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Abstract
Feedback-directed optimization (FDO) is a general term used to
describe any technique that alters a program’s execution based on
tendencies observed in its present or past runs. This paper reviews
the current state of affairs in FDO and discusses the challenges
inhibiting further acceptance of these techniques. It also argues
that current trends in hardware and software technology have
resulted in an execution environment where immutable executables
and traditional static optimizations are no longer sufficient. It
explains how we can improve the effectiveness of our optimizers by
increasing our understanding of program behavior, and it provides
examples of temporal behavior that we can (or could in the future)
exploit during optimization.

1 Introduction
We often optimize applications to eliminate unnecessary gener-

ality and to streamline their execution on modern computing plat-
forms. Feedback-directed optimization(FDO) is a general term
used to describe any technique that alters a program based on infor-
mation gathered at run time. This paper focuses on FDO techniques
for improving performance. It presents a view of the field today and
a vision for its future. It points out that current trends in application
development, software engineering, hardware technology, and the
Internet are increasing the need for FDO. And it argues that, to meet
this need adequately, we should alter some commonly-held percep-
tions about executables and the execution engine.

Traditionally, FDO has been viewed as anoff-line technique:
The programmer runs an application one or more times to gather
statistics that summarize the program’s prevalent behavior and
describe its execution environment. These statistics are then used to
create a new program binary. Off-line refers to the fact that the opti-
mization takes placeafter (as opposed toduring) program execu-
tion. This type of FDO has a long history of use by programmers
interested in tuning their code to increase performance. In addition,
researchers in programming languages and compilation have pro-
posed and built a wide range of systems that are able to perform
FDO with little or no programmer intervention.

Though the application of FDO is most often associated with
off-line techniques, perhaps the greatest commercial success of
FDO has come from the area of computer architecture. In the
design of modern microprocessors, computer architects dedicate a
large amount of their silicon budget to both capturing and exploit-
ing program tendencies at run time. Caches and out-of-order execu-
tion are just two examples of hardware techniques that use feedback
to affect a program’s execution. Caches reduce the cost of some
memory accesses at the expense of others based on observations of
previous program activity. Out-of-order execution dynamically
adjusts the order of the instructions in the instruction stream based
on observations of instruction latency. Caches and out-of-order exe-
cution areon-line versions of FDO. As I will discuss, there is a
growing interest in software-based on-line techniques for FDO.

My claim that programmers, compilers, and hardware routine
perform many kinds of FDO shows that I have a very broad view
the definition of FDO. Specifically, I view any technique that alter
the realization of a program based on tendencies observed in
present run or in past runs as a FDO technique. Furthermore, th
techniques may be implemented in software, hardware, or so
combination of the two. Tasks that we have traditionally viewed
compiler tasks, such as instruction scheduling and register allo
tion, are now routinely done in hardware. Many of the recentl
announced on-line techniques for FDO rely on a combination
hardware and software mechanisms.

In addition to my broad view of what FDO is, I also have
broad view of when we should be able to apply FDO. My view is
result of the following answers to two simple questions: When
the first time that I would like my program to run quickly? When
will I no longer need my program to run quickly? The obviou
answers are, respectively, immediately after it is compiled for t
first time and once I have run it for the last time. If we define th
lifetime of a programas the time between its first compilation and
its last execution (inclusive), then I am saying that we should
able to perform FDO at any time during a program’s lifetime.

Thinking about optimization asrecurring when neededis conve-
nient for several reasons:

• First, this view directly addresses the well-known issue th
we cannot build a fully optimizing compiler, one capable o
transforming any program into an equivalent program wi
identical input/output behavior and a provably-minimal exec
tion time [7]. If optimization can occur at any point in a pro
gram’s lifetime, we can imagine scenarios in which it i
possible to apply new optimization techniques to existin
binaries even after they have been shipped.

• Second, this view gives us the freedom to perform an optim
zation when the data for that optimization is available (Adve
al. [1] refer to this idea of anoptimization continuum) and to
vary the persistence of the optimizations that we perform
Optimizations that are produce undesirable side effects, su
as binary bloat and machine dependency, would be mov
toward the shorter end of the persistency scale. Today, so
ware vendors hesitate to perform traditional profile-driven an
machine-specific optimizations because these optimizatio
will persist for the entire lifetime of a program. This persis
tence implies that the usage patterns and machine environm
identified at compile time remain unchanged over the pr
gram’s lifetime. For many commercial applications, this is
bad assumption. By no longer requiring the effect of an op
mization to persist indefinitely, we can allow executable
adapt to changes in their usage and environment.

• Third, this view helps us to regain the original promise of sof
ware—that it is flexible and easy to change. Much of the rap
acceptance of run-time binding techniques has come from
software industry’s realization that one can use these te
niques to simplify the task of patching shipped binaries an
integrating third-party software extensions.
1



pro-
rks.

fea-
ns

all
can
ter-
w
ro-
4]
n

es
-
e-
h,

f the
h
ro-

iles
o-
ave

on

ial

es,

ile

of
en
,
), it
ng

In
es,
ly

dur-
ne-
f

iza-
t a
ti-
xe-
rs to
e

m
s
I

m
for-
are

ec-

eed-
st
The rest of this paper is organized as follows: Section 2
describes how recent advances in hardware and software technol-
ogy are increasing the need for FDO (in general) and on-line opti-
mization (in particular). Having established the importance of the
area, Section 3 proceeds with a brief review of the current state of
affairs in FDO, and it presents a categorization of existing
approaches. From this review, we extract two definite trends: a
movement toward units of optimization based on run-time program
behavior; and a movement toward executables as mutable objects.
Sections 4 and 5 discuss each of these trends in turn. Section 6 enu-
merates several challenges to the vision presented in this paper, and
it highlights on-going research projects that may address these chal-
lenges. Finally, Section 7 concludes.

2 The Increasing Need for FDO
This section describes the promise of FDO and motivates the

need for the broader approach to program optimization discussed
above. Section 2.1 begins with a brief discussion of profile-guided
compilation (PGC), its growing commercial acceptance, and its
future potential. Though PGC is a powerful technique for FDO, it
has many shortcomings. Section 2.2 describes the limitations of the
traditional static model of optimization, and it lists several trends in
hardware and software technology that make this traditional static
model an ineffective and incomplete solution. Dynamic FDO sys-
tems have been built that address one or more of these trends, and
in Section 3, we look at a representative subset of those efforts.

2.1 Profile-guided compilation

As Brian Kernighan and Rob Pike state in the preface of their
book entitledThe Practice of Programming, simplicity, clarity, and
generality form the three basic principles of good software [31].
PGC addresses the performance impact of generality, the third of
these principles. By generality, Kernighan and Pike mean that a
program should work well in a wide array of situations [31]. How-
ever, a program written to function in many situations is typically
slower than one written to handle one or a few specific situations.
In PGC, the compiler attempts to mitigate the cost of a program’s
generality by using information, such as a summary of how often
each basic block in the compiled program executed in one or more
previous program runs (i.e. block profiles), to focus its optimization
efforts on the frequently executed portions of the program and to
understand the run-time tendencies within these portions.

Though PGC has been around for many years, it has only
recently begun to be commercially accepted and widely used.
Today, almost every popular production compiler, with the notable
exception of the GNU C compiler, has a mode in which it performs
PGC. PGC exists commercially not because it is easy to support or
use (as discussed below), but because it achieves noticeable perfor-
mance improvements. The rest of this section will focus on the
effectiveness of PGC in the Compaq GEM compiler, as reported by
Cohn and Lowney [14]; this work is representative of the results
reported for other commercial compilers [8,42].

Cohn and Lowney report that the SPECint95 benchmarks run
17% faster (on average) when compiled with FDO than when com-
piled with GEM’s most aggressive level of classical optimization
[14]. This sizable speed-up is quite impressive given the maturity of
the baseline against which it is compared. Even so, even more
impressive results are possible given the trends in application
development and the recent research results in PGC.

Though the benchmarks in SPECint95 are real applications, sev-
eral researchers have noted the qualitative differences between
these applications and the graphical and interactive desktop appli-
cations used by a large segment of the population. Lee et al. [33]

suggest that the dominant execution paths in these desktop
grams may be less predictable than the paths in SPEC benchma
They note that the desktop benchmarks have a larger number of
tures and that more of their execution is determined by interactio
with a user. Wang, Pierce, and McFarling [51] state that sm
changes in the position of the mouse or windows on a screen
cause large changes in the execution paths of today’s popular in
active applications. Wang and Rubin [50] go farther and show ho
differences in the usage of these desktop applications impact p
file-based program translation. In addition, Cohn and Lowney [1
mention briefly that in their experience the benefit from PGC ofte
grows as the size and complexity of the application grows.

The GEM compiler, like most other commercial compilers, us
point profiles to direct its optimization efforts. Block and edge pro
files are examples of point profiles—profiles that provide an aggr
gate execution count for individual program points. In researc
there has been a resurgence in the area of PGC because o
development of more detailed profiles. A path profile, whic
records execution counts for sequences of program blocks (i.e. p
gram paths), is an example of one of these more detailed prof
[11,54]. Path profiles provide a greater level of insight into a pr
gram’s run-time tendencies. Several researchers [22,25,26,53] h
shown that the use of more detailed profiles during optimizati
can yield greater improvements in program performance.

Overall, work in the field of PGC demonstrates that the potent
benefits of program specialization will increase as

• applications become more complex, include more featur
and depend more on user input, and

• compilers are configured to use more detailed kinds of prof
information.

The question is: Can we regularly achieve the full potential
this approach? Unfortunately, I believe that the answer is no. Ev
if we ignore the demands involved in profiling an application
which are well documented elsewhere (e.g., see Conte et al. [17]
is still quite difficult to achieve sizable and consistent benefits usi
only PGC.

2.2 Ineffectiveness of traditional model

PGC uses a fairly static model of program specialization:
order to optimize the program for a new set of program tendenci
the program must be re-compiled. As such, PGC works well on
when the actual run-time program tendencies match those used
ing specialization. We can make a similar statement about machi
specific optimization: It works well only when the characteristics o
the actual execution engine match those assumed during optim
tion. The obvious answer to these problems is to perform FDO a
point closer in time to the program execution. In this way, the op
mizer can use accurate and timely information concerning the e
cution environment and program usage. This has led researche
view optimization as a continuum [1] and to explore a wide rang
of more dynamic techniques for FDO. (I use the generic ter
dynamic optimizationwhen referring to the range of technique
beyond PGC.) In a moment, I will reflect on this range, but first
focus on the reasons for the recent explosion1 in the level of interest
and activity in the area of dynamic optimization.

Much of the recent interest in dynamic optimization stems fro
a widely-held belief that these techniques can address the per
mance needs of the recent trends in computer architecture, softw
engineering, and the Internet. Stated another way, it is the ineff

1. There have been three successful workshops on binary translation, f
back directed optimization, and dynamic optimization all during the fir
five months of the 1999-2000 academic year.
2
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tiveness of the traditional static model of optimization in handling
these trends that has fueled the recent explosion in dynamic tech-
niques.

To better understand the impact of the recent trends on the tradi-
tional static model, let us quickly review the history behind com-
pile-time optimization. Assemblers and then compilers were
originally developed to raise the level of programming abstraction.
By removing the need for the programmer to deal with the intrica-
cies of the target machine, the programmer was freed (in theory) to
focus on algorithmic issues and to produce code that was easy to
understand, debug, and maintain. Compile-time optimization was
developed to eliminate the performance penalties of this abstrac-
tion. As Aho et al. [2] state, “if a compiler can be relied upon to
generate efficient code, then the user can concentrate on writing
clear code.” In fact, much of the early success of FORTRAN is
attributed to the fact that the IBM FORTRAN compiler was able to
produce optimized code that rivaled the performance of hand-coded
assembly [9].

Trends in computer architecture. As mentioned in the intro-
duction, hardware techniques for FDO began to appear as soon as
computer architects noticed the growing gap between processor and
memory speeds. The problem was that the traditional static model
of optimization froze in the executable not only what was to be
done at run time but also what was thought to be the best way to do
it. As the pace of hardware evolution and the importance of support
for legacy binaries have grown over time, the burden of re-optimiz-
ing a binary for the current usage and machine environment has
fallen on the hardware. Re-compilation to achieve re-optimization
is viewed as commercially impractical. As Smith and Sohi [44]
state in their survey paper on the design of modern superscalar
microprocessors, hardware should simply view executables as a
specification of what has to be done and not how it should be done.

Unfortunately, simply augmenting the traditional static model of
optimization with run-time optimization in hardware is not a pana-
cea. In fact, it does not even adequately address all of the optimiza-
tion issues introduced by computer architects. For example,
architects extend existing ISAs with new instructions (e.g., prefetch
or multimedia instructions) because they want the compiler to gen-
erate and the executable to use these new instructions directly.
There would be no need for these instructions to appear in the ISA
if the hardware could dynamically transform existing executables
and achieve the same level of performance. Furthermore, next-gen-
eration architectures like the IA-64 [18] have been designed with
the expectation that the compiler will apply sophisticated profile-
guided and interprocedural optimizations—many of which are still
being developed. Without these optimizations, much of the poten-
tial performance benefits of these new architectures will be lost.

Trends in software engineering.One of the claims made by
proponents of object-oriented programming is that this paradigm
leads to code that is easy to understand, reuse, and maintain. How-
ever, object-oriented mechanisms like dynamic dispatch and pro-
gramming styles like code factoring yield programs that are
difficult to optimize using traditional static approaches. There exists
a large body of work addressing the performance penalty of object-
oriented languages and programming styles; specific solutions and
approaches can be found in the proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA) and the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI).
With respect to the point of this paper, we note a rising use of
object-oriented techniques in the commercial world and a rising
interest in on-line FDO techniques for overcoming the aforemen-
tioned performance penalties. In addition, we note the fact that
applications written in these languages have smaller programmer-

specified code units than applications written in imperative la
guages like C and FORTRAN.

The commercial acceptance of run-time binding techniques a
severely limits the effectiveness of traditional static optimization.
growing number of software manufacturers choose to ship th
applications as collections of dynamically linked libraries (DLLs
DLLs are easier to create and update than statically linked librar
[34]. They simplify for a software vendor the task of patchin
shipped binaries and integrating third-party extensions. Howev
static optimization across module boundaries becomes imposs
if the only time that the entire executable exists is at run time.

Trends in the Internet. The tremendous growth and interest in
the Internet has brought with it a call for the development ofmobile
code. The idea behind mobile code is that applications written usi
this paradigm can be distributed across computer networks a
automatically run upon arrival at the network end point. Implicit i
this idea is the expectation that these applications would be abl
run across a wide range of hardware platforms and computing en
ronments. Traditional PGC assumes that the target hardware p
form and computing environment are relatively stable. Wit
projects like HotSpot [47] and Jalapeño [12], computer compan
have already come to the realization that, if they want mobile co
written in Java to not only run but run efficiently, they must adap
traditional profile-guided optimization techniques to the run-tim
environment.

3 FDO Today
As I mentioned in the introduction, FDO is a well-accepte

technique used by almost every hardware manufacturer to impr
the performance of the applications running on their processo
Though this is the most successful use of FDO, many oth
approaches exist. Table 1 presents a categorization of these exis
approaches based primarily on how dynamic each is (i.e., h
quickly each reacts to changes in program tendencies or the exe
tion environment). In general, PGC is least dynamic of all of th
approaches, while run-time optimization in hardware is the mo
For each category, I provide several examples.

I will also use this categorization to make general commen
about the transparency, scope, and run-time overhead of e
approach.Transparencyrefers to the amount of programmer/use
effort involved in performing FDO. I consider a system that is ab
to perform FDO automatically (i.e., without any programmer ass
tance and without the knowledge of the user) to befully transparent.
Scoperefers to the size of the code segment analyzed during op
mization; I refer to this segment as theunit of optimization. Typi-
cally, the larger the scope is the more aggressive, and thus effec
the optimization. Section 4 discusses this issue in much grea
detail.

I discussed PGC in Section 2.1, and there I mentioned that P
is often characterized by large optimization scopes and zero r
time overheads (all of the analysis and transformations for optim
zation are done at compile time). However, as I noted in Sect
2.2, it is becoming increasingly difficult to maintain a large optim
zation scope due to recent trends in software engineering. Furth
more, this approach suffers compared to the others due to its lac
transparency and inability to react quickly (or at all) to changes
program behavior or the execution environment. Approaches
off-line optimization systems based on continuous profiling we
developed to address these problems.

Systems like Morph [55] had the goal of making profile collec
tion and executable re-optimization automatic. This goal w
accomplished by running a profile collection agent and a re-optim
zation agent directly on the end user’s machine. The profile colle
tion agent would continuously gather and maintain a database
3
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profiles. Since these profiles were gathered on the end user’s
machine, they obviously reflected the prevalent program usage. In
the background, after the user had stopped running an application,
the re-optimization agent would run, analyze the profile data
recently collected, and re-optimize the application if it determined
that re-optimization would be worthwhile. The run-time overhead
of this kind of approach is kept low by using low-overhead profil-
ing systems (e.g., DCPI [5]) and because re-optimization occurs
off-line. The scope of this approach is actually better than PGC
since optimization can occur on the linked executable. Notice that
re-optimization may include translation from one instruction set to
another.

Instead of completing the optimization process at compile time
and then attempting to re-optimize the application after one or more
program runs, techniques for run-time code generation stage the
compilation process so that optimization can occur during the pro-
gram run. In general, systems like DyC [23,24] perform the major-
ity of the optimization process at compile time and leave only
selected pieces for completion at run time. In particular, these sys-
tems use concepts and techniques from the partial evaluation com-
munity to determine what program segments could benefit from
optimization based on information available only at run time. The
compiler then creates an executable capable of capturing that run-
time information, performing the associated optimization, and com-
pleting the code generation process. Because the bulk of the work is
done at compile time, these systems can exhibit low run-time over-
heads. As structured today, the systems for run-time code genera-
tion rely on the programmer to indicate what program segments to
optimize dynamically. There is however on-going work investigat-
ing ways to improve the transparency of this kind of an approach
(e.g., see Mock et al. [37]).

I separate the on-line optimization systems in the last two cate-
gories in Table 1 from those listed under dynamic code generation
because all of the remaining approaches share the goal of being as
transparent as possible. Still, these last two categories encompass a
wide range of approaches and techniques. I divide them into only
two broad categories: those that use only software or a combination
of hardware and software techniques (on-line optimization in soft-
ware), and those that use only hardware techniques (on-line optimi-
zation in hardware).

The hardware-only approaches are simply the next steps in the
logical progression of the computer industry’s work on caching and
out-of-order execution. Computer architects are working hard to
increase the optimization scope from something akin to peephole
optimizations to something closer to trace-based optimizations
(e.g., see Friendly, Patel, and Patt [21]). In the future, the hardware
will not just renumber registers, rearrange the instruction stream,

and remove unconditional branches, but it will change and ev
eliminate large sequences of instructions.

The approaches that include some element of software supp
vary significantly in the scope of their on-line transformations
since some of these approaches also perform binary translat
However, in terms of their application of sophisticated optimiza
tion, all of the recent systems have beenselective: optimization
occurs only on those program segments that account for the ma
ity of the execution time. This emphasis is a direct consequence
the need to minimize the run-time overhead of the optimizer. To g
the most benefit from this time spent optimizing, we want to ide
tify not only those program segments that are dynamically impo
tant, but also those that are most amenable to optimization. How
best accomplish this is on-going research and the topic of Sectio
Overall, I feel that we have just begun to explore the potential of t
systems in this category.

In summary, Table 1 illustrates that there exists a wide range
approaches that use FDO to alter a program and improve its r
time performance. If we step back from the details however, we c
see two definite trends emerging from this set of technologies. T
first is a movement toward units of optimization based on a pr
gram’s run-time behavior and not on a set of programmer-specif
boundaries. The reasons for this movement are further discusse
Section 4. The second is a movement away from executables
immutable objects. As we have discussed, the importance of F
has grown as hardware and software technology has advanced
as the lifetimes of applications have increased. Since FDOs dep
upon more than just information gleamed from the static code ba
(i.e., they depend upon information that may change in the future
may not even be available at compile time), it is unreasonable
expect that the compiler can produce an executable that is appro
ate and effective for the entire lifetime of any long-lived applica
tion. In Section 5, we present further arguments for the concept
mutable executables.

4 The Unit of Optimization
Traditionally, static optimizers have used code boundari

defined by the programmer as the boundaries for their units of op
mization. For example, compilers often optimize each procedure
an application in isolation. As programmers concern themselv
more with issues of understandability and maintainability and
more programmers adopt the object-oriented programming pa
digm, these programmer-defined boundaries will make less and
sense as delimiters for units of optimization. The brute-forc
approach of analyzing and transforming the application as a sing
monolithic piece of code fails because many of our existing glob

Category Examples

Profile-guided compilation GEM [14], IMPACT [29],
Machine SUIF [45]

le
ss

d
yn

a
m

ic

Off-line optimization
using continuous profiling

DCPI [5], FX!32 [28],
Morph [55]

Run-time code generation ‘C [20], DyC [23],
Tempo [15] ↔

On-line optimization
in software

Crusoe [32], DAISY [19], Dynamo [10],
Dynamic Rescheduling [16],
Jalapeño [12], HotSpot [47]

m
o

re
d

yn
am

ic

On-line optimization
in hardware

Trace caches [40],
dynamic trace optimizations [21]

Table 1: Categorization of existing approaches for FDO. The lists of example systems are not meant to be exhaustive. In particul
these lists focus mainly on the recent efforts.
4
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optimizations do not scale well as the optimization scope grows.
This approach also runs counter to the trend toward shipping appli-
cations as a collection of independent DLLs. A different approach
is needed.

4.1 Setting boundaries based on run-time behavior

This section argues that the optimization of a program by inde-
pendently optimizing pieces of that program is not the problem. By
continuing this approach, we can continue to use and benefit from
the large pool of existing global optimization algorithms. Instead of
changing how we determine the size of the units of optimization,
this section argues for changing how we determine the contents of
them. In particular, optimizers should select optimization units that
reflect the current program behavior (as determined by analysis of
feedback information) and are reasonably sized (given the compu-
tational complexity of the optimization techniques).

As noted by Cohn and Lowney [13], static optimizers appear to
miss a large number of optimization opportunities when one
reviews the dynamic instruction stream. Computer architects have
also noticed this fact and proposed techniques such as value predic-
tion [35] and instruction reuse [46], which exploit the redundancies
in the dynamic instruction stream. From the perspective of this
paper, these observations argue that we group together in the units
of optimization those segments of the application that execute fre-
quently together.

This idea is not entirely new. Hank, Hwu, and Rau [27] pro-
posed this kind of an approach for traditional PGC systems, and the
mechanism for instruction scheduling and register allocation in the
Multiflow compiler [36] is a limited example of this kind of an
approach. All of the prior work however has usedpoint profiles—
profiles such as edge or block counts that aggregate how often indi-
vidual program points appeared in an execution trace—to identify
the segments of the application that execute frequently together.
Though these profiles provide us with more information about a
program’s behavior than we can determine through static analysis
alone [49], the level of understanding that we can gain from point
profiles is limited, especially if the program’s execution involves
non-trivial control flow. Figure 1 provides an example where two
different executions of the same code segment produce the same
edge profile.

Recent work in the area oftemporalprofiles—profiles such as
path counts that aggregate how often sequences of basic blocks
appeared in the execution trace [11,54]—provide more insight into
the program’s temporal behavior. Using temporal profiles, it is pos-
sible to build units of optimization that more accurately reflect the
run-time behavior of an application. For instance, Young and Smith
[53] describe how to use path profiles to construct and schedule

superblocks that match the most frequently occurring progra
traces. Using the edge profile in Figure 1, a traditional superblo
unroller would produce an unrolled loop body with the bloc
sequence ABDABDABD (assuming an unrolling factor of three
since all it can determine is that block B occurs more frequen
than block C. Using path profiles of the traces in Figure 1, Youn
and Smith’s algorithm would produce the following: a singl
unrolled loop body with the block sequence ABDABDACD for the
path profile of trace #1; and two unrolled loop bodies with the bloc
sequences ABDABDABD and ACDACDACD for the path profile
of trace #2. Clearly, we can achieve a higher completion rate
using the path-profile-based unrollings than the edge-profile-bas
one. Gloy and Smith [22] collect a different kind of temporal profil
and show how to use it to achieve better procedure layouts.

4.2 Understanding phased behavior

Though the optimization community has gained greater insigh
into program behavior based on existing temporal profiling tec
niques, I believe that we have only begun to find ways to identi
interesting program behavior and use that information to direct p
gram optimization. This section describes one as yet large
untapped aspect of program behavior, calledphased behavior, that
software-based on-line optimization systems can use to make t
optimization efforts cost effective. In this section, I define what
mean by the term phased behavior, illustrate some examples
phased behavior, and argue why such behavior might be interes
to an on-line optimization system. Section 4.3 uses some of
insights in this section to describe how we can build on-line mon
toring systems that are able to identify the important run-tim
behaviors of an application in time to exploit them.

I define phased behavior as the tendency for a piece of code
exhibit a sequence of behaviors, each for an extended period
time. For the purposes of this definition, the time period may corr
spond to a single program run, or it may span multiple runs. In
application that displays phased behavior, there exists at least
code region where optimizing for aggregate behavior is sub-op
mal. We can obtain better performance if we apply one optimizati
strategy to that region for one phase of the program’s execution a
another strategy during another phase. Phased behavior is prob
atic when the persistence of a FDO is longer than the phase.
example, phased behavior across program runs is problematic
the off-line optimization schemes that assume the aggregate beh
ior of a code segment is dominant.

Branch-based phased behavior.I begin with examples of phased
behavior associated with the execution of conditional branches. T
run-time handling of conditional branches has a tremendous eff

1

40

40

20

20

59

A

B C

D

Figure 1. Example of how point profiles limit our understanding of program behavior. From the edge profile, we cannot
determine if the program ran trace #1 or #2.

(a) Edge profile.

1

B CBA D A D A DB CBA D A D A D

Trace #1: ((ABD)2(ACD)1)20

CA DB CBA D A D A D

Trace #2: (ABD)40(ACD)20

(b) Two traces that produce the edge profile in (a).
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on the performance of modern systems, and thus any new insights
that we can gain in this area will likely have an important impact on
the industry. I start with obvious examples of phased behavior in
the execution of individual branches and then move to less obvious
(but probably more common) examples. I conclude with some
thoughts on the effect of these observations on program optimiza-
tion. The interesting issue here is that all of the examples involve
branches that are weakly biased; current optimization strategies
concerned with conditional branches are tailored toward the identi-
fication and exploitation of highly-biased branches. Except for code
transformations like static correlated branch prediction [54],
weakly biased branches are largely ignored by modern optimization
techniques.

My first few examples focus on two conditional branches that
occur in theshade procedure fromray.c of rayshade, the C ray-
tracer developed by Peter Holst Andersen [6]. Figure 2 lists the
code associated with these two branches, which I label b35 and b36.
This code looks much like the code associated with the other condi-
tional branches inray.c , and thus there is not any obvious syntac-
tic clue alerting us to the following interesting program behavior.

Figure 3 plots the execution trace of b36 whenrayshadeis run
on the input scene1. In the aggregate, b36 is a weakly-biased
branch, a branch taken 44.0% of the time. As Figure 3 illustrates
however, b36 is taken exclusively in its first 123,090 executions,
and it is never taken after that. This is a clear example of phased
behavior; b36 exhibits one behavior and then another, each for a
long period of time.

Figure 4 plots the execution trace of b35 during the same run.
This figure displays an interleaving of taken and not-taken execu-
tions (non-shaded segments) that does not appear in Figure 3. Even
so, the execution of b35 contains a long period of time where it is
always taken and two smaller periods where it is always not taken.
Overall, nearly 50% (49.1%) of this branch’s execution is spent in
the large taken segment—fairly amazing for a branch that is taken
only 66.9% of the time in the aggregate.

Figure 5 shows that the phasing behavior in Figure 3 is not
something that we could exploit using traditional profile-driven
optimization. Figure 5 plots the execution trace of b36, but this time
when rayshadeis run on the inputscene24. Comparing Figures 3
and 5, we see that b36’s execution is now more “random” than it
was underscene1. The phased behavior of this branch is influenced

by the input data set. However, the aggregate behavior of t
branch has not changed noticeably; b36 is taken 39.8% of the ti
underscene24and 44.0% of the time underscene1.

As one might expect, the execution trace of a weakly-bias
branch does not always contain long periods of time where t
branch executes in only one direction. As illustrated in Figure
however, some of these weakly-biased branches still exhibit pha
behavior that is interesting to an optimization system. In particul
Figure 6 looks at phased behavior in the bias of a condition
branch (labeled b99) in the SPECint92 benchmarkcompress.

Figure 6 shows that the bias of b99 oscillates between periods
low and high bias over time. In the aggregate, this branch would
classified as a weakly-taken branch, based on its average taken
centage of 78.0%. Clearly, this is the wrong classification for pe
ods, like the beginning of the program, where the branch is nea
always not taken.

The actual shape of the curve in the graph plotting bias agai
time depends upon the characteristics of the input data set.
understand this, I first must explain a bit more about the functioni
of the code in this section ofcompress. Branch b99 is part of the
hashing code for the code table incompress. Specifically, b99
checks to see if the probed slot in the code table is empty after
found that we did not have a hash hit. This explains the initi
increase in the bias of this branch; the table is initially empty a
slowly fills, changing the branch’s bias. The later abrupt chang
from a high to a low bias are due to the fact thatcompressimple-
ments block compression with an adaptive reset, as described in
comments in the source code ofcompress. If the compression ratio
begins to decrease after the code table reaches a predefined
threshold, the program will clear the code table, output a spec
CLEAR code, and begin a new encoding. Since this criterio
depends upon the characteristics of the input, the shape of the p
ted curve also depends upon the characteristics of the input.

The vast majority of optimizations concerned with branchin
behavior focus their attention on the aggregate behavior of ea
branch. For the branches discussed above, this would result in
optimization opportunities. The clear phased behavior in Figure
leads us to consider one optimization strategy for the first 123,0
executions of b36 and a different strategy for the last 156,727. F
thermore, given the dependence of b36's behavior on the input d
set, we would probably want to implement this flexibility in an on

Figure 2. Code snippet fromshade()in ray.c.

if (flat_object(isect.object)) { // b35
if (n_dot_v < 0.0) { // b36

// ...
}

Figure 3. Execution trace of b36 on the inputscene1. The
horizontal axis plots time from left to right as measured in

executions of this conditional branch. This branch executed
a total of 279,817 times. For each branch execution, we
mark in the vertical dimension whether the branch was

taken (T) or not taken (N).

N

T

Branch executions [1,279817]

Figure 4. Execution trace of b35 on the inputscene1. We use
shading to distinguish contiguous segments of taken (or not-

taken) executions from those segments that have an interleav
ing of taken and not-taken executions. For example, between
executions 183272 and 595513, inclusive, b35 is only taken.

T

N

Branch executions [1,839959]

Figure 5. Execution trace of b36 on the inputscene24.

N

T

Branch executions [1,579741]
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line optimizer. Considering b35, adaptation between an optimiza-
tion strategy involving speculation (to take advantage of long exe-
cution runs in one direction) and predication (for those execution
runs with no obvious predominant direction) is a potentially fruitful
avenue of attack for the branch execution pattern in Figure 4.

Existence of sizable periods of high bias in the execution history
of weakly-biased branches implies a change in the importance of
individual program paths over time. This observation may affect
how we build path-based optimizers. For example, if a branch
within a program path transitions from mostly taken to mostly not-
taken (or vice versa), it is likely that the common paths before and
after this transition share code blocks. To get the most benefit, a
path-based optimizer would duplicate the common blocks. Code
duplication impacts performance by stressing the memory hierar-
chy. If we can identify the phase transitions, we could dynamically
generate and cache the appropriate path-based optimization—
potentially improving performance by never having both versions
in memory at the same time and by linking each in as if the other
had never existed.

Value-based phased behavior.Phasing occurs not only in a pro-
gram’s control flow, but also in its value stream. The following are

two clear examples of phased behavior in the values returned
load instructions. Techniques like value prediction [35] hav
increased the research community’s interest in the values loaded
programs. Like conditional branches, the handling of memory loa
has a large impact on the overall performance of applications.

Figure 7 plots the value trace of a load (called d2542) from t
procedureBMT_CommitParts in bmt10.c of the SPECint95
benchmarkvortex. This instruction loads the base address of th
arrayVlists from the global pointer table. As Figure 7 shows, th
program initially accesses one array in memory through this poin
variable and then switches to another array for the remainder of
run. Even though this load returns more than one value, a run-ti
optimizer could take advantage of the fact that the values are
interleaved in the value trace.

As we saw earlier, interesting phased behavior may occur
traces where there is an interleaving of different results. Figure
plots the value trace of a load (called d4531) at the end of proced
addunsigned in dpath.c of the SPECint95 benchmark
m88ksim. This load restores the return address register just befor
is used in the procedure return. The value trace shows thataddun-
signed is called from just two call sites (named cs1 and cs2 f
convenience) during the program run. The interesting aspect of
trace is that, except for two small pieces at the beginning and end
the trace,addunsigned is called exclusively from cs1. During
this extensive time period, an on-line optimizer could elect to inlin
addunsigned at cs1 and do so without increasing the instructio
memory footprint.

Related Work. Though this section has presented examples
phased behavior, we do not as yet understand how common
behavior is or how much benefit we could gain from exploiting i
Even if we cannot use an improved understanding of phased beh
ior to make applications run faster, there are other ways in whi
we can use this information. For example, Sherwood and Cal
[43] are investigating this kind of program behavior to help redu
the amount of time it takes to perform architectural simulations. B
understanding the location and duration of a program’s phas
computer architects could state with confidence that a simulation
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Figure 6. Execution trace of b99 incompress.c. The top graph
plots the bias of this branch at a granularity of 5000 execu-

tions. This branch executed a total of 433,223 times. The bot-
tom graph illustrates the pattern of taken and not-taken

outcomes in the first 2500 executions.

T

N

Branch executions [1,2500]

// starting at line 790
if (hit in hash table)

// ...
else if (empty slot) // b99

// ...
else

// probe hash table Load executions [1,127499]

@(a2)

@(a1)

Figure 7. Value trace of load d2542 invortex. The horizontal
axis plots the executions of this load from left to right. For

each load execution, we record in the vertical dimension the
value returned. This load returns only two unique values: the
base addresses of arrays named (for convenience) a1 and a2

cs2

cs1

Load executions [1,73403]

Figure 8. Value trace of load d4531 inm88ksim. This load
restores the return address register. Since the load returns only

two unique values,addunsigned is called from only two
call sites during this run.
7
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only small pieces of a program’s execution would match the results
obtained from a simulation of the entire program execution. Albo-
nesi [3] has proposed an adaptive processor architecture based on
observations of variations in a program’s instruction level parallel-
ism (ILP). (Jouppi [30] was the first to examine the distribution of
ILP in programs.) Albonesi describes a processor that automatically
reduces the complexity of its pipeline when ILP falls so that the
clock frequency (and thus performance) can improve. Finally, we
may be able to use our understanding of program phases to design
better techniques for dynamically managing processor temperature
and power [39].

4.3 Monitoring to find the important run-time units

To this point, we have discussed the need to build optimization
units whose boundaries reflect a program’s current behavior, and
the potential benefits of collecting many different and extensive
kinds of temporal information. To take advantage of this informa-
tion in an optimizer, there are two more questions that we need to
discuss: how we can monitor a program’s execution to collect the
desired data about the program’s behavior; and how to use this
information to identify the actual unit of optimization. This section
concentrates on the issue of program monitoring. Young [52] pro-
vides an answer to the second question for optimizers based on path
profiles; more general answers to this question will have to wait
until we have gained more experience with temporal profiles and
their use in selecting optimization units.

In this section, I focus on the category of systems that perform
optimization on-line and in software. Many of the existing systems
in this category already contain on-line monitoring systems that
allow them to focus their optimization efforts and better amortize
their optimization costs. For example, the IBM DAISY system [19]
and the IBM Jalapeño dynamic optimizer [12] both employ a two-
tiered approach to optimization: each code region is “lightly” opti-
mized at first and then later aggressively optimized when it has
been shown to be frequently executed. The HP Dynamo system
[10] implements a similar policy: it distinguishes between infre-
quently and frequently executed code for the purposes of determin-
ing which code to emulate and which code to optimize and place in
its code cache.

Though these existing monitoring systems work quite well for
their intended uses, they are also quite simple. They each use some-
thing akin to the execution counts in point profiles as a threshold for
determining how to classify a program point (i.e., as frequently or
infrequently executed). Dynamo [10], for example, sets an execu-
tion threshold on blocks that are the target of backward branches,
and it optimizes the first trace of blocks extending from such a
block when the threshold is exceeded. Perhaps this is all that we
will ever be able to afford in a monitor for an on-line optimizer;
however if our monitoring system is to collect information about
program behavior that will help select the dynamically-important
units of optimization, we need something more.

To see how we can afford more, consider the following observa-
tions about a system that monitors for phased behavior. Due to the
inherent characteristics of phased behavior, we are going to have to
monitor a program’s behavior during its entire execution. This may
sound like an expensive proposition, but realize that we do not have
to monitor all of the details all of the time. Programs are predict-
able. Once we have identified and optimized a program for some
common behavior, we do not have to keep recognizing that behav-
ior. We simply want to know when the common behavior changes.
Furthermore, an on-line optimizer cannot afford to optimize every
segment of a program’s execution. It must be selective and focus on
the common behaviors, behaviors where we can amortize the over-
head of run-time optimization. In other words, the monitoring sys-

tem should ignore the program’s exceptional (uncommo
behaviors.

The mechanism in Dynamo [10] for flushing its code cache
reaction to changes in an application’s working set is an example
a mechanism employing many of the above observations. At H
vard, we are building a software-based on-line optimizer, call
Deco, with a multi-level approach to program monitoring tha
exhibits all of the characteristics mentioned above. We first use
low-overhead sampling system, such as those found in DCPI [5]
Morph [55], to identify the frequently executed program region
We then instrument these dynamically important regions to reco
details of the program behavior in that those regions. We refer to
instrumentation asephemeralbecause it exists only temporarily—
only long enough to identify the unit of optimization and its tenden
cies accurately.

5 Mutable Executables
In this paper, I have expounded the virtues of being able

change the specification of a program’s execution while running
To change the specification requires the ability to write into th
instruction stream, and the organization of modern, high-perfo
mance microprocessors does not make this easy to do. The co
flushing a set of instructions from the instruction cache, for exam
ple, is relatively high on most machines. Furthermore, there exist
common perception that we should not need to write into th
instruction stream of a running executable. Most modern operat
systems initialize the text segments of an application as read-o
In effect, we are saying that there is something special about
executable. Software, once compiled and shipped, is no lon
“soft” or mutable.

Figure 9 compares the process of creating an executable w
that of creating a microprocessor. Hardware architects figured
long ago that the rapid changes in hardware technology mad
inappropriate to consider any implementation of an instruction s
architecture (ISA) as something “special” and immutable. Toda
computer architects are wary of including technology-depende
“solutions” to performance problems (e.g., delayed branches)
their ISA; these solutions inevitably become “bad” ideas due
technology advances. As such, the hardware community is in a b
ter state of mind for thinking about on-line optimizers than the so
ware community.

Even though executables are generally thought of as immuta
the software community has taken a few small steps toward the i
of executables as mutable objects with its acceptance of DLLs a
dynamically-loadable classes. Furthermore, existing systems
employ run-time code generation also write executables while th
run. Yet, the most aggressive on-line optimizers (the lower two c
egories of Table 1 on page 4) often take extraordinary steps to m
sure that they do not touch the original executable or cause any
ible side effects that deviate from the sequence of side effects t
would have occurred during execution of the original executab
Again, this is an odd view given that the same executable wou
incur a different sequence of, say, TLB misses on two differe
implementations of the same ISA.

My point is that we as a community are not consistent in o
views and expectations of the execution environment. If yo
believe my earlier arguments about the increasing need for FD
we should invest in discussions and experiments that help to id
tify the level of mutability that we could profitably support in our
executables. In addition, we should consider what hardware a
operating system primitives would aid in the development and su
port of mutable executables. Perhaps, in the future, mutable exe
ables will be as accepted as virtual memory is today.
8
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6 Challenges
There are many challenges to overcome if we are to make the

vision described in the prior sections into reality. This section pre-
sents my list of the most important of these. You should not view
this as an exhaustive list; its purpose is as a starting point for further
discussion. I truly believe that we can overcome each of these chal-
lenges. As proof of my belief, I provide references to some of the
promising current research efforts that may provide full or partial
solutions. I also include a set of lofty objectives that I would like to
see the community attain while overcoming each barrier.

Mindset. The biggest challenge to the vision in this paper is our
existing mindset. I have found it difficult for people to think about
executables as mutable objects. Some of this aversion comes from
the concern of programmers that the process of optimization can
silently turn a correct program into a buggy one. Kernighan and
Pike [31, page 176] state that “the more aggressively the compiler
optimizes, the more likely it is to introduce bugs into the compiled
program.” This seems to be a common perception, though I could
not find any published studies supporting this view.

We may achieve some leverage on this problem by adapting
some of the work on safety and correctness in the area of mobile
code. For example, Rinard [38] proposes that we build compilers
that validate the correctness of each transformation when it is
applied. He believes that this is a more fruitful approach than one in
which we prove that the compiler works correctly on all possible
legal programs.

Debugging.Even if we can guarantee that the optimizer performs
transformations correctly, many software vendors refuse to compile
with high levels of optimization because optimized code is difficult
to debug. As optimizations have become more sophisticated, it has
become increasingly difficult to have the debugger mask the effects
of the optimization process from the programmer. If automatic and
on-line optimization systems are to be successful, we need to build
tools that help the programmer debug optimized executables. Tice
[48] proposes one such tool. Her system helps programmers to
understand the effects of optimization on their applications without
having to know how or exactly what optimizations were performed.

If the current trends continue, hardware manufacturers will soon
consider the implementation of on-line code transformations that
software vendors hesitate to invoke at compile time. Since it is
already difficult for programmers to debug their own optimized
code, it is unreasonable for the industry to assume that a user could
diagnose the cause of a fault in an on-line optimized executable and
create a bug report. A bug report should be generated by someone
intimate with the details of the program execution at the time of the
fault. On-line optimization systems provide us with such an
agent—the monitor. Perhaps we could adapt existing monitoring
techniques to gather information helpful in diagnosing a program’s
run-time faults and useful in transforming that program so that it
avoids those faults in future runs.

Infrastructure. Compilers are very large pieces of software tha
take many person-years of work to develop. One of the goals of
Harvard Deco project is to find ways to share code and technolo
between our traditional compile-time optimizers and our expe
mental on-line optimizers. Though we may wish to adapt our cu
rent optimizations so that they execute more efficiently in a ru
time environment, simply moving them between the compile-tim
and run-time environments should not be a reason to have to
code. In Machine SUIF [45], we have developed a programmi
interface for specifying optimization analyses and transformatio
that will allow us to test our on-line optimizations in a traditiona
compile-time environment and do so without having to re-cod
them.

Multi-disciplinary approach. To make significant changes to
today’s execution environment requires that the members of ma
research communities cooperate. I have seen the beginnings of s
cooperative efforts in the development of DCPI [5] and Morph [55
two profiling systems based on statistical sampling. These tw
projects drew together researchers from the operating system
compiler communities. In my discussions with computer architec
from large microprocessor vendors, I have heard them express t
willingness to implement new performance monitors in hardwar
but they first need some justification that what is requested will
useful.

Commercial realities.A large body of research exists in support o
the performance potential of FDO. Only recently, however, has t
research community begun to investigate the hurdles that mus
crossed in order for an approach like PGC to be used daily with
the development group of a large commercial software vendor.
achieve such acceptance, we must look scientifically at the pro
lems of profile collection and maintenance. The recent works
Albert [4], Wang et al. [51], and Savari and Young [41] are note
worthy examples of this kind of research. Finally, there are oth
commercial realities like testing that must be carefully considered

7 Conclusions
In this paper, I proposed a broad view of what FDO is and wh

it should be used. By considering any technique that alters a p
gram based on information gathered at run time to be FDO, it
easy to see that this approach is already successful and ubi
tous—nearly every hardware manufacturer implements some se
FDO techniques in its microprocessors. I also presented a clas
cation that encompasses much of the prior work in FDO. Even w
this rich body of prior work, I believe that we are just beginning t
tap the potential of and explore the design space in FDO.

Furthermore, I discussed several important trends in applicat
development, software engineering, hardware technology, and
Internet that are increasing the need for and interest in FDO.
meet these needs adequately, I argued for a movement away f
two static models: units of program optimization based on progra
mer-defined code boundaries, and immutable executables. Inst

Figure 9. A comparison of the process of compiling an executable with the process of designing a microprocessor. In the
upper flow, the executable is considered (mostly) immutable. In the lower flow, the ISA is considered (mostly) immutable.

problem
programmer algorithm

in HLL executable
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class of architect
ISA implementation

designer
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we should build optimization units with boundaries defined by the
program’s run-time behavior. This frees the programmer to set code
boundaries that make the program easy to understand and maintain,
and it enables the optimizer to uncover optimization opportunities
unavailable when it considers all program paths to be equally
important. We should also consider our executables to be mutable
objects. By making it easy to change executables after they have
been shipped and the instruction stream while programs run, we can
build optimizers that are able to adapt applications so that they
always run well, no matter how things change.
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