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The minimal deterministic finite automaton is generallydisedetermine regular languages equal-
ity. Antimirov and Mosses proposed a rewrite system for dieg regular expressions equivalence
of which Almeidaet al. presented an improved variant. Hopcroft and Karp proposedlimost
linear algorithm for testing the equivalence of two deteristic finite automata that avoids minimi-
sation. In this paper we improve the best-case running tpressent an extension of this algorithm
to non-deterministic finite automaton, and establish aticelahip between this algorithm and the
one proposed in Almeidat al. We also present some experimental comparative resultsthédle
algorithms are closely related with the recent coalgelapfiroach to automata proposed by Rutten.

1 Introduction

The uniqueness of the minimal deterministic finite automdtwr each regular language is in general
used for determining regular languages equality. Whetteelanguages are represented by deterministic
finite automata (DFA), non deterministic finite automata A\For regular expressions (r. e.), the usual
procedure uses the equivalent minimal DFA to decide eqemea. The best known algorithm, in terms
of worst-case analysis, for DFA minimisation is loglinef, [and the equivalence problem is PSPACE-
complete for both NFA and r. e. Based on the algebraic priggeot regular expressions, Antimirov and
Mosses proposed a terminating and complete rewrite systede€iding their equivalencgl[6]. In a paper
about testing the equivalence of regular expressions, et al. [3] presented an improved variant of
this rewrite system. As suggested by Antimirov and Mossed,arroborated by further experimental
results, a better average-case performance may be ohtained

Hopcroft and Karp([10] presented, in 1971, an almost lindgorghm for testing the equivalence
of two DFAs that avoids their minimisation. Considering therge of the two DFAs as a single one,
the algorithm computes the finest right-invariant relatiomch identifies the initial states. The state
equivalence relation that determines the minimal DFA iscibersest relation in that condition.

We present some variants of Hopcroft and Karp’s algorithti ] (Sectior_B), and establish a rela-
tionship with the one proposed in Almeigaal. (Sectior 4). In particular, we extettK algorithm to
NFAs and present some experimental comparative result$i¢S).

All these algorithms are also closely related with the récealgebraic approach to automata devel-
oped by Rutten [15], where the notion lnisimulationcorresponds to a right-invariance. Two automata
are bisimilar if there exists a bisimulation between therar deterministic (finite) automata, tte®in-
duction proof principleis effective for equivalence, i. e., two automata are bisimf and only if they
are equivalent. Both Hopcroft and Karp algorithm and Antowiand Mosses method can be seen as
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instances of this more general approach (cf. Corollaty TBis means that these methods may be easily
extended to other Kleene Algebras, namely the ones thatlrpoolgram properties, and that have been
successfully applied in formal program verification|[12].

2 Preliminaries

We recall here the basic definitions needed throughout therp&or further details we refer the reader
to the works of Hopcrofet al. [11] and Kozen[[1B3].

A regular expressiorgr. e.) « over an alphabeX represents a (regular) languagén) C Z* and is
inductively defined by isar.e. and.()) =0; eisar.e. and.(¢) = {e}; ac Zisar.e. and.(a) = {a};
if candg arer.e.{a1+a2), (c1az) and(aq)* arer. e., respectively with((a1+az2)) = L(a1) UL(a2),
L((c1a2)) = L) L(az) and L((a1)*) = L(1)*. We defines(a) = 1 (resp.e(a) = 0) if € € L(«)
(resp.e ¢ L(«)). Twor.e.« andj areequivalent and we writen ~ 3, if L(a)) = L(3). The algebraic
structure(RE, +,-,0,¢), whereRE denotes the set of r.e. ovEr constitutes an idempotent semiring,
and, with the unary operater aKleene algebraThere are several well-known complete axiomatizations
of Kleene algebras. LeAC'I denote the associativity, commutativity and idempoterice.o

A nondeterministic finite automatgNFA) A is a tuple(Q, 2,9, I, F') whereQ is a finite set of states,
2 is the alphabety C @ x Z x ) the transition relation] C () the set of initial states, anfd C () the set of
final states. An NFA isleterministiqDFA) if for each pair(q,a) € Q x Z there exists at most orésuch
that(q,a,q’') € 6. The size of aNFA i$Q|. Fors € Q anda € Z, we denote byi(¢,a) = {p| (¢,a,p) € §},
and we can extend this notation#ae >*, and toR C (). For a DFA, we considef : Q x Z* — Q. The
languageaccepted byA is L(A) = {z € Z* | 6({, ) N F # 0}. Two NFAs A and B are equivalent
denoted byA ~ B if they accept the same language. Given an NFA (Qn,Z,0n,1, Fy), we can use
the powerset constructioto obtain a DFAD = (Qp,Z,0p,qo, Fp) equivalent tod, whereQp = 24V,
qgo=1I,forall Re Qp, Re Fpifand only RN Fy # (), and for alla € Z, 0p(R,a) = U,erdn(g,a).
This construction can be optimised by omitting stales () p that are unreachable from the initial state.

Given a finite automaton@, Z,d, qo, F'), lete(q) =1 if ¢ € F ande(q) = O otherwise. We call a
set of states? C (Q homogeneou§ for every p,q € R, (p) =<(q). A DFA is minimalif there is no
equivalent DFA with fewer states. Two statgsqg, € (Q are said to bequivalent denotedy; ~ g, if for
everyw € ¥*, (d(q1,w)) = &(6(g2,w)). Minimal DFAs are unique up to isomorphism. Given a DBA
the equivalent minimal DFAD /.. is called thequotient automatomf D by the equivalence relatior.
The state equivalence relatien, is a special case of a right-invariant equivalence refatior.t. D,
i.e., arelation= C @ x Q such that all classes et are homogeneous, and for apyy € @, a € X if
p=gq,thend(p,a)/= = d(q,a)/=, where for any ses, S/= = {[s] | s € S}. Finally, we recall that every
equivalence relatior= over a setS is efficiently represented by the partition Sfgiven by S/=. Given
two equivalence relations over a sgt=r and=r, we say thatsy, is finer then=r (and=r coarser
then=g) ifand only if =g C=7.

3 Testing finite automata equivalence

The classical approach to the comparison of DFAs relies ercgimstruction of the minimal equivalent
DFA. The best known algorithm for this procedure rungitknlogn) time [9], for a DFA withn states
over an alphabet df symbols. Hopcroft and Karp [10] proposed an algorithm fetitey the equivalence
of two DFAs that makes use of an alm@stn) set merging method.
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3.1 The original Hopcroft and Karp algorithm

LetA = (Ql,z,p0,5l,F1) andB = (Qz,z,QQ,52,F2) be two DFAs, WIth|Q1| =n, |Q2| = m, and such
that @1 and Q- are disjoint. In order to simplify notation, we assude= Q1 U Q», F = F1 U F», and
d(p,a) = d;(p,a) for p € Q;. We begin by presenting the original algorithm by Hopcraftl &arp [1]
for testing the equivalence of two DFAs as Algorithin 1.

If A and B are equivalent DFAs, the algorithm computes the finest 4iigldriant equivalence re-
lation over@ that identifies the initial stategp andgg. The associated set partition is built using the
UNION-FIND method. This algorithm assumes disjoint setd dafines the three functions which fol-
low.

e MAKE(7): creates a new set (singleton) for one elemdlttte identifier);
e FIND(2): returns the identifief; of the set which containg

e UNION(s, j,k): combines the sets identified byandj in a new setS, = S;US;; S; andS; are
destroyed.

It is clear that, disregarding the set operations, the waase time of the algorithm ©(k(n +m)),

wherek = |Z|. An arbitrary sequence 6MMAKE, UNION, and FIND operations; of which are MAKE

operations in order to create the required sets, can berpextbin worst-case timé(ia(j)), where
a(y) is related to a functional inverse of the Ackermann functiand, as such, growgery slowly. In

16
fact, for everypractical values ofj (up to v ), a(j) <4.

1 def HK(A,B):

2 for g€ @Q: MAKE(q)

3 S =90

4 UNION (po,q0,90); PUSH(S (po,q0))
5 while (p,q) = POP(S):

6 for aeX:

7 p’ = FIND(d(p,a))

8 q¢ = FIND(4(q,a))

9 if p'#¢q':

10 UNION(»" ¢’ ,¢")

11 PUSH(S (v',¢'))

12 if VS;Vp,qeS; e(p)=ce(q): return True
13 else: return False

Algorithm 1: The originalHK algorithm.

When applied to Algorithni]l, this set union algorithm allofes a worst-case time complexity
of O(k(n+m)+3ia(j)) = O(k(n+m)+ 3(n+m)a(n+m)). Consideringx(n +m) constant, the
asymptotic running-time of the algorithm@(k(n+m)). The correctness of this algorithm is proved in
Sectior 4, Theoref 8.

3.2 Improved best-case running time

By altering the FIND function in order to create the set bdouked for if it does not exist, i. e., whenever
FIND(:) fails, MAKE(:) is called and the sef; = {i} is created, we may add rafutation procedure
earlier in the algorithm. This allows the algorithm to ret@s soon as it finds a pair of states such that
one is final and the other is not. This alteration to the FINGcpdure avoids the initialization ot +n
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sets which may never actually be used. These modificatioAfgtrithm [1 are presented in Algorithm
2.

Although it does not change the worst-case complexity, #st-base analysis is considerably better,
as it goes fronQ(k(n+m)) to Q(1). Not only it is possible to distinguish the automata by thet fiair
of states, but it is also possible to avoid the linear checthinlines 12-13. The observed asymptotic
behaviour of minimality of initially connected DFAs (ICDEA[2], suggests that, when dealing with
random DFAs, the probability of having two equivalent auédanis very low, and a refutation method
will be very useful (see Sectidn 5).

Lemma 1. In line 5 of Algorithni1, all the setS; are homogeneous if and only if all the pairs of states
(p,q) pushed into the stack are such th#p) = <(q).

Proof: Let us proceed by induction on the numbbeaf times line 5 is executed. If=1, it is trivial.
Suppose that lemma is true for tHeé time the algorithm executes line 5. If for allc =, the condition in
line 9 is false, for the! + 1)th time the homogeneous character of the sets remains umhlteteerwise,
itis clear that in lines 10-115,, U S,/ is homogeneous if and only if(p’) = £(¢'). Thus the lemma is

true. O
1 def HKi(A,B):
2 MAKE(po); MAKE( o)
3 S =90
4 UNION (po,q0,90); PUSH(S (po,q0))
5 while (p,q) = POP(S):
6 if e(p)#e(q): return False
7 for aeX:
8 p’ = FIND(d(p,a))
9 qd = FIND (6(q,a))
10 if p/;éq’:
11 UNION(p,¢’,q")
12 PUSH(S (v',¢'))
13 return True

Algorithm 2: HK algorithm with an early refutation stepiKi ).

Theorem 2. Algorithmd1 HK) and(2 HKi) are equivalent.
Proof: By Lemmadl, if there is a pair of statés, ¢) pushed into the stack such thdp) # (q), then
the algorithm can terminate and retlralse That is exactly what Algorithril 2 does. d

3.3 Testing NFA equivalence

It is possible to extend Algorithml 2 to test the equivalenE&BAs. The basic idea is to embed the
powerset construction into the algorithm, although thisstrhe done with some caution. Because of
space limitations, we will only sketch this extension. Wk ttas algorithmHKe.

Let N1 = (Q1,Z,01,11, F1) and N = (Q2,Z,92, I, F») be two NFAs. We assume th@y and Q>
disjoint, and, we maké&)y = Q1UQ2, Fx = F1U F5, anddoy(p,a) = d;(p,a) for p € Q;. Consider
Algorithm [2 with the following data:qo = I1, po = I, and forp € 29~ , §(p,a) = Ugepdn(g,a) and
e(p) =1ifand only if 3¢ € p: e(q) = 1. Notice that when dealing with NFAs it is essential to uge th
idea described in Subsectibn3.2 and to adjust the FIND tparso that FIND{) creates the se; if it
does not exist. This way we avoid calling MAKE for each of th@2 sets, which would lead directly
to the worst-case of the powerset construction.
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Theorem 3. Algorithm[2 can be applied to NFAs by embedding the powerssttauction method.

As any DFA is a particular case of an NFA, all the experimeraallts presented on Sectidn 5 use
Algorithm HKe, whether the finite automata being tested are determirgstiot.

4 Relationship with Antimirov and Mosses’ method

4.1 Antimirov and Mosses’ algorithm

Thederivative[8] of a r. e. o with respect to aymbola € %, denoteds—(«), is defined recursively on
the structure ot as follows:

a=t(0) =0; aYa+8)=aa)+a1(B);

al(e) =0; a~Yaf) = a~Ha)B+e(a)a~1(B);
_ e ifb=gq; 1 e .

i) = {@, otherwise; a”Ha?) =a~H(a)a".

This notion can be trivially extended to words, and consiagr. e. modulo theAC'I axioms, Brzo-
zowski [8] proved that, the set of derivatives of a neD(«), is finite. This result leads to the definition
of Brzozowski’'s automatowhich is equivalent to a given r.ex: D, = (D(«),Z,dq,, F,) Where
F,={d€D(a)|e(d) = e}, andd,(d,a) = a=1(d), for alld € D(a), a € Z.

Antimirov and Mosses [6] proposed a rewrite system for dagidhe equivalence of two extended
r.e. (with intersection), based on a complete axiomatimati This is a refutation method such that
testing the equivalence of two r. e. corresponds to an @drptocess of testing the equivalence of their
derivatives. Inthe process, a Brzozowski’'s automatonnsmaed for each r. e. Not considering extended
r.e., Algorithm[3 is a version oAM's method, which was, essentially, the one proposed by Alengt
al. [3].

1 def AM(a,3):

2 s ={(ap)}

3 H=20

4 while (a,8) = POP(S):

5 if e(a)#e(B): return False
6 PUSH(H, («,0))

7 for a€Z:

8 o =a Ya)

9 B =a"1(B)

10 if (o,3)¢ H: PUSH(S (¢/,8")
11 return True

Algorithm 3: A simplified version of algorithrAM .

4.2 A naive HK algorithm

We now present a naive version of the Algorithin 1. It will beeful to prove its correctness and to
establish a relationship to the Antimirov and Mosses’ métfM ). Let A = (Q1,Z, po,d1, F1) and
B = (Q2,%,q0,92, F») be two DFAs, with|Q1]| = n and|Q2| = m, andQ; andQ; disjoint. Consider
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Algorithm[4. Termination is guaranteed because the numfysics of states pushed infbis at mostnn
and in each iteration one pair is popped frénTo prove the correctness we show thafinwe collect
the pairs of states of the relatid?y defined below.

1 def HKn(A,B):

2 S = {(po.q0)}

3 H=20

4 while (p,q) = POP(S):

5 PUSH(H (p,q))

6 for aeX:

7 p/:(Sl(p,CL)

8 q/:52(Q7a)

9 if (p',q')¢ H: PUSH(S (p',q))
10 for (p,q) in H:

11 if e(p)#e(q): return False
12 return True

Algorithm 4: The algorithrHKn, a naive version dfik .
Lemma 4. In Algorithm[4, for all(p,q) € Q1 X Q2, (p,q) € S in a stepk > 0if and only if (p,q) € H
for some steg’ > k.

Definition 5. Let R be defined as follows:

R={(p,q) € Q1 x Q2| Jz € Z* : 61(po,z) = p N d2(q0,2) = q}.
Lemma 6. For all (p,q) € Q1 x Q2, (p,q) € S at some step of Algorithm 4, if and only(jf,q) € R.
Lemma 7. Inline 10, for all (p,q) € Q1 X Q2, (p,q) € Rif and only if(p,q) € H.
Considering Lemmi@6 and Lemih 7, the following theorem a@sstive correctness of Algorithim 4.

Theorem 8. A ~ B if and only if for all (p,q) € R, ¢(p) =¢(q).

Proof: Suppose, by absurd, thdtand B are not equivalent and that the condition holds. Then, there
existsw € X* such thats(0(po,w)) # £(d(go,w)). But in that case there is a contradiction because
(0(po,w),d(go,w)) € R. On the other hand, if there exist§@q) € R such that(p) # «(q), obviously

A andB are not equivalent. d

The relationR can be seen as a relation @ UQ3)? which is reflexive and symmetric. Its transitive
closureR* is an equivalence relation.

Lemma9. ¥(p,q) € R, ¢(p) =¢(q) ifand only if V(p,q) € R*, e(p) = £(q).
Corollary 10. A ~ Bifand only if ¥V(p,q) € R*, e(p) = <(q).

The AlgorithmHK computesR* by starting with the finest partition i1 U Q> (the identity). And if
A~ B, R*is aright-invariance.

Corollary 11. Algorithm[4 and Algorithnill are equivalent.
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4.3 Equivalence of the two methods

The Algorithm[4 can be modified to earlier refutationversion, as in Algorithni]2. In order to do so,
we remove lines 10-11, and we insert a line equal to line 7 gbAlhm[2, before line 4. It is then
obvious that Algorithni13 corresponds to Algorithirh 4 applitedBrzozowski’'s automata of two r.e.,
where these DFAs are incrementally constructed during ldperithm’s execution. In particular, the
halting conditions are the same considering the definitidinal states in a Brzozowski’'s automaton.

Theorem 12. Algorithm[3 AM) corresponds to Algorithrin] 4HKn) applied to Brzozowski's automata
of two regular expressions.

4.4 Improving Algorithm AM with Union-Find

Considering the Theorem112 and the Corollary 11, we can iwgpte Algorithm 8 AM) for testing
the equivalence of two r. ey and 3, by considering Algorithm]1 applied to the Brzozowski's @utata
correspondent to the tworr. e. Instead of using a stakri order to keep an history of the pairs of regular
expressions which have already been tested, we can buittbtrespondent equivalence relatifr (as
defined for Lemmal9). Two main changes must be considered:

e One must ensure that the sets of derivatives of each regigpaession are disjoint. For that we
consider their disjoint sum, where derivatives w.r. t. advwoare represented by tuplés1(a), 1)
and(u—1(3),2), respectively.

¢ Inthe UNION-FIND method, the FIND operation needs an edyédist on the elements of the set.
Testing the equality of two r. e.— even syntactic equalitysalready a computationally expensive
operation, and tuple comparison will be even slower. On therchand, integer comparison, can
be considered to b&(1). As we know that each element of the set is unique, we may densi
some hash function which assures that the probability distah for these elements is extremely
low. This allows us to safely use the hash values as the elsmoéthe set, and thus, arguments
to the FIND operation, instead of the r.e. themselves. Téialso a natural procedure in the
implementations of conversions fromr. e. to automata.

We call equivUF to the resulting algorithm. The experimental results aes@nted on Tablg 3,
Sectior{b.

4.5 Worst-case complexity analysis

In Almeidaet al. [3] the algorithmAM was improved by considering partial derivatives [5]. Thauteng
algorithm equivP) can be seen as the algorithitiKe applied to the partial derivatives NFA of ar.e. We
present a lower bound for the worst-case complexity of tlgerghm by exhibiting a family of r. e. for
which the comparison method can be exponential on the nuafiladphabetical symbolgy|s of ar. e.c.
We will proceed by showing that the partial derivatives NFAof a r. e. a is such that N| € O(|als)
and the number of states of the smallest equivalent DFA isreqtial on| NV |.

Figure[l presents a classical example of a bad behaved ctheepmiwerset construction, by Hopcroft
et al. [11]. Although this example does not reach tiestates bound, the smallest equivalent DFA has
exactly 2! states.

Consider the r. e. family, = (a+b)*a(a+b)¢, where|ay|s = 3+ 2/ = m. Itis easy to see that the
NFA in Figurdl is obtained directly from the application lbéAM method tax,, with the corresponding
partial derivatives presented on Figlie 2.
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a,b
() . .
_,.‘ ) ,,

Figure 1: NFA which has no equivalent DFA with less th&nsgates.

a,b

_> a a,b , a,b G

Figure 2: NFA obtained from the r. e. using theAM method.

The set of the partial derivatives
PD(ag) ={ag,(a+b)",...,(a+b),e}

has¢+ 2 = 241 elements, which corresponds to the size of the obtained NE&.equivalent minimal
DFA has 21 =2"2" states.

5 Experimental results

In this section we present some experimental results of theiqusly discussed algorithms applied
to DFAs, NFAs, and r.e. We also include the same results otdbis using Hopcroft'sHop) and
Brzozowski's Brz) [[7] automata minimization algorithms. The random DFAs evgenerated using
publicly available tooi&ZJ. The NFAs dataset was obtained with a set of tools desdriy Almeida

et al. [4]. All the algorithms were implemented in tlBgthon programming language. The tests were
executed in the same computer, an [Bt&leorf® 5140 at 2.33GHz with 4GB of RAM. Tab[é 1 shows the

Table 1: Running times for tests with complete accessiblaDF

n=>5 n =50
k=2 k=50 k=2 k=50
Alg. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter.
Eff. | Total | Avg. Eff. Total | Avg. | Eff. | Total | Avg. Eff. Total Avg.
Hop 53 | 7.3 - 85.2 91.0 - 566.8 | 572 - 17749.7| 17787.5| -

Brz 255 28.0 - 1393.6| 1398.9 - - - - - - -

HK 23 | 4.0 8.9 25.3 28.9 9.0 | 232 | 289 | 989 | 3175 3416 | 99.0
HKe | 0.9 21 2.4 54 10.5 2.4 1.4 59 2.6 14.3 34.9 3.4
HKs | 0.6 13 2.4 2.8 4.6 2.4 0.8 2.0 2.7 9.1 213 3.4
HKn | 0.7 2.2 3.0 515 56.2 | 29.7 | 1.3 6.8 3.7 294 51.7 15.4

results of experimental tests with .000 pairs of complete ICDFAs. Due to space constraints, e on
present the results for automata witke {5,50} states over an alphabet ok {2,50} symbols. Clearly,
the methods which do not rely in minimisation processesaalat faster. Below (Eff.) appears the
effectivetime spent by the algorithm itself while below (Total) we shthe total time spent, including
overheads, such as making a DFA complete, initializing lauyi data structures, etc. All times are
expressed in seconds, and the algorithms that were notdohistter 10 hours are accordingly signaled.

1ht‘cp ://www.ncc.up.pt/FAdo/nodel.html
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The algorithmBrz is by far the slowest. The algorithddop, although faster, is still several orders
of magnitude slower than any of the algorithms of the previsections. We also present the average
number of iterations (Iter.) used by each of the versiondgufradhm HK , per pair of automata. Clearly,
the refutation process is an advantagékn running times show that a linear set merging algorithm
(such as UNION-FIND) is by far a better choice than a simpftdny (set) with pairs of stateddKs

is a version oHKe which uses the automata string representation proposedrbgidaet al. [2, [14].
The simplicity of the representation seemed to be quitabldgtfor this algorithm, and actually cut down
both running times to roughly half. This is an example of theact that a good data structure may have
on the overall performance of this algorithm.

Table 2: Running times for tests with 10.000 random NFAs.
n=>5 n =50
k=2 k=20 k=2 k=20
Alg. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter.
Eff. | Total | Avg. Eff. | Total | Avg. Eff. | Total | Avg. | Eff. | Total | Avg.
Transition Densityl = 0.1

Hop | 10.3| 125 - 1994.7 | 2003.2 | - 660.1 | 672.9

Brz 8.4 | 10.6 - 866.6 | 876.2 - 2645 | 278.4 -

HKe | 0.8 | 2.9 2.2 8.4 19 4 24.4 37.8 | 10.2
Transition Densityl = 0.5

Hop | 17.9| 19.8 - 2759.4| 2767.5| - 538.7 | 572.6

Brz | 144 16 - 2189.3| 2191.6 614.9 | 655.7

HKe | 2.6 | 4.3 4.9 36.3 47.3 | 10.3 6.8 48.9 25 | 2946 | 702.3| 11.5
Transition Densityl = 0.8
Hop | 12.5| 14.3 - 376.9 | 385.5 - 1087.3| 1134.2
Brz 14 | 15.8 - 177 179.6 - 957.5 | 1014.3| - - - -
HKe | 1.4 | 3.2 2.7 39 499 | 10.7 7.3 64.8 25 | 4405| 986.6 | 11.5

Table[2 shows the results of applying the same set of algositto NFAs. The testing conditions
and notation are as before, adding only tfansition densityd as a new variable, which we define as
the ratio of the number of transitions over the total numbeyassible transitionsk(:?). Although it is
clear thatHKe is faster, by at least one order of magnitude, than any oftther @lgorithms, the peculiar
behaviour of this algorithm with different transition déres is not easy to explain. Considering the
simplest example of 5 states and 2 symbols, the dataset wiinsition densityl = 0.5 took roughly
twice as long as those withe {0.1,0.8}. On the other extreme, making= 50 andk = 2, the hardest
instance wad = 0.1, with the cases wheréc {0.5,0.8} present similar running times almost five times
faster. In our largest test, with= 50 andk = 20, neitheiHop nor Brz finished within the imposed time
limit. Again, d = 0.1 was the hardest instance tdKe, which also did not finish within the time limit,
although the cases whede= {0.5,0.8} present similar running times.

Table[3 presents the running times of the applicatiohliéé to r. e. and their comparison with the
algorithms presented by Almeidd al. [3], whereequiv andequivP are the functional variants of the
original AM algorithm.equivUF is the UNION-FIND improved version aquivP. Although the results
indicate thatHKe is not as fast as the direct comparison methods presentbd aiteéd paper, it is clearly
faster than any minimisation process. The improvemenegjaoivUF overequivP are not significant (it
is actually considerably slower for r. e. of length 100 witkyZnbols). We suspect that this is related to
some optimizations applied by tgthon interpreter. We state this based on the fact that when both
algorithms are executed using a profilequivUF is almost twice faster thamquivP on most tests.

We have no reason to believe that similar tests with diffenemplementations of these algorithms
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Table 3: Running times (seconds) for tests with 10.000 rande.

Size/Alg. Hop Brz AM Equiv | EquivP | HKe EquivUF
k=2 10 21.025 | 19.06 | 26.27 | 7.78 5.512 7.27 5.10
50 319.56 | 217.54 | 297.23| 36.13 | 28.05 | 64.12 28.69

75 1043.13| 600.14 | 434.89| 35.79 | 23.46 | 139.12 60.09
100 7019.61| 1729.05| 970.36| 60.76 | 48.29 | 183.55| 124.00

k=5 10 42.06 25.99 32.73 | 9.96 7.25 8.69 6.48
50 518.16 | 156.28 | 205.41| 33.75 | 26.84 67.7 21.53
75 943.65 | 267.12 | 292.78 | 35.09 | 25.17 | 161.84 28.61
100 1974.01| 386.72 | 567.39| 54.79 | 45.41 | 196.13 37.02
k=10 10 61.60 31.04 38.27 | 10.87 8.39 9.26 7.47

50 1138.28| 198.97 | 184.93| 3493 | 28.95 | 72.95 22.60
75 2012.43| 320.37 | 271.14| 35.77 | 26.92 | 195.88 30.61
100 4689.38| 460.84 | 424.67| 52.97 | 4458 | 194.01 39.23

would produce significantly different ordering of its rungitimes from the one here presented. However,
it is important to keep in mind, that these are experimeetstktthat greatly depend on the hardware, data
structures, and several implementation details (some afhwisuch as compiler optimizations, we do
not utterly control).

6 Conclusions

As minimality or equivalence for (finite) transition systems in general intractable, right-invariant rela-

tions (bisimulations) have been extensively studied fordederministic variants of these systems. When
considering deterministic systems, however, those oglatprovide non-trivial improvements. We pre-

sented several variants of a method by Hopcroft and Karphiicomparison of DFAs which does not

use automata minimization. By placing a refutation cooditearlier in the algorithm we may achieve

better running times in the average case. This is sustaingdebexperimental results presented in the
paper. We extended this algorithm to handle NFAs. Using Braski's automata, we showed that a

modified version of Antimirov and Mosses’ method translatiesctly to Hopcroft and Karp’s algorithm.
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