Skip to content


Subversion checkout URL

You can clone with
Download ZIP
Branch: blead
Fetching contributors…

Cannot retrieve contributors at this time

241 lines (193 sloc) 8.18 KB
/* perlvars.h
* Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
* by Larry Wall and others
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the README file.
=head1 Global Variables
/* Don't forget to re-run regen/ to propagate changes! */
/* This file describes the "global" variables used by perl
* This used to be in perl.h directly but we want to abstract out into
* distinct files which are per-thread, per-interpreter or really global,
* and how they're initialized.
* The 'G' prefix is only needed for vars that need appropriate #defines
* generated in embed*.h. Such symbols are also used to generate
* the appropriate export list for win32. */
/* global state */
PERLVAR(Gcurinterp, PerlInterpreter *)
/* currently running interpreter
* (initial parent interpreter under
* useithreads) */
#if defined(USE_ITHREADS)
PERLVAR(Gthr_key, perl_key) /* key to retrieve per-thread struct */
/* constants (these are not literals to facilitate pointer comparisons)
* (PERLVARISC really does create variables, despite its looks) */
PERLVARISC(Ghexdigit, "0123456789abcdef0123456789ABCDEF")
PERLVARISC(Gpatleave, "\\.^$@dDwWsSbB+*?|()-nrtfeaxc0123456789[{]}")
/* XXX does anyone even use this? */
PERLVARI(Gdo_undump, bool, FALSE) /* -u or dump seen? */
#if defined(MYMALLOC) && defined(USE_ITHREADS)
PERLVAR(Gmalloc_mutex, perl_mutex) /* Mutex for malloc */
#if defined(USE_ITHREADS)
PERLVAR(Gop_mutex, perl_mutex) /* Mutex for op refcounting */
PERLVAR(Gdollarzero_mutex, perl_mutex) /* Modifying $0 */
/* This is constant on most architectures, a global on OS/2 */
#ifdef OS2
# define PERL___C
# define PERL___C const
PERLVARI(Gsh_path, PERL___C char *, SH_PATH) /* full path of shell */
#undef PERL___C
#ifndef PERL_MICRO
/* If Perl has to ignore SIGPFE, this is its saved state.
* See perl.h macros PERL_FPU_INIT and PERL_FPU_{PRE,POST}_EXEC. */
PERLVAR(Gsigfpe_saved, Sighandler_t)
/* Restricted hashes placeholder value.
* The contents are never used, only the address. */
PERLVAR(Gsv_placeholder, SV)
#ifndef PERL_MICRO
PERLVARI(Gcsighandlerp, Sighandler_t, Perl_csighandler) /* Pointer to C-level sighandler */
PERLVARI(Guse_safe_putenv, int, 1)
PERLVARI(Gperlio_fd_refcnt, int*, 0) /* Pointer to array of fd refcounts. */
PERLVARI(Gperlio_fd_refcnt_size, int, 0) /* Size of the array */
PERLVARI(Gperlio_debug_fd, int, 0) /* the fd to write perlio debug into, 0 means not set yet */
#ifdef HAS_MMAP
PERLVARI(Gmmap_page_size, IV, 0)
PERLVARI(Gsig_handlers_initted, int, 0)
PERLVARA(Gsig_ignoring, SIG_SIZE, int) /* which signals we are ignoring */
PERLVARA(Gsig_defaulting, SIG_SIZE, int)
/* XXX signals are process-wide anyway, so we
* ignore the implications of this for threading */
PERLVARI(Gsig_trapped, int, 0)
PERLVAR(Gwatch_pvx, char*)
PERLVAR(Gppaddr, Perl_ppaddr_t*) /* or opcode.h */
PERLVAR(Gcheck, Perl_check_t *) /* or opcode.h */
PERLVARA(Gfold_locale, 256, unsigned char) /* or perl.h */
PERLVARA(Gcharclass, 256, U32)
PERLVAR(Gappctx, void*) /* the application context */
PERLVAR(Gop_sequence, HV*) /* dump.c */
PERLVARI(Gop_seq, UV, 0) /* dump.c */
#if defined(HAS_TIMES) && defined(PERL_NEED_TIMESBASE)
PERLVAR(Gtimesbase, struct tms)
/* allocate a unique index to every module that calls MY_CXT_INIT */
PERLVAR(Gmy_ctx_mutex, perl_mutex)
# endif
PERLVARI(Gmy_cxt_index, int, 0)
#if defined(USE_ITHREADS)
PERLVAR(Ghints_mutex, perl_mutex) /* Mutex for refcounted he refcounting */
#if defined(USE_ITHREADS)
PERLVAR(Gperlio_mutex, perl_mutex) /* Mutex for perlio fd refcounts */
/* this is currently set without MUTEX protection, so keep it a type which
* can be set atomically (ie not a bit field) */
PERLVARI(Gveto_cleanup, int, FALSE) /* exit without cleanup */
/* dummy variables that hold pointers to both runops functions, thus forcing
* them *both* to get linked in (useful for Peek.xs, debugging etc) */
PERLVARI(Grunops_std, runops_proc_t, Perl_runops_standard)
PERLVARI(Grunops_dbg, runops_proc_t, Perl_runops_debug)
/* These are baked at compile time into any shared perl library.
In future 5.10.x releases this will allow us in main() to sanity test the
library we're linking against. */
#if defined(MULTIPLICITY)
STRUCT_OFFSET(struct interpreter, member) + \
sizeof(((struct interpreter*)0)->member)
/* These might be useful. */
PERLVARI(Ginterp_size, U16, sizeof(struct interpreter))
PERLVARI(Gglobal_struct_size, U16, sizeof(struct perl_vars))
/* This will be useful for subsequent releases, because this has to be the
same in your libperl as in main(), else you have a mismatch and must abort.
PERLVARI(Ginterp_size_5_10_0, U16,
=for apidoc AmUx|Perl_keyword_plugin_t|PL_keyword_plugin
Function pointer, pointing at a function used to handle extended keywords.
The function should be declared as
int keyword_plugin_function(pTHX_
char *keyword_ptr, STRLEN keyword_len,
OP **op_ptr)
The function is called from the tokeniser, whenever a possible keyword
is seen. C<keyword_ptr> points at the word in the parser's input
buffer, and C<keyword_len> gives its length; it is not null-terminated.
The function is expected to examine the word, and possibly other state
such as L<%^H|perlvar/%^H>, to decide whether it wants to handle it
as an extended keyword. If it does not, the function should return
C<KEYWORD_PLUGIN_DECLINE>, and the normal parser process will continue.
If the function wants to handle the keyword, it first must
parse anything following the keyword that is part of the syntax
introduced by the keyword. See L</Lexer interface> for details.
When a keyword is being handled, the plugin function must build
a tree of C<OP> structures, representing the code that was parsed.
The root of the tree must be stored in C<*op_ptr>. The function then
returns a constant indicating the syntactic role of the construct that
it has parsed: C<KEYWORD_PLUGIN_STMT> if it is a complete statement, or
C<KEYWORD_PLUGIN_EXPR> if it is an expression. Note that a statement
construct cannot be used inside an expression (except via C<do BLOCK>
and similar), and an expression is not a complete statement (it requires
at least a terminating semicolon).
When a keyword is handled, the plugin function may also have
(compile-time) side effects. It may modify C<%^H>, define functions, and
so on. Typically, if side effects are the main purpose of a handler,
it does not wish to generate any ops to be included in the normal
compilation. In this case it is still required to supply an op tree,
but it suffices to generate a single null op.
That's how the C<*PL_keyword_plugin> function needs to behave overall.
Conventionally, however, one does not completely replace the existing
handler function. Instead, take a copy of C<PL_keyword_plugin> before
assigning your own function pointer to it. Your handler function should
look for keywords that it is interested in and handle those. Where it
is not interested, it should call the saved plugin function, passing on
the arguments it received. Thus C<PL_keyword_plugin> actually points
at a chain of handler functions, all of which have an opportunity to
handle keywords, and only the last function in the chain (built into
the Perl core) will normally return C<KEYWORD_PLUGIN_DECLINE>.
PERLVARI(Gkeyword_plugin, Perl_keyword_plugin_t, Perl_keyword_plugin_standard)
Jump to Line
Something went wrong with that request. Please try again.