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The minimal deterministic finite automaton is generally used to determine regular languages equal-
ity. Antimirov and Mosses proposed a rewrite system for deciding regular expressions equivalence
of which Almeidaet al. presented an improved variant. Hopcroft and Karp proposed an almost
linear algorithm for testing the equivalence of two deterministic finite automata that avoids minimi-
sation. In this paper we improve the best-case running time,present an extension of this algorithm
to non-deterministic finite automaton, and establish a relationship between this algorithm and the
one proposed in Almeidaet al. We also present some experimental comparative results. Allthese
algorithms are closely related with the recent coalgebraicapproach to automata proposed by Rutten.

1 Introduction

The uniqueness of the minimal deterministic finite automaton for each regular language is in general
used for determining regular languages equality. Whether the languages are represented by deterministic
finite automata (DFA), non deterministic finite automata (NFA), or regular expressions (r. e.), the usual
procedure uses the equivalent minimal DFA to decide equivalence. The best known algorithm, in terms
of worst-case analysis, for DFA minimisation is loglinear [9], and the equivalence problem is PSPACE-
complete for both NFA and r. e. Based on the algebraic properties of regular expressions, Antimirov and
Mosses proposed a terminating and complete rewrite system for deciding their equivalence [6]. In a paper
about testing the equivalence of regular expressions, Almeida et al. [3] presented an improved variant of
this rewrite system. As suggested by Antimirov and Mosses, and corroborated by further experimental
results, a better average-case performance may be obtained.

Hopcroft and Karp [10] presented, in 1971, an almost linear algorithm for testing the equivalence
of two DFAs that avoids their minimisation. Considering themerge of the two DFAs as a single one,
the algorithm computes the finest right-invariant relationwhich identifies the initial states. The state
equivalence relation that determines the minimal DFA is thecoarsest relation in that condition.

We present some variants of Hopcroft and Karp’s algorithm (HK ) (Section 3), and establish a rela-
tionship with the one proposed in Almeidaet al. (Section 4). In particular, we extendHK algorithm to
NFAs and present some experimental comparative results (Section 5).

All these algorithms are also closely related with the recent coalgebraic approach to automata devel-
oped by Rutten [15], where the notion ofbisimulationcorresponds to a right-invariance. Two automata
are bisimilar if there exists a bisimulation between them. For deterministic (finite) automata, thecoin-
duction proof principleis effective for equivalence, i. e., two automata are bisimilar if and only if they
are equivalent. Both Hopcroft and Karp algorithm and Antimirov and Mosses method can be seen as
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instances of this more general approach (cf. Corollary 10).This means that these methods may be easily
extended to other Kleene Algebras, namely the ones that model program properties, and that have been
successfully applied in formal program verification [12].

2 Preliminaries

We recall here the basic definitions needed throughout the paper. For further details we refer the reader
to the works of Hopcroftet al. [11] and Kozen [13].

A regular expression(r. e.) α over an alphabetΣ represents a (regular) languageL(α) ⊆ Σ∗ and is
inductively defined by:∅ is a r. e. andL(∅) = ∅; ǫ is a r. e. andL(ǫ) = {ǫ}; a∈ Σ is a r. e. andL(a) = {a};
if α andβ are r. e.,(α1+α2), (α1α2) and(α1)

∗ are r. e., respectively withL((α1+α2)) = L(α1)∪L(α2),
L((α1α2)) = L(α1)L(α2) andL((α1)

∗) = L(α1)
∗. We defineε(α) = 1 (resp. ε(α) = 0) if ǫ ∈ L(α)

(resp.ǫ /∈ L(α)). Two r. e.α andβ areequivalent, and we writeα ∼ β, if L(α) = L(β). The algebraic
structure(RE,+, ·,∅, ǫ), whereRE denotes the set of r. e. overΣ, constitutes an idempotent semiring,
and, with the unary operator∗, aKleene algebra. There are several well-known complete axiomatizations
of Kleene algebras. LetACI denote the associativity, commutativity and idempotence of +.

A nondeterministic finite automaton(NFA) A is a tuple(Q,Σ,δ,I,F ) whereQ is a finite set of states,
Σ is the alphabet,δ ⊆Q×Σ×Q the transition relation,I ⊆Q the set of initial states, andF ⊆Q the set of
final states. An NFA isdeterministic(DFA) if for each pair(q,a)∈Q×Σ there exists at most oneq′ such
that(q,a,q′)∈ δ. The size of a NFA is|Q|. Fors∈Q anda∈Σ, we denote byδ(q,a) = {p | (q,a,p)∈ δ},
and we can extend this notation tox ∈ Σ∗, and toR ⊆ Q. For a DFA, we considerδ : Q×Σ∗ → Q. The
languageaccepted byA is L(A) = {x ∈ Σ∗ | δ(I,x)∩F 6= ∅}. Two NFAsA andB areequivalent,
denoted byA ∼ B if they accept the same language. Given an NFAA = (QN ,Σ,δN ,I,FN ), we can use
thepowerset constructionto obtain a DFAD = (QD,Σ,δD,q0,FD) equivalent toA, whereQD = 2QN ,
q0 = I, for all R ∈ QD, R ∈ FD if and onlyR∩FN 6= ∅, and for alla ∈ Σ, δD(R,a) =

⋃

q∈R δN (q,a).
This construction can be optimised by omitting statesR ∈QD that are unreachable from the initial state.

Given a finite automaton(Q,Σ,δ,q0,F ), let ε(q) = 1 if q ∈ F andε(q) = 0 otherwise. We call a
set of statesR ⊆ Q homogeneousif for every p,q ∈ R, ε(p) = ε(q). A DFA is minimal if there is no
equivalent DFA with fewer states. Two statesq1,q2 ∈ Q are said to beequivalent, denotedq1 ∼ q2, if for
everyw ∈ Σ∗, ε(δ(q1,w)) = ε(δ(q2,w)). Minimal DFAs are unique up to isomorphism. Given a DFAD,
the equivalent minimal DFAD/∼ is called thequotient automatonof D by the equivalence relation∼.
The state equivalence relation∼, is a special case of a right-invariant equivalence relation w. r. t. D,
i. e., a relation≡ ⊆ Q×Q such that all classes of≡ are homogeneous, and for anyp,q ∈ Q, a ∈ Σ if
p ≡ q, thenδ(p,a)/≡ = δ(q,a)/≡, where for any setS, S/≡ = {[s] | s ∈ S}. Finally, we recall that every
equivalence relation≡ over a setS is efficiently represented by the partition ofS given byS/≡. Given
two equivalence relations over a setS, ≡R and≡T , we say that≡R is finer then≡T (and≡T coarser
then≡R) if and only if≡R⊆≡T .

3 Testing finite automata equivalence

The classical approach to the comparison of DFAs relies on the construction of the minimal equivalent
DFA. The best known algorithm for this procedure runs inO(kn logn) time [9], for a DFA withn states
over an alphabet ofk symbols. Hopcroft and Karp [10] proposed an algorithm for testing the equivalence
of two DFAs that makes use of an almostO(n) set merging method.
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3.1 The original Hopcroft and Karp algorithm

Let A = (Q1,Σ,p0,δ1,F1) andB = (Q2,Σ,q0,δ2,F2) be two DFAs, with|Q1| = n, |Q2| = m, and such
thatQ1 andQ2 are disjoint. In order to simplify notation, we assumeQ = Q1∪Q2, F = F1∪F2, and
δ(p,a) = δi(p,a) for p ∈ Qi. We begin by presenting the original algorithm by Hopcroft and Karp [1]
for testing the equivalence of two DFAs as Algorithm 1.

If A andB are equivalent DFAs, the algorithm computes the finest right-invariant equivalence re-
lation overQ that identifies the initial states,p0 andq0. The associated set partition is built using the
UNION-FIND method. This algorithm assumes disjoint sets and defines the three functions which fol-
low.

• MAKE( i): creates a new set (singleton) for one elementi (the identifier);

• FIND(i): returns the identifierSi of the set which containsi;

• UNION(i,j,k): combines the sets identified byi andj in a new setSk = Si∪Sj; Si andSj are
destroyed.

It is clear that, disregarding the set operations, the worst-case time of the algorithm isO(k(n+m)),
wherek = |Σ|. An arbitrary sequence ofi MAKE, UNION, and FIND operations,j of which are MAKE
operations in order to create the required sets, can be performed in worst-case timeO(iα(j)), where
α(j) is related to a functional inverse of the Ackermann function, and, as such, growsvery slowly. In

fact, for everypractical values ofj (up to 22216

), α(j) ≤ 4.

1 def HK( A,B ) :
2 f o r q ∈ Q : MAKE( q )
3 S = ∅
4 UNION(p0, q0, q0 ) ; PUSH( S ,(p0, q0) )
5 whi le (p,q) = POP( S ) :
6 f o r a ∈ Σ :
7 p′ = FIND (δ(p,a) )
8 q′ = FIND(δ(q,a) )
9 i f p′ 6= q′ :

10 UNION(p′ ,q′ ,q′ )
11 PUSH( S ,(p′, q′) )
12 i f ∀Si∀p,q ∈ Si ε(p) = ε(q) : re tu rn True
13 e l s e: re tu rn F a l s e

Algorithm 1: The originalHK algorithm.

When applied to Algorithm 1, this set union algorithm allowsfor a worst-case time complexity
of O(k(n + m)+ 3iα(j)) = O(k(n + m)+ 3(n + m)α(n + m)). Consideringα(n + m) constant, the
asymptotic running-time of the algorithm isO(k(n+m)). The correctness of this algorithm is proved in
Section 4, Theorem 8.

3.2 Improved best-case running time

By altering the FIND function in order to create the set beinglooked for if it does not exist, i. e., whenever
FIND(i) fails, MAKE(i) is called and the setSi = {i} is created, we may add arefutationprocedure
earlier in the algorithm. This allows the algorithm to return as soon as it finds a pair of states such that
one is final and the other is not. This alteration to the FIND procedure avoids the initialization ofm+n



50 Testing the Equivalence of Regular Languages

sets which may never actually be used. These modifications toAlgorithm 1 are presented in Algorithm
2.

Although it does not change the worst-case complexity, the best-case analysis is considerably better,
as it goes fromΩ(k(n+m)) to Ω(1). Not only it is possible to distinguish the automata by the first pair
of states, but it is also possible to avoid the linear check inthe lines 12–13. The observed asymptotic
behaviour of minimality of initially connected DFAs (ICDFAs) [2], suggests that, when dealing with
random DFAs, the probability of having two equivalent automata is very low, and a refutation method
will be very useful (see Section 5).

Lemma 1. In line 5 of Algorithm 1, all the setsSi are homogeneous if and only if all the pairs of states
(p,q) pushed into the stack are such thatε(p) = ε(q).
Proof : Let us proceed by induction on the numberl of times line 5 is executed. Ifl = 1, it is trivial.
Suppose that lemma is true for thelth time the algorithm executes line 5. If for alla∈ Σ, the condition in
line 9 is false, for the(l+1)th time the homogeneous character of the sets remains unaltered. Otherwise,
it is clear that in lines 10–11,Sp′ ∪Sq′ is homogeneous if and only ifε(p′) = ε(q′). Thus the lemma is
true. �

1 def HKi ( A,B ) :
2 MAKE( p0 ) ; MAKE( q0 )
3 S = ∅
4 UNION(p0, q0, q0 ) ; PUSH( S ,(p0, q0) )
5 whi le (p,q) = POP( S ) :
6 i f ε(p) 6= ε(q) : re tu rn F a l s e
7 f o r a ∈ Σ :
8 p′ = FIND (δ(p,a) )
9 q′ = FIND(δ(q,a) )

10 i f p′ 6= q′ :
11 UNION(p′, q′, q′ )
12 PUSH( S ,(p′, q′) )
13 re tu rn True

Algorithm 2: HK algorithm with an early refutation step (HKi ).

Theorem 2. Algorithms 1 (HK) and 2 (HKi) are equivalent.
Proof : By Lemma 1, if there is a pair of states(p,q) pushed into the stack such thatε(p) 6= ε(q), then
the algorithm can terminate and returnFalse. That is exactly what Algorithm 2 does. �

3.3 Testing NFA equivalence

It is possible to extend Algorithm 2 to test the equivalence of NFAs. The basic idea is to embed the
powerset construction into the algorithm, although this must be done with some caution. Because of
space limitations, we will only sketch this extension. We call this algorithmHKe.

Let N1 = (Q1,Σ,δ1,I1,F1) andN2 = (Q2,Σ,δ2,I2,F2) be two NFAs. We assume thatQ1 andQ2

disjoint, and, we makeQN = Q1 ∪Q2, FN = F1 ∪F2, andδN (p,a) = δi(p,a) for p ∈ Qi. Consider
Algorithm 2 with the following data:q0 = I1, p0 = I2, and forp ∈ 2QN , δ(p,a) =

⋃

q∈p δN (q,a) and
ε(p) = 1 if and only if ∃q ∈ p : ε(q) = 1. Notice that when dealing with NFAs it is essential to use the
idea described in Subsection 3.2 and to adjust the FIND operation so that FIND(i) creates the setSi if it
does not exist. This way we avoid calling MAKE for each of the 2|QN | sets, which would lead directly
to the worst-case of the powerset construction.
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Theorem 3. Algorithm 2 can be applied to NFAs by embedding the powerset construction method.

As any DFA is a particular case of an NFA, all the experimentalresults presented on Section 5 use
Algorithm HKe, whether the finite automata being tested are deterministicor not.

4 Relationship with Antimirov and Mosses’ method

4.1 Antimirov and Mosses’ algorithm

Thederivative[8] of a r. e.α with respect to asymbola ∈ Σ, denoteda−1(α), is defined recursively on
the structure ofα as follows:

a−1(∅) = ∅; a−1(α+β) = a−1(α)+a−1(β);

a−1(ǫ) = ∅; a−1(αβ) = a−1(α)β + ε(α)a−1(β);

a−1(b) =

{

ǫ, if b = a;

∅, otherwise;
a−1(α∗) = a−1(α)α∗.

This notion can be trivially extended to words, and considering r. e. modulo theACI axioms, Brzo-
zowski [8] proved that, the set of derivatives of a r. e.α, D(α), is finite. This result leads to the definition
of Brzozowski’s automatonwhich is equivalent to a given r. e.α: Dα = (D(α),Σ,δα,α,Fα) where
Fα = {d ∈ D(α) | ε(d) = ǫ}, andδα(d,a) = a−1(d), for all d ∈ D(α), a ∈ Σ.

Antimirov and Mosses [6] proposed a rewrite system for deciding the equivalence of two extended
r. e. (with intersection), based on a complete axiomatization. This is a refutation method such that
testing the equivalence of two r. e. corresponds to an iterated process of testing the equivalence of their
derivatives. In the process, a Brzozowski’s automaton is computed for each r. e. Not considering extended
r. e., Algorithm 3 is a version ofAM ’s method, which was, essentially, the one proposed by Almeidaet
al. [3].

1 def AM( α,β ) :
2 S = {(α,β)}
3 H = ∅
4 whi le (α,β) = POP( S ) :
5 i f ε(α) 6= ε(β) : re tu rn F a l s e
6 PUSH(H, (α,β) )
7 f o r a ∈ Σ :
8 α′ = a−1(α)

9 β′ = a−1(β)
10 i f (α′,β′) /∈ H : PUSH( S ,(α′,β′) )
11 re tu rn True

Algorithm 3: A simplified version of algorithmAM .

4.2 A näıve HK algorithm

We now present a naı̈ve version of the Algorithm 1. It will be useful to prove its correctness and to
establish a relationship to the Antimirov and Mosses’ method (AM ). Let A = (Q1,Σ,p0,δ1,F1) and
B = (Q2,Σ,q0,δ2,F2) be two DFAs, with|Q1| = n and |Q2| = m, andQ1 andQ2 disjoint. Consider
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Algorithm 4. Termination is guaranteed because the number of pairs of states pushed intoS is at mostmn
and in each iteration one pair is popped fromS. To prove the correctness we show that inH we collect
the pairs of states of the relationR, defined below.

1 def HKn(A,B ) :
2 S = {(p0, q0)}
3 H = ∅
4 whi le (p,q) = POP( S ) :
5 PUSH(H,(p,q) )
6 f o r a ∈ Σ :
7 p′ = δ1(p,a)
8 q′ = δ2(q,a)
9 i f (p′, q′) /∈ H: PUSH( S ,(p′, q′) )

10 f o r (p,q) i n H:
11 i f ε(p) 6= ε(q) : re tu rn F a l s e
12 re tu rn True

Algorithm 4: The algorithmHKn , a naı̈ve version ofHK .

Lemma 4. In Algorithm 4, for all(p,q) ∈ Q1×Q2, (p,q) ∈ S in a stepk > 0 if and only if(p,q) ∈ H
for some stepk′ > k.

Definition 5. Let R be defined as follows:

R = {(p,q) ∈ Q1×Q2 | ∃x ∈ Σ∗ : δ1(p0,x) = p ∧ δ2(q0,x) = q}.

Lemma 6. For all (p,q) ∈ Q1×Q2, (p,q) ∈ S at some step of Algorithm 4, if and only if(p,q) ∈ R.

Lemma 7. In line 10, for all (p,q) ∈ Q1×Q2, (p,q) ∈ R if and only if(p,q)∈H.

Considering Lemma 6 and Lemma 7, the following theorem ensures the correctness of Algorithm 4.

Theorem 8. A ∼ B if and only if for all (p,q) ∈ R, ε(p) = ε(q).
Proof : Suppose, by absurd, thatA andB are not equivalent and that the condition holds. Then, there
existsw ∈ Σ∗ such thatε(δ(p0,w)) 6= ε(δ(q0,w)). But in that case there is a contradiction because
(δ(p0,w),δ(q0,w)) ∈ R. On the other hand, if there exists a(p,q) ∈ R such thatε(p) 6= ε(q), obviously
A andB are not equivalent. �

The relationR can be seen as a relation on(Q1∪Q2)
2 which is reflexive and symmetric. Its transitive

closureR∗ is an equivalence relation.

Lemma 9. ∀(p,q) ∈ R, ε(p) = ε(q) if and only if ∀(p,q) ∈ R∗, ε(p) = ε(q).

Corollary 10. A ∼ B if and only if ∀(p,q) ∈ R∗, ε(p) = ε(q).

The AlgorithmHK computesR∗ by starting with the finest partition inQ1∪Q2 (the identity). And if
A ∼ B, R∗ is a right-invariance.

Corollary 11. Algorithm 4 and Algorithm 1 are equivalent.
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4.3 Equivalence of the two methods

The Algorithm 4 can be modified to aearlier refutationversion, as in Algorithm 2. In order to do so,
we remove lines 10–11, and we insert a line equal to line 7 of Algorithm 2, before line 4. It is then
obvious that Algorithm 3 corresponds to Algorithm 4 appliedto Brzozowski’s automata of two r. e.,
where these DFAs are incrementally constructed during the algorithm’s execution. In particular, the
halting conditions are the same considering the definition of final states in a Brzozowski’s automaton.

Theorem 12. Algorithm 3 (AM) corresponds to Algorithm 4 (HKn) applied to Brzozowski’s automata
of two regular expressions.

4.4 Improving Algorithm AM with Union-Find

Considering the Theorem 12 and the Corollary 11, we can improve the Algorithm 3 (AM ) for testing
the equivalence of two r. e.α andβ, by considering Algorithm 1 applied to the Brzozowski’s automata
correspondent to the two r. e. Instead of using a stack (H) in order to keep an history of the pairs of regular
expressions which have already been tested, we can build thecorrespondent equivalence relationR∗ (as
defined for Lemma 9). Two main changes must be considered:

• One must ensure that the sets of derivatives of each regular expression are disjoint. For that we
consider their disjoint sum, where derivatives w. r. t. a word u are represented by tuples(u−1(α),1)
and(u−1(β),2), respectively.

• In the UNION-FIND method, the FIND operation needs an equality test on the elements of the set.
Testing the equality of two r. e.— even syntactic equality — is already a computationally expensive
operation, and tuple comparison will be even slower. On the other hand, integer comparison, can
be considered to beO(1). As we know that each element of the set is unique, we may consider
some hash function which assures that the probability of collision for these elements is extremely
low. This allows us to safely use the hash values as the elements of the set, and thus, arguments
to the FIND operation, instead of the r. e. themselves. This is also a natural procedure in the
implementations of conversions from r. e. to automata.

We call equivUF to the resulting algorithm. The experimental results are presented on Table 3,
Section 5.

4.5 Worst-case complexity analysis

In Almeidaet al. [3] the algorithmAM was improved by considering partial derivatives [5]. The resulting
algorithm (equivP) can be seen as the algorithmHKe applied to the partial derivatives NFA of a r. e. We
present a lower bound for the worst-case complexity of this algorithm by exhibiting a family of r. e. for
which the comparison method can be exponential on the numberof alphabetical symbols|α|Σ of a r. e.α.
We will proceed by showing that the partial derivatives NFAN of a r. e. α is such that|N | ∈ O(|α|Σ)
and the number of states of the smallest equivalent DFA is exponential on|N |.

Figure 1 presents a classical example of a bad behaved case ofthe powerset construction, by Hopcroft
et al. [11]. Although this example does not reach the 2n states bound, the smallest equivalent DFA has
exactly 2n−1 states.

Consider the r. e. familyαℓ = (a+ b)∗a(a+ b)ℓ, where|αℓ|Σ = 3+2ℓ = m. It is easy to see that the
NFA in Figure 1 is obtained directly from the application of theAM method toαℓ, with the corresponding
partial derivatives presented on Figure 2.
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q0 q1 q2 qn−1 qn

a,b

a a,b a,b

Figure 1: NFA which has no equivalent DFA with less than 2n states.

αℓ (a+ b)ℓ (a+ b)ℓ−1 (a+ b) ǫ

a,b

a a,b a,b

Figure 2: NFA obtained from the r. e.α using theAM method.

The set of the partial derivatives

PD(αℓ) = {αℓ,(a+ b)ℓ, . . . ,(a+ b), ǫ}

hasℓ+2 = m+1
2 elements, which corresponds to the size of the obtained NFA.The equivalent minimal

DFA has 2ℓ+1 = 2
m−1

2 states.

5 Experimental results

In this section we present some experimental results of the previously discussed algorithms applied
to DFAs, NFAs, and r. e. We also include the same results of thetests using Hopcroft’s (Hop) and
Brzozowski’s (Brz) [7] automata minimization algorithms. The random DFAs were generated using
publicly available tools1[2]. The NFAs dataset was obtained with a set of tools described by Almeida
et al. [4]. All the algorithms were implemented in thePython programming language. The tests were
executed in the same computer, an IntelR© XeonR© 5140 at 2.33GHz with 4GB of RAM. Table 1 shows the

Table 1: Running times for tests with complete accessible DFAs.
n = 5 n = 50

k = 2 k = 50 k = 2 k = 50
Alg. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter.

Eff. Total Avg. Eff. Total Avg. Eff. Total Avg. Eff. Total Avg.
Hop 5.3 7.3 - 85.2 91.0 - 566.8 572 - 17749.7 17787.5 -
Brz 25.5 28.0 - 1393.6 1398.9 - - - - - - -
HK 2.3 4.0 8.9 25.3 28.9 9.0 23.2 28.9 98.9 317.5 341.6 99.0
HKe 0.9 2.1 2.4 5.4 10.5 2.4 1.4 5.9 2.6 14.3 34.9 3.4
HKs 0.6 1.3 2.4 2.8 4.6 2.4 0.8 2.0 2.7 9.1 21.3 3.4
HKn 0.7 2.2 3.0 51.5 56.2 29.7 1.3 6.8 3.7 29.4 51.7 15.4

results of experimental tests with 10.000 pairs of complete ICDFAs. Due to space constraints, we only
present the results for automata withn ∈ {5,50} states over an alphabet ofk ∈ {2,50} symbols. Clearly,
the methods which do not rely in minimisation processes area lot faster. Below (Eff.) appears the
effectivetime spent by the algorithm itself while below (Total) we show the total time spent, including
overheads, such as making a DFA complete, initializing auxiliary data structures, etc. All times are
expressed in seconds, and the algorithms that were not finished after 10 hours are accordingly signaled.

1http://www.ncc.up.pt/FAdo/node1.html
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The algorithmBrz is by far the slowest. The algorithmHop, although faster, is still several orders
of magnitude slower than any of the algorithms of the previous sections. We also present the average
number of iterations (Iter.) used by each of the versions of algorithm HK , per pair of automata. Clearly,
the refutation process is an advantage.HKn running times show that a linear set merging algorithm
(such as UNION-FIND) is by far a better choice than a simple history (set) with pairs of states.HKs
is a version ofHKe which uses the automata string representation proposed by Almeidaet al. [2, 14].
The simplicity of the representation seemed to be quite suitable for this algorithm, and actually cut down
both running times to roughly half. This is an example of the impact that a good data structure may have
on the overall performance of this algorithm.

Table 2: Running times for tests with 10.000 random NFAs.
n = 5 n = 50

k = 2 k = 20 k = 2 k = 20
Alg. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter.

Eff. Total Avg. Eff. Total Avg. Eff. Total Avg. Eff. Total Avg.
Transition Densityd = 0.1

Hop 10.3 12.5 - 1994.7 2003.2 - 660.1 672.9 - - - -
Brz 8.4 10.6 - 866.6 876.2 - 264.5 278.4 - - - -
HKe 0.8 2.9 2.2 8.4 19 4 24.4 37.8 10.2 - - -

Transition Densityd = 0.5
Hop 17.9 19.8 - 2759.4 2767.5 - 538.7 572.6 - - - -
Brz 14.4 16 - 2189.3 2191.6 - 614.9 655.7 - - - -
HKe 2.6 4.3 4.9 36.3 47.3 10.3 6.8 48.9 2.5 294.6 702.3 11.5

Transition Densityd = 0.8
Hop 12.5 14.3 - 376.9 385.5 - 1087.3 1134.2 - - - -
Brz 14 15.8 - 177 179.6 - 957.5 1014.3 - - - -
HKe 1.4 3.2 2.7 39 49.9 10.7 7.3 64.8 2.5 440.5 986.6 11.5

Table 2 shows the results of applying the same set of algorithms to NFAs. The testing conditions
and notation are as before, adding only thetransition densityd as a new variable, which we define as
the ratio of the number of transitions over the total number of possible transitions (kn2). Although it is
clear thatHKe is faster, by at least one order of magnitude, than any of the other algorithms, the peculiar
behaviour of this algorithm with different transition densities is not easy to explain. Considering the
simplest example of 5 states and 2 symbols, the dataset with atransition densityd = 0.5 took roughly
twice as long as those withd ∈ {0.1,0.8}. On the other extreme, makingn = 50 andk = 2, the hardest
instance wasd = 0.1, with the cases whered ∈ {0.5,0.8} present similar running times almost five times
faster. In our largest test, withn = 50 andk = 20, neitherHop norBrz finished within the imposed time
limit. Again, d = 0.1 was the hardest instance forHKe, which also did not finish within the time limit,
although the cases whered ∈ {0.5,0.8} present similar running times.

Table 3 presents the running times of the application ofHKe to r. e. and their comparison with the
algorithms presented by Almeidaet al. [3], whereequiv andequivP are the functional variants of the
originalAM algorithm.equivUF is the UNION-FIND improved version ofequivP. Although the results
indicate thatHKe is not as fast as the direct comparison methods presented in the cited paper, it is clearly
faster than any minimisation process. The improvements ofequivUF overequivP are not significant (it
is actually considerably slower for r. e. of length 100 with 2symbols). We suspect that this is related to
some optimizations applied by thePython interpreter. We state this based on the fact that when both
algorithms are executed using a profiler,equivUF is almost twice faster thanequivP on most tests.

We have no reason to believe that similar tests with different implementations of these algorithms
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Table 3: Running times (seconds) for tests with 10.000 random r. e.
Size/Alg. Hop Brz AM Equiv EquivP HKe EquivUF

k = 2 10 21.025 19.06 26.27 7.78 5.512 7.27 5.10
50 319.56 217.54 297.23 36.13 28.05 64.12 28.69
75 1043.13 600.14 434.89 35.79 23.46 139.12 60.09
100 7019.61 1729.05 970.36 60.76 48.29 183.55 124.00

k = 5 10 42.06 25.99 32.73 9.96 7.25 8.69 6.48
50 518.16 156.28 205.41 33.75 26.84 67.7 21.53
75 943.65 267.12 292.78 35.09 25.17 161.84 28.61
100 1974.01 386.72 567.39 54.79 45.41 196.13 37.02

k = 10 10 61.60 31.04 38.27 10.87 8.39 9.26 7.47
50 1138.28 198.97 184.93 34.93 28.95 72.95 22.60
75 2012.43 320.37 271.14 35.77 26.92 195.88 30.61
100 4689.38 460.84 424.67 52.97 44.58 194.01 39.23

would produce significantly different ordering of its running times from the one here presented. However,
it is important to keep in mind, that these are experimental tests that greatly depend on the hardware, data
structures, and several implementation details (some of which, such as compiler optimizations, we do
not utterly control).

6 Conclusions

As minimality or equivalence for (finite) transition systems is in general intractable, right-invariant rela-
tions (bisimulations) have been extensively studied for nondeterministic variants of these systems. When
considering deterministic systems, however, those relations provide non-trivial improvements. We pre-
sented several variants of a method by Hopcroft and Karp for the comparison of DFAs which does not
use automata minimization. By placing a refutation condition earlier in the algorithm we may achieve
better running times in the average case. This is sustained by the experimental results presented in the
paper. We extended this algorithm to handle NFAs. Using Brzozowski’s automata, we showed that a
modified version of Antimirov and Mosses’ method translatesdirectly to Hopcroft and Karp’s algorithm.
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