensics 2 Research

2 Research

The research comprises setting up the environment and testing both the
Chomecast and Miracast devices. This section will describe the process of
research on both of them, including technical details of the devices.

2.1 Infrastructure

Before starting any tests on either device, a man-in-the-middle (MITM)
infrastructure was set up. Using this infrastructure, all network communi-
cations between the HDMI-device and the internet could be captured.

Using Kali Linux, a wireless access point was set up. The access point
distributed IP addresses to all connected devices using DHCP and logged
the traffic.

Figure 1: Schematic view of the network layout.

2.2 Chromecast

The Google Chromecast is a HDMI-dongle by Google. It enables users to
stream web-content (e.g. YouTube, Netflix) to their television. During ini-
tial setup, the Chromecast sets up its own wireless network, Chromecast??777?,
where the question marks are replaced with decimal numbers. The user can
connect to this network with the Chromecast app. The Chromecast can
then be given a name and will be configured to connect to a wireless network.

After this setup, all devices that are on the same network can cast to the
Chromecast without any further authentication.

Table 1 Chromecast hardware specifications

Model H2G2-42

CPU Marvell 88DE3005 (ARMv7)

Flash Micron MT29F16GO8MAA 16 Gb (2 GB) NAND
RAM Micron 3FE77DIPXV 512MB

Network | Azure Wave AW-NH387 802.11 b/g/n




Chromecast and Miracast Forensics 2.2  Chromecast

2.2.1 Firmware binary

During the initial setup, the Chromecast was connected to the network as
described in section 2.1. It proceeded to download an update', after which
the device was ready to be used.

The downloaded update was retrieved and extracted. Closer inspection
revealed that it was a squashfs filesystem. Mounting and inspecting this
filesystem shows that most communications to the outside are done via a
secured SSL/TLS connection. However, some binaries used HTTP for their
communication, most notable the program crash_uploader.

2.2.2 Attack surfaces

When opened, the Chromecast shows shielded chips as can be seen in Fig-
ure 2. Underneath this shielding are pins that can be used for a UART
connection to the device. This UART connection only shows output of the
boot process [1].

Figure 2: The inside of the Chromecast device, shielded

The device uses a 2GB flash chip for caching of the streaming videos. This
chip will contain the most interesting information from a forensics point of
view. However, this chip is encrypted with a unique per device key, as can
be seen in the console output [2, 3].

"http:/ /r9---sn-5hneznT7s.c.pack.google.com/edgedl/googletv-eureka/stable-channel /
ota.16041.stable-channel.eureka-b3.4b2d484{74cc12a8ed827db43f7d76bd3a983d4a.zip


http://r9---sn-5hnezn7s.c.pack.google.com/edgedl/googletv-eureka/stable-channel/ota.16041.stable-channel.eureka-b3.4b2d484f74cc12a8ed827db43f7d76bd3a983d4a.zip
http://r9---sn-5hnezn7s.c.pack.google.com/edgedl/googletv-eureka/stable-channel/ota.16041.stable-channel.eureka-b3.4b2d484f74cc12a8ed827db43f7d76bd3a983d4a.zip

Chromecast and Miracast Forensics 2.2  Chromecast

Scanning the device with nmap shows that it has two open ports. On port
8008 runs a webserver that controls the applications on the Chromecast.
The apps can be controlled via /apps/<appname>. The webserver is also
used to set up the device. Information about the device can be retrieved via

/setup/.

Table 2 Scan results
Port ‘ Service ‘ Description

8008/tcp | http Webserver that enables remote control of the apps
on Chromecast. It can also give additional
information that is used for setting up the device.
8009/tcp | ajpl3 Used for the casts protocol [4].

2.2.3 Attacking the Chromecast

Because the hardware of the Chromecast was shielded and the memory chip
encrypted, it was decided to attempt to crash the Chromecast via software
attacks.

The Chromecast was connected to the network that sniffed all traffic. Next,
the YouTube application was started, streaming a video. While the video
was playing, a full service scan was performed with nmap. This service scan
managed to crash the YouTube application, resulting in a crash report being
sent. After the crash, the Chromecast returned to the default screen.

Analyzing the intercepted network traffic showed content being sent to a
Google server over HTTP. This traffic contained a gzipped file which in
turn contained the following;:

e General information about the system:
— Kernel version
— Uptime
— Build
Memory info
CPU info
Process information (top)
Running processes and threads
Maps of all processes
Log files
— dmesg
— system
— main



Chromecast and Miracast Forensics 2.2  Chromecast

The dmesg log file contained information about the booting of the device.
All timestamps in this file were relative to the start of the boot. It also
shows the layout of the NAND chip, which may be interesting if the NAND
can be acquired and decrypted:

<5>[ 0.280258] 0x000000000000-0x000000100000 : "blockO"
<5>[ 0.281386] 0x000000100000-0x000000900000 : "bootloader"
<5>[ 0.282432] 0x000000900000-0x000001900000 : "kernel"
<5>[ 0.283477] 0x000001900000-0x00001a900000 : "rootfs"
<5>[ 0.284496] 0x00001a900000-0x00002d500000 : "cache"

<5>[ 0.285522] 0x00002d500000-0x000075000000 : "userdata"
<5>[ 0.286623] 0x000075000000-0x000078000000 : "recovery"
<5>[ 0.287650] 0x000078000000-0x00007e000000 : "backupsys"
<5>[ 0.288665] 0x00007e000000-0x00007e800000 : "fts"

<5>[ 0.289688] 0x00007e800000-0x00007£800000 : "factory_store"
<5>[ 0.291108] 0x00007£800000-0x000080000000 : "bbt"

Both the system and main logs contained absolute timestamps. However,
the main log only contained information about the last few minutes. Infor-
mation in this log is about starting and stopping videos and skipping to
certain offsets in videos.

The system log contained information about the system being enabled, dat-
ing back two weeks. However, information about wireless access points, and
other identifying information was not included in the sent reports. The com-
mands used to generate the logs were included in the logs. These indicate
that information about wireless networks and MAC addresses is on the flash
chip (appendix B).

2.2.4 Forensically processing the Chromecast

The following steps are advised to obtain logs from a Chromecast device.
Note that this method will alter some of the memory and is therefore not
forensically sound.

1. Leave the Chromecast powered on. Also leave the television that the
Chromecast is plugged into on.

2. Perform a man-in-the-middle on the Chromecast, for instance with
ARP poisoning or a network tap. Write all captured data to a file.
This will make sure that when a report is sent, it will be captured.

3. Crash the Chromecast. If YouTube is running, this may be done with
an nmap service scan. At the moment of writing, no other methods
are known.

4. The log file can be extracted from the captured network traffic.



Chromecast and Miracast Forensics 2.3 Measy A2W Miracast

2.3 Measy A2W Miracast

The Measy A2W Miracast allows to stream media content like music, video,
and photos. People can stream these from their mobile devices or desktop
computer, or choose to stream their screen live on TV. It’s also possible to
stream YouTube videos directly to the Measy A2W. There’s support for the
EZCast, DLNA, EZMirror, and EZAir protocols.

2.3.1 Miracast technology

Miracast is a peer-to-peer wireless screencasting standard formed via Wi-Fi
Direct connections in a manner similar to Bluetooth. It enables wireless
delivery of audio and video to or from desktops, tablets, mobile phones, and
other devices. [5]

2.3.2 Specifications

The investigated Miracast device in this research, is the Measy A2W Mira-
cast. Many of the techniques we will explain in this section are applicable
to other Miracast devices as well, i.e. those with similar hardware and those
that are running the same firmware.

Table 3 Measy A2W hardware specifications

Model Measy A2W Miracast

Chipset Actions-Micro AMS8251

Flash Zentel ABUIGA31ATS-BC 1Gb SLC NAND Flash
RAM 128M DDRS3

Network | RTL8188EUS IEEE 802.11 b/g/n

Protocols | DLNA/Airplay/EZcast/Miracast

When using the Measy A2W dongle for the first time, the user connects to a

represent hexadecimal characters taken from the MAC address. The network
is protected with WPA2 and the default password 12345678. The current
password is displayed at all times on the TV screen. Furthermore, the
Measy A2W contains two wireless interfaces. One of the interfaces is used
to connect to the wireless home network, and the other acts a host access
point which users can connect to. The access point subnet, 192.168.203.0/24
is routed to the other network, so it can provide internet access.



Chromecast and Miracast Forensics 2.3 Measy A2W Miracast

2.3.3 Firmware binary

The Miracast was approached in the same way as the Chromecast: a man-
in-the-middle node was constructed that logged all the traffic going to and
from the device. When the device was first turned on, it downloaded an
update from the iezvu.com domain®?. The binary was then investigated to
find possible weaknesses that would grant us shell access on the device.

The binary contains a header ActionsFirmware, a version number v1.17, a
checksum, and the offsets of the different firmware parts. An overview of
these offsets is given in table 4. These offsets are very likely to change in
future firmware versions, but may give an idea of the contents that are to
be expected on the flash. The firmware details and format can be extracted
using a provided utility, see appendix A.

Table 4 Firmware section offsets

Section Start address | Length

ADECadfus 0x00000400 0x00002000
ADFUadfus 0x00002400 0x00002608
HWSChwsc 0x00004c00 0x000027a0
F648fwsc 0x00007400 0x00017570
F648mbrec 0x0001ea00 0x00001800
F648brec 0x00020200 0x00020000
RECOVER BIN 0x00042200 0x00007000
WELCOME.BIN 0x00049200 0x000ea800
LCM.BIN 0x00133a00 0x00000200
BACKLIGHT.BIN | 0x00133c00 0x00000200
GAMMA . .BIN 0x00133e00 0x00000600
GPIO.BIN 0x00134400 0x00000200
SYSCFG.SYS 0x00134600 0x00331200
INITRD.DAT 0x00465800 0x00200000
BOOTARG.TXT 0x00665800 0x00000200
rootfs 0x00665a00 0x02d00000
userl 0x03365a00 0x0027d000
vram 0x035e2a00 0x00005a00

Apart from the iezvu.com domain, ActionsFirmware was a second clue that
the actual firmware was being developed by a different company than Measy.
The iezvu.com domain is hosting the EZCast firmware, which is used on a
variety of devices. Their WHOIS reveals that the domain is in control of

*http://www.iezvu.com/upgrade/ezcast /ezcast.bin


http://www.iezvu.com/upgrade/ezcast/ezcast.bin

Chromecast and Miracast Forensics 2.3 Measy A2W Miracast

Actions Microelectronics Co., Ltd.. This is the same company that devel-
oped the on-board AM8251 chip.

The binary contains several file systems:

e INITRD.DAT: an initial RAM disk (ext2, recovery) which then loads
the rootfs.

e rootfs: the root file system (ext2) on the NAND flash, which the
EZCast binaries run from.

e userl: an ext2 file system that holds user settings and can persist
between upgrades.

e vram: a vfat file system that holds user and device specific settings.

INITRD.DAT and rootfs both contain a Linux kernel of which the sources
have not been published. This is in clear violation of the GPL.

2.3.3.1 Bundled software

The EZCast firmware runs BusyBox 1.15.1, and comes bundled with BIND
9.9.2-P1, thttpd/2.25b, and hostapd v0.6.9. Applications that take care of
the screen display, and the thttpd CGI web server binaries are proprietary.

2.3.3.1.1 Software with vulnerabilities

e thttpd/2.25b: a directory traversal vulnerability [6], which can only
be reproduced when starting thttpd from the system root, like thttpd
-d /. In this case, thttpd is started from /root/html, which makes
this ”vulnerability” irrelevant.

e udhcpc/1.15.1: the DHCP client (udhcpc) in BusyBox before 1.20.0
allows remote DHCP servers to execute arbitrary commands via shell
metacharacters in a set of DHCP options (CVE-2011-2716 [7]). This
CVE is misleading, as it’s actually the dhclient script that is present
on many Linux systems that carelessly handles data that is passed on
from udhcpc. The dhclient script is not used in the EZCast firmware.
Consequently, this vulnerability can not be used to gain shell access
either.

10



Chromecast and Miracast Forensics 2.3 Measy A2W Miracast

2.3.3.1.2 thttpd CGI binaries
As found on the rootfs, in /root/html/cgi-bin/:

apply.cgi

A submit handler that contains functionality to change device set-
tings such as the access point name and password. This function-
ality isn’t actually hooked up for the Measy A2W. Disassembling
the code leads to believe that it might work for different EZCast
devices, since a few conditional statements were found that look at
the currently loaded system modules in /sys/module/8192cu and
/sys/module/rtnet3070ap.

Applying the configuration for these devices is done by calling a shell
script with the form input data as arguments. No input sanitization is
being done is done on these arguments. Injecting commands into the
access point name or password using shell metacharacters could then
lead to shell access for these devices.

conference_control.cgi
Unknown, but not working or unfinished. Contains a ”user name” and
”display location” field, possibly to broadcast the current screen to a
specific IP in the future.

get_my_mac.cgi
Returns the MAC address of the visitor, by resolving the REMOTE_ADDR
environment variable supplied to the CGI binary with arp.

info.cgi
Returns Wi-Fi settings queried from the configuration files
/mnt/userl/softap/RT2870AP.dat and
/mnt/userl/softap/rtl hostapd_01.conf.

myall.cgi
Returns system information: current IP and gateway, populated from
/proc/net/route.

upload.cgi
Allows to upload files with arbitrary names, which will be stored in
the /tmp directory. Interestingly enough, uploading a file with the
name helpview.jpg or applnfo.json will cause a command to be sent to
the socket /tmp/domainpath, of which the use is currently unclear.

Looking into the software that is running on the EZCast already gave us
some insights on the workings. However, no shell access to the device was
obtained yet, which required looking at other angles.

11



Chromecast and Miracast Forensics 2.3 Measy A2W Miracast

2.3.4 ADFU mode

ADFU mode stands for Actions Device Firmware Update and is a USB mode
in which Actions-Micro devices can be flashed with new firmware. The USB

driver has been made publicly available by the Actions-Micro team?.

The Tronsmart T1000, a similar Miracast device, has two pins which can be
shorted to switch to ADFU mode [8]. The Measy A2W was successfully put
into ADFU mode by shorting pins TP5 and TP6. These can be found at
the height of the red mark in figure 3. The Measy A2W will identify using
vendor ID 1DE1 and product ID 1205.

Figure 3: The Measy A2W with relevant pin markings.

Flashing new firmware would of course be disastrous for the purpose of
performing a forensic analysis. However, it is not unthinkable that reading
the flash would be possible using the same protocol just like writing the flash
is made possible. This is supported by the schematics of the ADFU mode

3https://www.iezvu.com/init/ADFU Driver.zip

12


https://www.iezvu.com/init/ADFU_Driver.zip

Chromecast and Miracast Forensics 2.3 Measy A2W Miracast

as shown in figure 4, which show that the flash read driver is connected to
the ADFU driver. Reverse engineering the USB protocol is an interesting
possibility, but falls out of the scope of this research.

.-q adfu taskn
Bl el ."I adfu taskd
[+] [+] _]
= = . eclfu tagks
sl T .
Il I e 1
i B adfu task 2
g g.
- =.'I ctfy task 1
adfu taskn |7
- 'y - r'y R
k 4 k J s a
n
adfu boot
PC adfu Sever = 3 1 4 ey sarver - - — knches
A F 9 F 3 } F Y F 3 ¥
Y Y f Y Y Y Y
ueh chhver for adty o | elfu chiver ﬂ”:w":” brec

Figure 4: Schematics of the ADFU mode.*

2.3.5 UART

It was reported that other hardware by Actions-Micro (a digital picture
frame) had a UART interface [9]. After scanning the pins on the Miracast
device, this turned out to be the case as well for the Measy A2W. The
Measy A2W prints debug output over UART, while also providing shell
access. When the device is booted, it will print the startup output, which
made it easier to detect the correct pins. In figure 3, the RX pin is marked
in purple, while the TX pin is marked in gray. The other pins are VCC
(square) and GND. The correct baud rate is 115200. This interface provides
an unprotected root shell.

2.3.6 Reading out the memory

The EZCast firmware ships with a curl binary which allows to post files back
to a server that is reachable over Wi-Fi. However, during tests, it loaded the
file we wanted to obtain completely in memory. This is an unwanted effect as
it overwrites the same memory that we would like to read out. Transferring
the 128MB of memory fails, as it will try to allocate more memory than is
actually available.

“Found at http://wendang.baidu.com/view/e5aa5b5cbe23482fbddadc7d. html.

13


http://wendang.baidu.com/view/e5aa5b5cbe23482fb4da4c7d.html

Chromecast and Miracast Forensics 2.3 Measy A2W Miracast

2.3.6.1 Using netcat over Wi-Fi

On the host side, a netcat listener can be set up that receives incom-
ing files/dumps. A cross-compiled netcat binary can be downloaded using
curl that is packed with the firmware. This binary can be acquired from a
locally configured HTTP server.

Host side # netcat -1 0.0.0.0 5353 > memory.dmp
Miracast # dd if=/dev/mem | ./netcat 192.168.203.66 5353

Precompiled mipsel binaries for a few applications like netcat are provided,
see appendix A.

2.3.6.2 Using hexdump over UART

A different solution is to use the hd (hexdump) utility which is already
part of the firmware. It allows to dump the memory using the command dd
if=/dev/mem | hd, which can then be logged over UART. While the mem-
ory is being dumped, debug output will also still be sent over the link. This
means that after transferring the memory, the debug output will have to be
filtered out from the dump. Converting the obtained hex output back to
binary can be done using xxd -r | dd conv=swab. Since hexdump differs
from xxd in how bytes are grouped, the endianness has to be swapped with
dd. The impact of this technique on the memory is lower, since no external
binaries have to be downloaded onto the device.

2.3.6.3 Finding MAC addresses

The Linux kernel leaves traces of MAC addresses in the memory, as docu-
mented by Minnaard [10]. A few regular expressions are proposed to carve
these addresses out of memory dumps. Since user processes may generate
the same structure in memory that conforms to the regular expressions
below, it is desirable to only scan the relevant kernel address space. A
tool is provided to carve these addresses directly from memory dumps, see
appendix A.

Beacon frames
Beacon frames are sent out by access points on regular intervals to
announce their presence. They contain the MAC address of the sender,
and can be found in the memory using the following regex:

\x80\x00\x00\x00(7:\xf£){6}(.{6})\1

14



Chromecast and Miracast Forensics 2.3 Measy A2W Miracast

Probe requests
Probe requests are sent out by Wi-Fi devices e.g. to determine which
access points are in range. They contain the MAC address of the
sender, and can be found in the memory using the following regex:

\x40(?:\x00 |\ x10)\x00\x00 (?: \x££) {6} (. {6}) (7:\x££) {6}

2.3.6.4 Carving links from the memory

The controller application (on Android or desktop) allows to browse the
internet and stream the view to the projector. It’s therefore interesting to
see whether links can be recovered from the memory after these applications
have been used. It’s possible to carve links from the memory using a simple
regular expression: /https?://["\s/$.7#].["\s1*/iS

During our tests we were able to find links and cookies back in the memory
long after visiting them, even after browsing other websites or streaming
videos. Finding specific URLs in memory doesn’t necessarily mean that
they were actually visited as well. They may have caused to appear in the
memory in a different way (e.g. by appearing in the content of a web page).
It’s desirable to remove parts of the memory from the analysis in which the
URLs should not appear, such as the kernel address space.

2.3.6.5 Carving images from the memory

The controller application allows to stream local photos and videos to
the Measy A2W. After streaming photos to the Miracast device, closing the
photo control application, and subsequently dumping the memory, we were
only able to fetch (parts of) the last displayed image. The obtained images
were in JPEG format or possibly M-JPEG.

Both the phone view (the images were casted from an Android phone), as
the HDMI view (the projector view), were found in memory. In figure 5, an
example is shown of what could be recuperated from a sample image. The
phone view gives an idea of the content that was displayed, but the HDMI
view only held a single stripe of yellow from the original image.

15



Chromecast and Miracast Forensics 2.3 Measy A2W Miracast

Original Phone HDMI

Figure 5: Memory-carved images as compared to their original counterpart.

The images were carved using the scalpel tool that looks for JPEG markers.
Other tools may yield better results, or reveal multiple frames. At this time,
we were only capable of recovering limited parts of the last shown image.

The same test was attempted for streaming videos, but led to no recoverable
fragments (either video or picture frames).

2.3.7 Imaging the NAND

To image the NAND, a programmer or toolkit like NFI’s memory toolkit
[11] should be used with a write block. If these aren’t available, a poor
man’s solution like the following can be used. It will not prevent writes, but
it shouldn’t touch any relevant files either. For the cross-compiled netcat
and zip binaries, see appendix A.

Host side # netcat -1 0.0.0.0 5353 > backup.zip

Miracast # find / \( -path /proc -o -path /sys -o -path /dev \)
-prune -o -type f | /tmp/zip -@ -0 - |
/tmp/netcat 192.168.203.20 5353

Timestamps of files that were extracted from the flash cannot be trusted:

they are all either set to the compile time of the firmware binary, the Unix
epoch (Jan 1, 1970), or the Microsoft DOS epoch (Jan 1, 1980).

16



Chromecast and Miracast Forensics 2.3 Measy A2W Miracast

2.3.7.1 Files of interest

The following files can be recovered from the NAND flash, and are likely to
contain information that may be of interest:

/mnt /userl/dongleInfo.json
A JSON encoded file that contains the MAC address of the device,
firmware version, SSID of the device and the home network, the lan-
guage, the time that the device has been in use (subdivided into
EZCast, DLNA, EZMirror, and EZAir sections), and if a password
has been set.

/mnt /userl /softap/rtl_hostapd_01.conf
Contains the current WPA2 password of the Miracast device, which is
also shown on the projector screen at all times.

/mnt /vram/edidinfo.bin
Information about the make and model of the projector device the
Measy A2W is/was connected to.

/mnt /vram/wifi /latest AP.conf
Holds a reference to a file located in the same directory that contains
the current SSID and password of the home network.

The system log is not saved to /var/log or /tmp, and can only be found
in-memory for as long as the device is powered on.

2.3.8 Forensically processing the Measy A2W

1. If MAC addresses need to be collected from the Measy A2W, make
sure to disable Wi-Fi functionality on personal devices before arriving
on a scene. Leaving Wi-Fi turned on will send out probe requests,
which will overwrite any MAC addresses that are in the circular array
of probe requests.

2. Leave the Measy A2W powered on. If the Measy A2W uses a USB port
of the television as a power source, make sure to leave the television on

as well, as it might not supply power to the USB devices when turned
off.

3. Carry out any grepping for data that is of most interest (e.g. finding

MAC addresses or links). Any action take from this step on (including
grep) will already overwrite memory.

17



Chromecast and Miracast Forensics 2.3 Measy A2W Miracast

4. Use an appropriate technique from section 2.3.6 to obtain the memory
contents of the device.

5. The NAND can now be extracted, as explained in section 2.3.7. Other
tools, like the NFI's memory toolkit [11] can be used as well, as long
as the device isn’t rebooted anymore, which will cause temporary files
to be removed.

18



Chromecast and Miracast Forensics 3 Conclusion

3 Conclusion

This research focused on finding out what information is stored in the flash
and RAM memory of the Google Chromecast and the Measy A2W Miracast,
and how these contents could be extracted in a forensically sound way.

3.1 Chromecast conclusions

When a Chromecast service crashes, crash reports will be sent over an unen-
crypted channel. These crash reports may contain valuable information such
as the uptime of the system and scrambled log files. During our tests, these
crashes could be triggered using a simple nmap scan. The logs contain infor-
mation about the wireless networks that have been connected to and MAC
addresses of devices that controlled the Chromecast. It also contains infor-
mation about when the device was used with absolute timestamps. Some

information was scrambled, but should be available in its original form on
the NAND flash.

The Chromecast protects against access of the file system by encrypting the
NAND flash chip. Access to the file system was not found possible in this
research. If the flash chip is removed from the Chromecast, and the per
device key retrieved, access to the chip should be possible. However, such
methods were not available to the researchers. Provided the NAND has
been decrypted, access to the Chromecasts NAND will contain log files and
cache files. RAM access on the Chromecast was not possible during this
research.

3.2 Miracast conclusions

The A2W Miracast has a debug interface that provides a root shell via
UART. No changes other than removing the casing are required. This will
enable full access to the device, including access to the flash and RAM
memory.

The flash memory of the A2W Miracast contains the name and password
of the wireless network it is connected to and the make and model of the
projector the A2W is connected to. Log files are not saved persistently on
the A2W Miracast and can therefore only be obtained from RAM. If the
NAND chip from the A2W Miracast would be desoldered from the board, it

19



Chromecast and Miracast Forensics 3.3 Future research

should be easy to read the information stored on this chip using a memory
toolkit.

The RAM of the A2W Miracast contained MAC addresses of connected
devices and nearby devices. Furthermore, the memory contained informa-
tion about visited links and (partial) images and videos. The images are
saved in memory in two ways, one for the phone view of the image and one
for the HDMI output.

Software attacks should also be possible on similar devices due to vulnerable

software that is bundled with the EZCast firmware.

3.3 Future research

The flash memory of the Chromecast was encrypted with a per device key.
Research should be done into retrieving and decrypting the flash. Given
access to the device, it would be interesting to find out which other relevant
data may be stored on the flash memory.

20



Chromecast and Miracast Forensics References

4

1]

[9]

[10]

[11]

References

GTVHacker. Google chromecast. Website, 2013. http://wiki.gtvhacker.
com/index.php/Google_Chromecast.

GTVHacker. Google chromecast console log. Website, 2013. http:
//wiki.gtvhacker.com/index.php/Google_Chromecast_Console_Out.

DeadlyFoez. XDA - [Q] Read/Write the NAND of the Chromecast?
http://forum.xda-developers.com/showthread.php?t=2602402.

Justin Loutsenhizer. = Google chromecast documentation.  Web-
site,  2014. https://github.com/jloutsenhizer /CR-Cast /wiki/
Chromecast-Implementation-Documentation- WIP.

The Free Encyclopedia Wikipedia. Miracast, 2014. http://en.wikipedia.
org/w/index.phptitle=Miracast&oldid=608335427.

Seclists.org. [Full-disclosure| Thttpd 2.25b Directory Traversal Vulner-
ablity. http://seclists.org/oss-sec/2013/q2/385.

CVE Details. CVE-2011-2716 : The DHCP client (udhcpc) in Busy-
Box before 1.20.0 allows remote DHCP servers to execute arbitrary
commands via shell metacharacters, 2011. http://www.cvedetails.com/
cve/CVE-2011-2716/.

China Gadgets Reviews. How to manually upgrade firmware for Tron-
smart T1000, 2013. http://chinagadgetsreviews.blogspot.nl/2014/03/
how-to-manually-upgrade-firmware-for.html.

Matt Goring. Hack a BF801 Digital Photo Frame, 2012. http://matty.
99k.org/BF801-photo-frame/.

Wicher Minnaard. Out of sight, but not out of mind: Traces of nearby
devices’ wireless transmissions in volatile memory. Digital Investigation,
11:5104-S111, 2014.

Nederlands Forensisch Instituut. Memory Toolkit. https:
/ /www.forensicinstitute.nl/products_and_services/forensic_products/
memory _toolkit/.

21


http://wiki.gtvhacker.com/index.php/Google_Chromecast
http://wiki.gtvhacker.com/index.php/Google_Chromecast
http://wiki.gtvhacker.com/index.php/Google_Chromecast_Console_Out
http://wiki.gtvhacker.com/index.php/Google_Chromecast_Console_Out
http://forum.xda-developers.com/showthread.php?t=2602402
https://github.com/jloutsenhizer/CR-Cast/wiki/Chromecast-Implementation-Documentation-WIP
https://github.com/jloutsenhizer/CR-Cast/wiki/Chromecast-Implementation-Documentation-WIP
http://en.wikipedia.org/w/index.phptitle=Miracast&oldid=608335427
http://en.wikipedia.org/w/index.phptitle=Miracast&oldid=608335427
http://seclists.org/oss-sec/2013/q2/385
http://www.cvedetails.com/cve/CVE-2011-2716/
http://www.cvedetails.com/cve/CVE-2011-2716/
http://chinagadgetsreviews.blogspot.nl/2014/03/how-to-manually-upgrade-firmware-for.html
http://chinagadgetsreviews.blogspot.nl/2014/03/how-to-manually-upgrade-firmware-for.html
http://matty.99k.org/BF801-photo-frame/
http://matty.99k.org/BF801-photo-frame/
https://www.forensicinstitute.nl/products_and_services/forensic_products/memory_toolkit/
https://www.forensicinstitute.nl/products_and_services/forensic_products/memory_toolkit/
https://www.forensicinstitute.nl/products_and_services/forensic_products/memory_toolkit/

Chromecast and Miracast Forensics Appendix

Appendix

A GitHub

Some relevant tools for the Miracast were released on GitHub at http://
github.com/c3c/miracast: a python script to carve MAC addresses from
memory, a python script to receive files from a curl POST request, a C
tool that extracts Actions-Micro firmware details, and cross-compiled mipsel
binaries: netcat, zip, gdb.

B Chromecast logs

A Kernel/dmesg log

—————— KERNEL LOG (sh -c dmesg | egrep -iv ’ ssid\|\([0-9a-f] [0-9a-f]:
\)\{56\}[0-9a-f] [0-9a-f]’) ------

<6>[ 0.000000] Booting Linux on physical CPU 0x0

<6>[ 0.000000] Initializing cgroup subsys cpu

<5>[ 0.000000] Linux version 3.8.13 (mosaic-role@eurekabuild6.mtv.
corp.google.com) (gcc version 4.5.3 (gtv 20120928-afe6864) ) #3

PREEMPT Mon Mar 31 21:54:56 PDT 2014

<4>[ 0.000000] CPU: ARMv7 Processor [413fc090] revision O (ARMv7),
cr=10c5387d

<4>[ 0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing
instruction cache

<6>[ 0.000000] Machine: MV88DE3108, model: MARVELL BG2CD Dongle board
based on BERLIN2CD

<4>[ 0.000000] mv88de3100_fixup

<4>[ 0.000000] cmdline = c044bf8c

<6>[ 0.000000] Add randomness with 128 bytes

<4>[ 0.000000] Memory policy: ECC disabled, Data cache writeback
<7>[ 0.000000] On node O totalpages: 78336

<7>[ 0.000000] free_area_init_node: node 0, pgdat c0483ad4, node_mem_
map c06£6000

<7>[ 0.000000] Normal zone: 612 pages used for memmap

<7>[ 0.000000] Normal zone: O pages reserved

<7>[ 0.000000] Normal zone: 77724 pages, LIFO batch:15

<> 0.000000] pcpu-alloc: sO r0 d32768 u32768 alloc=1x32768

22


http://github.com/c3c/miracast
http://github.com/c3c/miracast

Chromecast and Miracast Forensics Appendix

B System log

—————— SYSTEM LOG (sh -c logcat -v threadtime -d *:v | egrep -iv
’VERBOSE[123] : \ | XMLHttpRequest\ | ssid=\|friendlyname\|serial_num=\|\ ([0
-9a-f] [0-9a-f]:\)\{56\} [0-9a-f] [0-9a-f]’) ------

————————— beginning of /dev/log/system

01-01 01:00:04.539 640 640 I boot_animation: set to 1080p

01-01 01:00:04.539 640 640 E boot_animation: MV_PE_VOutHDMIGet
SinkCaps failed: error 82000005

01-01 01:00:04.599 681 681 I Panel_main: Panel service start
01-01 01:00:04.599 681 681 I PWM : file /dev/pwmchO
01-01 01:00:04.599 681 681 I PWM : file /dev/puwmchl
01-01 01:00:04.599 681 681 I Panel : start service

01-01 01:00:04.609 681 682 I Panel : ThreadStart

01-01 01:00:04.619 681 681 I Panel : start service

01-01 01:00:04.629 681 686 I Panel : ThreadStart

01-01 01:00:04.629 681 686 I Button : Run Service

01-01 01:00:04.979 679 679 I wpa_supplicant: Successfully

initialized wpa_supplicant

01-01 01:00:04.979 679 679 I wpa_supplicant: rfkill: Cannot open
RFKILL control device

01-01 01:00:05.919 691 691 I NetMgr : Net_Mgr starting

01-01 01:00:05.959 691 691 I HotspotManager: success get Mac
address from cert

01-01 01:00:05.959 691 691 E WifiUtil: scan failed, response:
FAIL-BUSY

01-01 01:00:05.999 703 703 I extract_custk: /data/chrome/custk.bin
already exists

01-01 01:00:06.039 705 705 D dhcpcd : version 5.2.10 starting
04-26 22:04:58.529 691 709 I WifiMonitor: Start monitor thread
04-26 22:04:58.539 691 709 E WifiUtil: scan failed, response:
FAIL-BUSY

04-26 22:05:00.399 705 705 D dhcpcd : no interfaces have a carrier

H

C Main log

Note that this log is a part of the System log output, appendix B.

————————— beginning of /dev/log/main
05-11 13:38:35.461 1697 1697 I eureka_shell: HTMLMediaElement: :currentTime

23



Chromecast and Miracast Forensics Appendix

- seeking, returning 2850.000000

05-11 13:38:35.461 1697 1697 I eureka_shell:
05-11 13:38:35.461 1697 1697 I eureka_shell:
05-11 13:38:35.461 1697 1697 I eureka_shell:
- seeking, returning 2850.000000

05-11 13:38:35.461 1697 1697 I eureka_shell:
CachedTime

05-11 13:38:35.461 1697 1697 I eureka_shell:
- seeking, returning 2850.000000

HTMLMediaElement:
HTMLMediaElement:
HTMLMediaElement:

:play O

HTMLMediaElement:

HTMLMediaElement:

:playInternal
:currentTime

:invalidate

:currentTime

05-11 13:38:35.461 1697
State - shouldBePlaying =
05-11 13:38:35.461 1697

1697 I eureka_shell:
true, playerPaused = true

1697 I eureka_shell: HTMLMediaElement:

HTMLMediaElement:

:updatePlay

:invalidate

CachedTime

05-11 13:38:35.461 1697 1697 I eureka_shell: [1699:1715:INFO:wifi_util
.cc(428)] Wifi metrics: playing=1, signal=60, noise=83, snr=23

05-11 13:38:35.461 1697 1697 I eureka_shell: [1699:1699:ERROR:power_
save_blocker_eureka.cc(20)] Not implemented reached in content::Power
SaveBlockerImpl: :PowerSaveBlockerImpl (content: :PowerSaveBlocker: :Power
SaveBlockerType, const std::string&)

05-11 13:38:35.471 1697 1697 I eureka_shell: [12:17:INF0:chunk_demuxer
.cc(820)] Seek(2850)

05-11 13:38:35.471 1697 1697 I eureka_shell: [12:17:INF0:chunk_demuxer
.cc(583)] Seek

05-11 13:38:35.471 1697 1697 I eureka_shell: [12:17:INF0:chunk_demuxer
.cc(583)] Seek

05-11 13:38:35.531 1697 1697 I eureka_shell: [12] 16634 ms:

Scavenge 12.5 (29.9) -> 11.1 (30.9) MB, 1 / 19.8 ms (+ 156.4 ms in 21
steps since last GC) [Runtime::PerformGC].

05-11 13:38:35.581 1697 1697 I eureka_shell: [1699:1699:INFO:CONSOLE(O
)] "The page at ’https://XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX XXX XXX XXX XXX XXX XXX XX X XXX X X X X XXX X X X XXX XX XX XXX XXX XXXXX was
loaded over HTTPS, but ran insecure content from ’http://XXXXXXXXXXXXXXX
XXXXX XXX XXX XXX X XXX XXX XXX XXX X XXX X X X K XXX X X X XXX X X X XXX X X X X XXX XX X XXX X X XXX XXXX
0.9.9.0.0.0.0.0.9.0.0.0.0.0.9.9.0.0.0.0.0.9.0.0.0.0.0.9.9.0.0.0.0.0.9.0.0.0.0.0.90.9.0.0.0.0.0.9.0.0.0.0.0.0.0.0.0.0.0.0.9.0.0.0.0.0.9.9.0.0.0.4
XXXXX XXX XXX XXX XXX XXX X XXX XXX X XXX X X X XXX X X X X XXX X X X XXX X X X XXX XX X X XXX X X XXX XXXX
:0.9.9.0.0.0.0.0.9.0.0.0.0.0.9.9.0.0.0.0.0.9.0.0.0.0.0.9.9.0.9.0.0.0.9.0.0.9.0.0.9.9.90.9.0.0.0.9009.0.0.990900.9990000.0.990004
XXXXX XXX XXX XXX X XXX XXX XXX XXX X XXX X X X XXX X X X X XXX X X X KX XX X X X XXX X X X XXX XXX XXX XXX
0.9.9.0.0.0.0.0.9.0.0.0.0.0.9.9.0.0.0.0.0.9.0.0.0.0.0.9.9.9.9.0.0.0.90.0.9.0.0.9999.0.0.0.90990.0.990900.090006099000
XXXXX XXX XXX XXX XXX XXX XXX XXX XX XXX XX X XXX X X X X XXX X X X XXX X X X X XXX X X X XXX XXX XXX XXX
0.9.0.0.0.0.0.0.9.0.0.0.0.0.9.9.0.0.0.0.0.9.0.0.0.0.0.9.9.90.00.0.9009.00.999000.0900900990000990006099000
XXXXXXX XXX XXX XXX XXX XXX XXX XXX XXX X XX XXX XX X X XXX X X X KX XX X X X XXX XX XXX XXX XXX XXXX
X this content should also be loaded over HTTPS.

24



	Introduction
	Research
	Infrastructure
	Chromecast
	Firmware binary
	Attack surfaces
	Attacking the Chromecast
	Forensically processing the Chromecast

	Measy A2W Miracast
	Miracast technology
	Specifications
	Firmware binary
	Bundled software
	Software with vulnerabilities
	thttpd CGI binaries


	ADFU mode
	UART
	Reading out the memory
	Using netcat over Wi-Fi
	Using hexdump over UART
	Finding MAC addresses
	Carving links from the memory
	Carving images from the memory

	Imaging the NAND
	Files of interest

	Forensically processing the Measy A2W


	Conclusion
	Chromecast conclusions
	Miracast conclusions
	Future research

	References
	GitHub
	Chromecast logs
	Kernel/dmesg log
	System log
	Main log


