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Introduction

The universal adoption of electronic health records (EHRs) presents an unprecedented opportunity to fuel population-
scale development of research-grade computational phenotypes (CPs). CPs can enable large-scale biomedical research
and ultimately improve therapeutic decision-making and fuel mechanistic insight!-2. However, several barriers to the
development, validation, and implementation of CPs must be overcome before their potential can be fully realized.

Phenotype knowledgebases like eMERGE’s PheKBl|are rich repositories of domain expert-derived CPs. Unfortunately,
most of the CPs cannot easily be implemented across different EHR systems because they are tailored to specific
source vocabularies (SV). Common data models (CDM) provide a practical solution to this problem by enabling the
harmonization of multiple SVs to a smaller set of pre-aligned standard terminologies (ST). However, even with robust
CDMs like OMOP or i2b2, one could employ different strategies to align the clinical codes (e.g. ICD-9-CM:314.0,
LOINC:14288-5) provided in a CP definition to a CDM (e.g. exact string- or manual-mapping, similarity algorithm-
derived). Understanding the trade-offs of these different vocabulary mapping strategies is a vital next step towards
enabling CDM-driven CP automation.

Recent work by Hripcsak et al.? provides one of the first robust examinations of the effects of different vocabulary
mapping strategies on patient cohort creation. They translated the diagnosis codes of nine PheKB CPs from ICD-9-
CM to SNOMED CT, OMOP’s ST for diagnoses. They demonstrated that for most phenotypes, little information was
lost and error rates varied by the mapping approach, when mapping from the SV to the OMOP ST. In some cases,
information was gained (i.e. using the SNOMED CT hierarchy enabled the inclusion of additional relevant diagnosis
codes). This work had important limitations: (1) mapping only a single SV to an OMOP ST; (2) examining only
diagnoses or condition codes; and (3) creating patient cohorts using only the presence of at least one diagnosis code,
thus ignoring the clinical logic (also referred to as the phenotype definition). Our objectives were to address these
limitations by providing a comprehensive examination of how different vocabulary mapping strategies, using both the
clinical code sets and the logical phenotype definitions across all clinical domains (i.e. conditions, medications, labs,
procedures, and observations), effects the creation of patient cohorts for both case and control groups.

Methods

Data. We used two independent de-identified datasets: (1) all 11354364 visits, at Childrens Hospital Colorado
(CHCO) and (2) 58976 adult intensive care visits from the MIMIC III database. Both datasets were standardized
to OMOP V5. The study was approved by the Colorado Multiple Institutional Review Board |(15-0445).

Phenotypes. Seven PheKB phenotypes: Attention-deficit/hyperactivity disorder (ADHD), Appendicitis, Crohn’s Dis-
ease, Sickle Cell Disease (SCD), Sleep Apnea, Steroid-Induced Osteonecrosis (SIO), and Systemic Lupus Erythe-
matosus (SLE).

Experiments.

We performed the experiments shown in Figure [I] These were designed to elucidate the effects of using (1) different
vocabulary mapping strategies (i.e. exact- vs. fuzzy string mapping using varying levels of the ST terminology
hierarchies as well additional OMOP resources, like the concept synonym table), (2) different types of clinical data


https://www.phekb.org/
https://www.ohdsi.org/data-standardization/the-common-data-model/
https://www.i2b2.org/
https://github.com/HealthDataCompass/CHCODeID

(i.e. using only condition codes vs. all available clinical domains), and (3) examined their effects when using only the
clinical code sets (like Hripcsak et al.?) or using both clinical code sets and phenotype definitions. This resulted in 36
mapping strategies x two types of clinical data x two CP approaches for a total of 144 comparisons for each case and
control group across the seven CPs. Due to space limitations, we will only report results for cases.

Evaluation Metrics. Similar to Hripcsak et al.3,
for each comparison, we calculated false negative
(FN) and false positive (FP) error rates as the num-
ber of incorrectly included or missed patients, re-
spectively. The patient cohorts created from the
SV clinical code set provided by the CP authors
were used as the gold standard patient cohorts. A
small subset of FP/FN patients from each CP were
manually verified by our team of clinical experts.
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ADHD (CHCO: 17639/4472; MIMIC: 131/58), Figure 1. Experimental Design.

Appendicitis (CHCO: 4178/2948; MIMIC: 30/23),

Crohn’s Disease (CHCO: 754/477; MIMIC:

272/189), SCD (CHCO: 333; MIMIC: 13), Sleep Apnea (CHCO: 21631; MIMIC: 2189), SIO (CHCO: 337/108;
MIMIC 48/20), and SLE (CHCO: 446/0; MIMIC 178/0). The FP and FN error rates ranged from 0-88% and 0-25%,
respectively. In both cases, the highest error rates were observed in the ADHD CP when using a fuzzy-matching map-
ping strategy that included all of the concept’s synonyms and descendants. Next, we analyzed the mapping strategies
using only the clinical codes and the phenotype logic. Similar patterns were observed: ADHD (CHCO: 3624/1706;
MIMIC: 17/0), Appendicitis (CHCO: 4178/367; MIMIC: 30/18), Crohn’s Disease (CHCO: 230/199; MIMIC: 1), SCD
(CHCO: 1351/1308; MIMIC: 54/9), Sleep Apnea (CHCO: 21631; MIMIC: 2189), SIO (CHCO: 168/61; MIMIC 6/0),
and SLE (CHCO: 0; MIMIC: 0). The observed FP and FN error rates ranged from 0-49% (ADHD) and 0-37% (Ap-
pendicitis), respectively. Similar to using only clinical codes, the fuzzy-matching mapping strategy that included all of
the concept’s synonyms and descendants resulted in the highest error rates. In all analyses, an exact mapping strategy
that included the children of each clinical concept resulted in the lowest error.

Conclusion

Our preliminary findings using only clinical codes corroborate prior work by Hripcsak et al.?. When including clinical
codes and phenotype definitions, we found that utilizing automated vocabulary mapping strategies resulted in lower
FP rates, but high FN rates. Work is currently underway which extends these findings by: (1) adding two addition CPs;
(2) including new domain expert verified mapping strategies; and (3) performing expert verification of the resulting
patient cohorts.
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