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Abstract My claim that programmers, compilers, and hardware routinely
] S ) perform many kinds of FDO shows that | have a very broad view of
Feedback-directed optimization (FDO) is a general term used tothe definition of FDO. Specifically, | view any technique that alters
describe any technique that alters a program’s execution based othe realization of a program based on tendencies observed in the
tendencies observed in its present or past runs. This paper reviewsesent run or in past runs as a FDO technique. Furthermore, these
the current state of affairs in FDO and discusses the challengesechniques may be implemented in software, hardware, or some
inhibiting further acceptance of these techniques. It also arguegombination of the two. Tasks that we have traditionally viewed as
that current trends in hardware and software technology haveqompﬂer tasks, suph as mstrqctlon scheduling and register alloca-
resulted in an execution environment where immutable executablgiPn: aré now routinely done in hardware. Many of the recently-
o . L - announced on-line techniques for FDO rely on a combination of
and traditional static optimizations are no longer sufficient. It

. . . - hardware and software mechanisms.
explains how we can improve the effectiveness of our optimizers by In addition to my broad view of what FDO is, | also have a

increasing our understanding of program behavior, and it providesprqa4 view of when we should be able to apply FDO. My view is a
examples of temporal behavior that we can (or could in the futureyesult of the following answers to two simple questions: When is
exploit during optimization. the first time that | would like my program to run quickly? When
will I no longer need my program to run quickly? The obvious
1 answers are, respectively, immediately after it is compiled for the
o o o first time and once | have run it for the last time. If we define the
~We often optimize applications to eliminate unnecessary geneffitetime of a programas the time between its first compilation and
ality and to streamline their execution on modern computing platiis |ast execution (inclusive), then | am saying that we should be
forms. Feedback-directed optimizatioFDO) is a general term  gpje to perform FDO at any time during a program’s lifetime.

used to describe any technique that alters a program based on infor- Thinking about optimization agcurring when needeig conve-
mation gathered at run time. This paper focuses on FDO techniqu&§ent for several reasons:

for improving performance. It presents a view of the field today and

Introduction

« First, this view directly addresses the well-known issue that

a vision for its future. It points out that current trends in application
development, software engineering, hardware technology, and the
Internet are increasing the need for FDO. And it argues that, to meet
this need adequately, we should alter some commonly-held percep-
tions about executables and the execution engine.

Traditionally, FDO has been viewed as aff-line technique:

The programmer runs an application one or more times to gather
statistics that summarize the program’s prevalent behavior and
describe its execution environment. These statistics are then used to *
create a new program binary. Off-line refers to the fact that the opti-
mization takes placafter (as opposed toluring) program execu-

tion. This type of FDO has a long history of use by programmers
interested in tuning their code to increase performance. In addition,
researchers in programming languages and compilation have pro-
posed and built a wide range of systems that are able to perform
FDO with little or no programmer intervention.

Though the application of FDO is most often associated with
off-line techniques, perhaps the greatest commercial success of
FDO has come from the area of computer architecture. In the
design of modern microprocessors, computer architects dedicate a
large amount of their silicon budget to both capturing and exploit-
ing program tendencies at run time. Caches and out-of-order execu-
tion are just two examples of hardware techniques that use feedback
to affect a program’s execution. Caches reduce the cost of some
memory accesses at the expense of others based on observations of
previous program activity. Out-of-order execution dynamically
adjusts the order of the instructions in the instruction stream based
on observations of instruction latency. Caches and out-of-order exe-
cution areon-line versions of FDO. As | will discuss, there is a
growing interest in software-based on-line techniques for FDO.

we cannot build a fully optimizing compiler, one capable of
transforming any program into an equivalent program with
identical input/output behavior and a provably-minimal execu-
tion time [7]. If optimization can occur at any point in a pro-

gram’s lifetime, we can imagine scenarios in which it is
possible to apply new optimization techniques to existing
binaries even after they have been shipped.

Second, this view gives us the freedom to perform an optimi-
zation when the data for that optimization is available (Adve et
al. [1] refer to this idea of amptimization continuujnand to
vary the persistence of the optimizations that we perform.
Optimizations that are produce undesirable side effects, such
as hinary bloat and machine dependency, would be moved
toward the shorter end of the persistency scale. Today, soft-
ware vendors hesitate to perform traditional profile-driven and
machine-specific optimizations because these optimizations
will persist for the entire lifetime of a program. This persis-
tence implies that the usage patterns and machine environment
identified at compile time remain unchanged over the pro-
gram’s lifetime. For many commercial applications, this is a
bad assumption. By no longer requiring the effect of an opti-
mization to persist indefinitely, we can allow executables
adapt to changes in their usage and environment.

Third, this view helps us to regain the original promise of soft-
ware—that it is flexible and easy to change. Much of the rapid
acceptance of run-time binding techniques has come from the
software industry’s realization that one can use these tech-
nigues to simplify the task of patching shipped binaries and
integrating third-party software extensions.



The rest of this paper is organized as follows: Section 2suggest that the dominant execution paths in these desktop pro-
describes how recent advances in hardware and software techngrams may be less predictable than the paths in SPEC benchmarks.
ogy are increasing the need for FDO (in general) and on-line optiThey note that the desktop benchmarks have a larger number of fea-
mization (in particular). Having established the importance of thetures and that more of their execution is determined by interactions
area, Section 3 proceeds with a brief review of the current state ofvith a user. Wang, Pierce, and McFarling [51] state that small
affairs in FDO, and it presents a categorization of existingchanges in the position of the mouse or windows on a screen can
approaches. From this review, we extract two definite trends: aause large changes in the execution paths of today’s popular inter-
movement toward units of optimization based on run-time progranactive applications. Wang and Rubin [50] go farther and show how
behavior; and a movement toward executables as mutable objectdifferences in the usage of these desktop applications impact pro-
Sections 4 and 5 discuss each of these trends in turn. Section 6 erfile-based program translation. In addition, Cohn and Lowney [14]
merates several challenges to the vision presented in this paper, antention briefly that in their experience the benefit from PGC often
it highlights on-going research projects that may address these chajrows as the size and complexity of the application grows.

lenges. Finally, Section 7 concludes. The GEM compiler, like most other commercial compilers, uses
) point profiles to direct its optimization efforts. Block and edge pro-
2 The Increasing Need for FDO files are examples of point profiles—profiles that provide an aggre-

gate execution count for individual program points. In research,

This section describes the promise of FDO and motivates thenere has been a resurgence in the area of PGC because of the
need for the broader approach to program optimization discussegeyelopment of more detailed profiles. A path profile, which
above. Section 2.1 begins with a brief discussion of profile-guidedecorgs execution counts for sequences of program blocks (i.e. pro-
compilation (PGC), its growing commercial acceptance, and it§yram paths), is an example of one of these more detailed profiles
future potential. Though PGC is a powerful technique for FDO, it{11 54 path profiles provide a greater level of insight into a pro-
has many shortcomings. Section 2.2 describes the limitations of th&ram’s run-time tendencies. Several researchers [22,25,26,53] have
traditional static model of optimization, and it lists several trends ingnown that the use of more detailed profiles during optimization
hardware gnd software te.chnology that make this traQitionaI statiggp yield greater improvements in program performance.
model an ineffective and incomplete solution. Dynamic FDO Sys-  gyerall, work in the field of PGC demonstrates that the potential
tems have been built that address one or more of these trends, agdnefits of program specialization will increase as

in Section 3, we look at a representative subset of those efforts. « applications become more complex, include more features,

2.1 Profile-guided compilation and depend more on user input, and
« compilers are configured to use more detailed kinds of profile

As Brian Kernighan and Rob Pike state in the preface of their information.
book entitledThe Practice of Programmingimplicity, clarity, and The question is: Can we regularly achieve the full potential of
generality form the three basic principles of good software [31].this approach? Unfortunately, | believe that the answer is no. Even
PGC addresses the performance impact of generality, the third of we ignore the demands involved in profiling an application,
these principles. By generality, Kernighan and Pike mean that ghich are well documented elsewhere (e.g., see Conte et al. [17]), it

program should work well in a wide array of situations [31]. How- js still quite difficult to achieve sizable and consistent benefits using
ever, a program written to function in many situations is typically only PGC.

slower than one written to handle one or a few specific situations.
In PGC, the compiler attempts to mitigate the cost of a program's2.2 |neffectiveness of traditional model
generality by using information, such as a summary of how often
each basic block in the compiled program executed in one or more PGC uses a fairly static model of program specialization: In
previous program runs (i.e. block profiles), to focus its optimizationorder to optimize the program for a new set of program tendencies,
efforts on the frequently executed portions of the program and tdhe program must be re-compiled. As such, PGC works well only
understand the run-time tendencies within these portions. when the actual run-time program tendencies match those used dur-
Though PGC has been around for many years, it has onlyng specialization. We can make a similar statement about machine-
recently begun to be commercially accepted and widely usedspecific optimization: It works well only when the characteristics of
Today, almost every popular production compiler, with the notablethe actual execution engine match those assumed during optimiza-
exception of the GNU C compiler, has a mode in which it performstion. The obvious answer to these problems is to perform FDO at a
PGC. PGC exists commercially not because it is easy to support groint closer in time to the program execution. In this way, the opti-
use (as discussed below), but because it achieves noticeable perforizer can use accurate and timely information concerning the exe-
mance improvements. The rest of this section will focus on thecution environment and program usage. This has led researchers to
effectiveness of PGC in the Compaq GEM compiler, as reported byiew optimization as a continuum [1] and to explore a wide range
Cohn and Lowney [14]; this work is representative of the resultsof more dynamic techniques for FDO. (I use the generic term
reported for other commercial compilers [8,42]. dynamic optimizatiorwhen referring to the range of techniques
Cohn and Lowney report that the SPECint95 benchmarks rudeyond PGC.) In a moment, | will reflect on this range, but first |
17% faster (on average) when compiled with FDO than when comfocus on the reasons for the recent exploSiarthe level of interest
piled with GEM’s most aggressive level of classical optimization and activity in the area of dynamic optimization.
[14]. This sizable speed-up is quite impressive given the maturity of Much of the recent interest in dynamic optimization stems from
the baseline against which it is compared. Even so, even morg widely-held belief that these techniques can address the perfor-
impressive results are possible given the trends in applicatiomance needs of the recent trends in computer architecture, software
development and the recent research results in PGC. engineering, and the Internet. Stated another way, it is the ineffec-
Though the benchmarks in SPECint95 are real applications, sev-
eral researchers have noted the qualitative differences between ) )
these applications and the graphical and interactive desktop appﬁl-' There have been three successful workshops on binary translation, feed-

cations used by a large segment of the population. Lee et al. [33] ﬁsgi;n%ﬁﬁ;egf?ﬁgnggg%o?)ngcimfnr?écygg?m'zatlon all during the first




tiveness of the traditional static model of optimization in handling specified code units than applications written in imperative lan-
these trends that has fueled the recent explosion in dynamic teclyuages like C and FORTRAN.
niques. The commercial acceptance of run-time binding techniques also
To better understand the impact of the recent trends on the tradseverely limits the effectiveness of traditional static optimization. A
tional static model, let us quickly review the history behind com- growing number of software manufacturers choose to ship their
pile-time optimization. Assemblers and then compilers wereapplications as collections of dynamically linked libraries (DLLS).
originally developed to raise the level of programming abstractionDLLs are easier to create and update than statically linked libraries
By removing the need for the programmer to deal with the intrica-[34]. They simplify for a software vendor the task of patching
cies of the target machine, the programmer was freed (in theory) tshipped binaries and integrating third-party extensions. However,
focus on algorithmic issues and to produce code that was easy #&tatic optimization across module boundaries becomes impossible
understand, debug, and maintain. Compile-time optimization wa# the only time that the entire executable exists is at run time.
developed to eliminate the performance penalties of this abstrac- Trends in the Internet. The tremendous growth and interest in
tion. As Aho et al. [2] state, “if a compiler can be relied upon to the Internet has brought with it a call for the developmentobile
generate efficient code, then the user can concentrate on writingode The idea behind mobile code is that applications written using
clear code.” In fact, much of the early success of FORTRAN isthis paradigm can be distributed across computer networks and
attributed to the fact that the IBM FORTRAN compiler was able to automatically run upon arrival at the network end point. Implicit in
produce optimized code that rivaled the performance of hand-codethis idea is the expectation that these applications would be able to
assembly [9]. run across a wide range of hardware platforms and computing envi-
Trends in computer architecture. As mentioned in the intro- ronments. Traditional PGC assumes that the target hardware plat-
duction, hardware techniques for FDO began to appear as soon &&m and computing environment are relatively stable. With
computer architects noticed the growing gap between processor aniojects like HotSpot [47] and Jalapefio [12], computer companies
memory speeds. The problem was that the traditional static modéiave already come to the realization that, if they want mobile code
of optimization froze in the executable not only what was to bewritten in Java to not only run but run efficiently, they must adapt
done at run time but also what was thought to be the best way to dtraditional profile-guided optimization techniques to the run-time
it. As the pace of hardware evolution and the importance of supporénvironment.
for legacy binaries have grown over time, the burden of re-optimiz-
ing a binary for the current usage and machine environment ha8 FDO Today
fallen on the hardware. Re-compilation to achieve re-optimization ) . . ) )
is viewed as commercially impractical. As Smith and Sohi [44] AS | mentioned in the introduction, FDO is a well-accepted
state in their survey paper on the design of modern superscaldgchnique used by almost every hardware manufacturer to improve
microprocessors, hardware should simply view executables as @€ performance of the applications running on their processors.
specification of what has to be done and not how it should be doneThough this is the most successful use of FDO, many other
Unfortunately, simply augmenting the traditional static model of approaches exist. Tabl.e 1 presents a categorlgatlon of .the.se existing
optimization with run-time optimization in hardware is not a pana- approaches based primarily on how dynamic each is (i.e., how
cea. In fact, it does not even adequately address all of the optimiz&lUickly each reacts to changes in program tendencies or the execu-
tion issues introduced by computer architects. For examplelion environment). In general, PGC is least dynamic of all of the
architects extend existing ISAs with new instructions (e.g., prefetciPProaches, while run-time optimization in hardware is the most.
or multimedia instructions) because they want the compiler to genEOr €ach category, I provide several examples.
erate and the executable to use these new instructions directly, ! Will also use this categorization to make general comments
There would be no need for these instructions to appear in the IS&Pout the transparency, scope, and run-time overhead of each
if the hardware could dynamically transform existing executables@PProach.Transparencyrefers to the amount of programmer/user
and achieve the same level of performance. Furthermore, next-gef{fort involved in performing FDO. | consider a system that is able
eration architectures like the 1A-64 [18] have been designed withf® Perform FDO automatically (i.e., without any programmer assis-
the expectation that the compiler will apply sophisticated profile- tance and without the knowledge of the user) tduily transparent.
guided and interprocedural optimizations—many of which are stillSCoperefers to the size of the code segment analyzed during opti-
being developed. Without these optimizations, much of the potenMization; | refer to this segment as theit of optimization Typi-
tial performance benefits of these new architectures will be lost. ~ cally, the larger the scope is the more aggressive, and thus effective,
Trends in software engineering.One of the claims made by the optimization. Section 4 discusses this issue in much greater
proponents of object-oriented programming is that this paradig etall._ . . )
leads to code that is easy to understand, reuse, and maintain. How- | discussed PGC in Section 2.1, and there | mentioned that PGC
ever, object-oriented mechanisms like dynamic dispatch and prd$ often characterized by large optimization scopes and zero run-
gramming styles like code factoring yield programs that arefime overheads (all of the analysis and transformations for optimi-
difficult to optimize using traditional static approaches. There existZation are done at compile time). However, as | noted in Section
a large body of work addressing the performance penalty of Objectz.zl, it is becoming increasingly dlffI.CU|t to maintain a Iarge optimi-
oriented languages and programming styles: specific solutions angftion scope due to recent trends in software engineering. Further-
approaches can be found in the proceedings of the ACM SIGPLANNOre, this approac_h su_ff_ers compared_ to the others due to its Iack_ of
Conference on Object-Oriented Programming Systems, Language§ansparency and inability to react quickly (or at all) to changes in
and Applications (OOPSLA) and the ACM SIGPLAN Conference Program behavior or the execution environment. Approaches for
on Programming Language Design and Implementation (pLDD.off-Ilne optimization systems based on continuous profiling were
With respect to the point of this paper, we note a rising use ofdéveloped to address these problems. ) ,
object-oriented techniques in the commercial world and a rising, SYStems like Morph [55] had the goal of making profile collec-
interest in on-line FDO techniques for overcoming the aforemention and executable re-optimization automatic. This goal was
tioned performance penalties. In addition, we note the fact tha@ccomplished by running a profile collection agent and a re-optimi-

applications written in these languages have smaller programmefation agent directly on the end user's machine. The profile collec-
tion agent would continuously gather and maintain a database of



Category Examples
: ; Hati GEM [14], IMPACT [29], Q
Profile-guided compilation
9 P Machine SUIF [4[5] 2 £
Off-line optimization DCPMS], FX!132 [28], =5
using continuous profiling orph [55] ©
; : ‘C [20], DyC [23],
Run-time code generation e!npg[lg] ] !
i g Crusoe [32], DAISY [19], Dynamo [10],
On “irr]1858 t"g'réat'on Dynamic Resc%e(}uling 16], m'g
Jalapefio [12], HotSpot [4 S S
On-line optimization Trace caches [40], E%‘
in hardware dynamic trace optimizations [21]

Table 1: Categorization of existing approaches for FDO. The lists of example systems are not meant to be exhaustive. In particular,
these lists focus mainly on the recent efforts.

profiles. Since these profiles were gathered on the end userand remove unconditional branches, but it will change and even
machine, they obviously reflected the prevalent program usage. Ieliminate large sequences of instructions.
the background, after the user had stopped running an application, The approaches that include some element of software support
the re-optimization agent would run, analyze the profile datavary significantly in the scope of their on-line transformations,
recently collected, and re-optimize the application if it determinedsince some of these approaches also perform binary translation.
that re-optimization would be worthwhile. The run-time overheadHowever, in terms of their application of sophisticated optimiza-
of this kind of approach is kept low by using low-overhead profil- tion, all of the recent systems have besglective optimization
ing systems (e.g., DCPI [5]) and because re-optimization occursccurs only on those program segments that account for the major-
off-line. The scope of this approach is actually better than PGty of the execution time. This emphasis is a direct consequence of
since optimization can occur on the linked executable. Notice thathe need to minimize the run-time overhead of the optimizer. To get
re-optimization may include translation from one instruction set tothe most benefit from this time spent optimizing, we want to iden-
another. tify not only those program segments that are dynamically impor-
Instead of completing the optimization process at compile timetant, but also those that are most amenable to optimization. How to
and then attempting to re-optimize the application after one or mordest accomplish this is on-going research and the topic of Section 4.
program runs, techniques for run-time code generation stage th®verall, | feel that we have just begun to explore the potential of the
compilation process so that optimization can occur during the prosystems in this category.
gram run. In general, systems like DyC [23,24] perform the major-  In summary, Table 1 illustrates that there exists a wide range of
ity of the optimization process at compile time and leave onlyapproaches that use FDO to alter a program and improve its run-
selected pieces for completion at run time. In particular, these sysime performance. If we step back from the details however, we can
tems use concepts and techniques from the partial evaluation corsee two definite trends emerging from this set of technologies. The
munity to determine what program segments could benefit fronfirst is a movement toward units of optimization based on a pro-
optimization based on information available only at run time. Thegram'’s run-time behavior and not on a set of programmer-specified
compiler then creates an executable capable of capturing that rutboundaries. The reasons for this movement are further discussed in
time information, performing the associated optimization, and com-Section 4. The second is a movement away from executables as
pleting the code generation process. Because the bulk of the work immutable objects. As we have discussed, the importance of FDO
done at compile time, these systems can exhibit low run-time overhas grown as hardware and software technology has advanced and
heads. As structured today, the systems for run-time code generas the lifetimes of applications have increased. Since FDOs depend
tion rely on the programmer to indicate what program segments tepon more than just information gleamed from the static code base
optimize dynamically. There is however on-going work investigat-(i.e., they depend upon information that may change in the future or
ing ways to improve the transparency of this kind of an approachmay not even be available at compile time), it is unreasonable to
(e.g., see Mock et al. [37]). expect that the compiler can produce an executable that is appropri-
| separate the on-line optimization systems in the last two cateate and effective for the entire lifetime of any long-lived applica-
gories in Table 1 from those listed under dynamic code generatiotion. In Section 5, we present further arguments for the concept of
because all of the remaining approaches share the goal of being astable executables
transparent as possible. Still, these last two categories encompass a . o
wide range of approaches and techniques. | divide them into onlyl  The Unit of Optimization
two broad categories: those that use only software or a combination

of hardware and software techniques{ine optimization in soft- Traditionally, static optimizers have used code boundaries
ware), and those that use only hardware techniqoeslipe optimi- ~ defined by the programmer as the boundaries for their units of opti-
zation in hardwarg mization. For example, compilers often optimize each procedure in

The hardware-only approaches are simply the next steps in th@" application in isolation. As programmers concern themselves
logical progression of the computer industry’s work on caching and"0re with issues of understandability and maintainability and as
out-of-order execution. Computer architects are working hard tgore programmers adopt the object-oriented programming para-
increase the optimization scope from something akin to peephol8igm, these programmer-defined boundaries will make less and less
optimizations to something closer to trace-based optimization§€NS€ &s delimiters for units of optimization. The brute-force
(e.g., see Friendly, Patel, and Patt [21]). In the future, the hardwar@PProach of analyzing and transforming the application as a single,
will not just renumber registers, rearrange the instruction streamnonolithic piece of code fails because many of our existing global
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(a) Edge profile. (b) Two traces that produce the edge profile in (a).

Figure 1. Example of how point profiles limit our understanding of program behavior. From the edge profile, we cannot
determine if the program ran trace #1 or #2.

optimizations do not scale well as the optimization scope growssuperblocks that match the most frequently occurring program
This approach also runs counter to the trend toward shipping applitraces. Using the edge profile in Figure 1, a traditional superblock
cations as a collection of independent DLLs. A different approachunroller would produce an unrolled loop body with the block
is needed. sequence ABDABDABD (assuming an unrolling factor of three),
. ) . . since all it can determine is that block B occurs more frequently
4.1 Setting boundaries based on run-time behavior  than block C. Using path profiles of the traces in Figure 1, Young
. . o . and Smith’s algorithm would produce the following: a single
This section argues that the optimization of a program by indeynlied loop body with the block sequence ABDABDACD for the
pendently optimizing pieces of that program is not the problem. BYpath profile of trace #1; and two unrolled loop bodies with the block
continuing this approach, we can continue to use and benefit fro”%equences ABDABDABD and ACDACDACD for the path profile
the Iarge pool of existing global opt@mization algqrithms. I.nsFean of of trace #2. Clearly, we can achieve a higher completion rate by
changing how we determine the size of the units of optimization,sing the path-profile-based unrollings than the edge-profile-based

this section argues for changing how we determine the contents Qfne “Gloy and Smith [22] collect a different kind of temporal profile
them. In particular, optimizers should select optimization units thatyng show how to use it to achieve better procedure layouts.
reflect the current program behavior (as determined by analysis of

feedback information) and are reasonably sized (given the compwy4,2 Understanding phased behavior
tational complexity of the optimization techniques).

As noted by Cohn and Lowney [13], static optimizers appear to  Though the optimization community has gained greater insights
miss a large number of optimization opportunities when oneinto program behavior based on existing temporal profiling tech-
reviews the dynamic instruction stream. Computer architects havaiques, | believe that we have only begun to find ways to identify
also noticed this fact and proposed techniques such as value predicteresting program behavior and use that information to direct pro-
tion [35] and instruction reuse [46], which exploit the redundanciesgram optimization. This section describes one as yet largely
in the dynamic instruction stream. From the perspective of thisuntapped aspect of program behavior, cajdpdsed behaviothat
paper, these observations argue that we group together in the uniseftware-based on-line optimization systems can use to make their
of optimization those segments of the application that execute freeptimization efforts cost effective. In this section, | define what |
quently together. mean by the term phased behavior, illustrate some examples of

This idea is not entirely new. Hank, Hwu, and Rau [27] pro- phased behavior, and argue why such behavior might be interesting
posed this kind of an approach for traditional PGC systems, and th® an on-line optimization system. Section 4.3 uses some of the
mechanism for instruction scheduling and register allocation in thensights in this section to describe how we can build on-line moni-
Multiflow compiler [36] is a limited example of this kind of an toring systems that are able to identify the important run-time
approach. All of the prior work however has uggaint profiles— behaviors of an application in time to exploit them.
profiles such as edge or block counts that aggregate how often indi- | define phased behavior as the tendency for a piece of code to
vidual program points appeared in an execution trace—to identifyexhibit a sequence of behaviors, each for an extended period of
the segments of the application that execute frequently togethetime. For the purposes of this definition, the time period may corre-
Though these profiles provide us with more information about aspond to a single program run, or it may span multiple runs. In an
program’s behavior than we can determine through static analysiapplication that displays phased behavior, there exists at least one
alone [49], the level of understanding that we can gain from pointcode region where optimizing for aggregate behavior is sub-opti-
profiles is limited, especially if the program’s execution involves mal. We can obtain better performance if we apply one optimization
non-trivial control flow. Figure 1 provides an example where two strategy to that region for one phase of the program’s execution and
different executions of the same code segment produce the sanamother strategy during another phase. Phased behavior is problem-
edge profile. atic when the persistence of a FDO is longer than the phase. For

Recent work in the area aémporalprofiles—profiles such as example, phased behavior across program runs is problematic for
path counts that aggregate how often sequences of basic blockise off-line optimization schemes that assume the aggregate behav-
appeared in the execution trace [11,54]—provide more insight intdor of a code segment is dominant.

the program’s te_mporal b_eh_avigr. Using temporal profiles, itis POSBranch-based phased behaviot. begin with examples of phased
sible to build units of optimization that more accurately reflect the o5 i associated with the execution of conditional branches. The

run-time behavior of an application. For instance, Young and Smith},,, ime handiing of conditional branches has a tremendous effect
[53] describe how to use path profiles to construct and schedule



if (flat_object(isect.object)) { /I b35

.. N | — —

}

Figure 2. Code snippet froshade()n ray.c Branch executions [1,839959]

Figure 4. Execution trace of b35 on the inmtenelWe use
shading to distinguish contiguous segments of taken (or not-
taken) executions from those segments that have an interleav-
N e ing of taken and not-taken executions. For example, between
executions 183272 and 595513, inclusive, b35 is only taken.

Branch executions [1,279817]r

Figure 3. Execution trace of b36 on the inmaenelThe
horizontal axis plots time from left to right as measured in T -
executions of this conditional branch. This branch executed
a total of 279,817 times. For each branch execution, we
mark in the vertical dimension whether the branch was
taken (T) or not taken (N). Figure 5. Execution trace of b36 on the inmgene24

Branch executions [1,579741] -

on the performance of modern systems, and thus any new insighﬁl the input data set. However, the aggregate behavior of this

that we can gain in this area will likely have an important impact on - . ? 0 -
the industry. | start with obvious examples of phased behavior inbranch has not changed noticeably; b36 is taken 39.8% of the time

; o . derscene24nd 44.0% of the time undscenel
the execution of individual branches and then move to less obvioug" . : .
(but probably more common) examples. | conclude with som As one might expect, the execution trace of a weakly-biased

thoughts on the effect of these observations on program optimizelﬁ-)ranch does not always contain long periods of time where the

. X S . i ranch executes in only one direction. As illustrated in Figure 6
E?:r'];:fs '?rt]zie;:'engv\;gglliﬁ/ hb?;iéz 'thc%tr?elln?fotgt?rﬁi>z(2?oe1le:t:2¥§$\il%owever’ some of these weakly-biased branches still exhibit phased
concerned with conditional branches are tailored toward the identiz ehavior that i interesting to an optimization system. In particular,

fication and exploitation of highly-biased branches. Except for code';:gl:]:; 8 allg);zfj gggp;f;;lstﬁcei Sblslgﬁ:\?rﬁgzmbgr]lihblasl cgreas Scond|t|onal

transformations like static correlated branch prediction [54], . . - .

: : L Figure 6 shows that the bias of b99 oscillates between periods of
weakly biased branches are largely ignored by modern Optlmlzat'O'i]ow a?ld high bias over time. In the aggregate, this branchp\)/vould be
tecmﬂﬁ?}ew examoles focus on two conditional branches thatclassified as a weakly-taken branch, based on its average taken per-

y P centage of 78.0%. Clearly, this is the wrong classification for peri-

occur in theshade procedure fronmmay.c of rayshadethe C ray- b i :
tracer developed k?y Peter Holst A¥1dersen Eg]. Figure 2 Iis)t/s theOds‘ like the beginning of the program, where the branch is nearly

code associated with these two branches, which | label b35 and bgg!ways not taken.

This code looks much like the code associated with the other condit-imghgea(;txg; sSagr? ?gethc?hgrj;\gt}elrri]sttri]c;es gcr)?pmepli?] mﬂtg g;?; zg?m%
tional branches imay.c , and thus there is not any obvious syntac- P P P :

tic clue alerting us to the following interesting program behavior. understand this, | first must explain a bit more abort the functioning
Figure 3 plots the execution trace of b36 whagshadeis run . gf t?f code d'n tfh|s iecnor:j m‘orr;)pl)re;sBranch 299 'i. pe:lrt OLg;e
; : : ashing code for the code table @ompress Specifically,
on the inputscenel In the aggregate, b36 is a weakly-biased . : :
branch apbranch taken 44.00/%390]‘ ?he time. As Figure 3)illlustrate checks to see if the probed slot in the code table is empty after we

. . L Ta€35und that we did not have a hash hit. This explains the initial
however, b36 is taken exclusively in its first 123,090 executlons,i crease in the bias of this branch: the table is initially empty and

and it is never taken after that. This is a clear example of phase lowly fills, changing the branch’s bias. The later abrupt changes

behavior; b36 exhibits one behavior and then another, each for Bom a high to a low bias are due to the fact teampressmple-

long period of time. ments block compression with an adaptive reset, as described in the

s e e pLComMents 1 the Soutce codeimpess e compresson a0
9 play 9 gins to decrease after the code table reaches a predefined fill

tions (non-shaded segments) that does not appear in Figure 3. Ev reshold, the program will clear the code table, output a special

so0, the execution of b35 contains a long period of time where it ISCLEAR code, and begin a new encoding. Since this criterion

always taken and two smaller periods where it is always not taken - h s
Overall, nearly 50% (49.1%) of this branch’s execution is spent ir]cilepends upon the characteristics of the input, the shape of the plot

. ) ; ed curve also depends upon the characteristics of the input.
ghn?;aérg%t}/?lf)?rt]hseet?rr::maf:ggg?gzzt;ng for a branch that is takeﬁ The vast majority of optimizations concerned with branching
: y b

. . A . ehavior focus their attention on the aggregate behavior of each
F|gure 5 shows that the pha}smg behawq n Flgurg 3 IS r‘Otbranch. For the branches discussed above, this would result in lost
something that we could exploit using traditional profile-driven

optimization. Figure 5 plots the execution trace of b36, but this timeI . L '
: . X . eads us to consider one optimization strategy for the first 123,090
whenrayshadeis run on the inpuscene24Comparing Figures 3 executions of b36 and a different strategy for the last 156,727. Fur-

B o B s hermre,Genthe dependence of b3 behavor on e nput dta
P set, we would probably want to implement this flexibility in an on-

optimization opportunities. The clear phased behavior in Figure 3



/I starting at line 790
if (hit in hash table)
... @(a2) I —
else if (empty slot) // b99
[/ @ (al) ———
else
/I probe hash table Load executions [1,127499]

Figure 7. Value trace of load d2542 irortex The horizontal
100 axis plots the executions of this load from left to right. For

each load execution, we record in the vertical dimension the
value returned. This load returns only two unique values: the
base addresses of arrays named (for convenience) al and a2.

50 cs2 |

e

Bias (% taken)

25 | avg. bias | B

sampled bias Load executions [1,73403]
Figure 8. Value trace of load d4531 m88ksim This load
0 i restores the return address register. Since the load returns only
Time two unigque valuesaddunsigned is called from only two

call sites during this run.

two clear examples of phased behavior in the values returned by
load instructions. Techniques like value prediction [35] have
increased the research community’s interest in the values loaded by
programs. Like conditional branches, the handling of memory loads
has a large impact on the overall performance of applications.
Figure 7 plots the value trace of a load (called d2542) from the
procedureBMT_CommitParts in bmt10.c of the SPECint95
- benchmarkvortex This instruction loads the base address of the
arrayVlists  from the global pointer table. As Figure 7 shows, the
program initially accesses one array in memory through this pointer
variable and then switches to another array for the remainder of the
run. Even though this load returns more than one value, a run-time
optimizer could take advantage of the fact that the values are not
interleaved in the value trace.

As we saw earlier, interesting phased behavior may occur in
traces where there is an interleaving of different results. Figure 8
line optimizer. Considering b35, adaptation between an optimizaplots the value trace of a load (called d4531) at the end of procedure
tion strategy involving speculation (to take advantage of long exeaddunsigned in dpath.c  of the SPECint95 benchmark
cution runs in one direction) and predication (for those executionm88ksimThis load restores the return address register just before it
runs with no obvious predominant direction) is a potentially fruitful is used in the procedure return. The value trace showstitatn-
avenue of attack for the branch execution pattern in Figure 4. signed is called from just two call sites (named cs1 and cs2 for

Existence of sizable periods of high bias in the execution historyconvenience) during the program run. The interesting aspect of this
of weakly-biased branches implies a change in the importance dface is that, except for two small pieces at the beginning and end of
individual program paths over time. This observation may affectthe trace,addunsigned is called exclusively from cs1. During
how we build path-based optimizers. For example, if a branchhis extensive time period, an on-line optimizer could elect to inline
within a program path transitions from mostly taken to mostly not-addunsigned at cs1 and do so without increasing the instruction
taken (or vice versa), it is likely that the common paths before andnemory footprint.
after this transition share code blocks. To get the most benefit, a Related Work. Though this section has presented examples of
path-based optimizer would duplicate the common blocks. Cod¢hased behavior, we do not as yet understand how common this
duplication impacts performance by stressing the memory hierarbehavior is or how much benefit we could gain from exploiting it.
chy. If we can identify the phase transitions, we could dynamicallyEven if we cannot use an improved understanding of phased behav-
generate and cache the appropriate path-based optimizationior to make applications run faster, there are other ways in which
potentially improving performance by never having both versionswe can use this information. For example, Sherwood and Calder
in memory at the same time and by linking each in as if the othef43] are investigating this kind of program behavior to help reduce
had never existed. the amount of time it takes to perform architectural simulations. By
understanding the location and duration of a program’s phases,
computer architects could state with confidence that a simulation of

T i i
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Branch executions [1,2500]

Figure 6. Execution trace of b99 rompress.cThe top graph
plots the bias of this branch at a granularity of 5000 execu-
tions. This branch executed a total of 433,223 times. The bot-
tom graph illustrates the pattern of taken and not-taken
outcomes in the first 2500 executions.

Value-based phased behavioPhasing occurs not only in a pro-
gram’s control flow, but also in its value stream. The following are



only small pieces of a program’s execution would match the resultsem should ignore the program’'s exceptional (uncommon)
obtained from a simulation of the entire program execution. Albo-behaviors.

nesi [3] has proposed an adaptive processor architecture based on The mechanism in Dynamo [10] for flushing its code cache in
observations of variations in a program’s instruction level parallel-reaction to changes in an application’s working set is an example of
ism (ILP). (Jouppi [30] was the first to examine the distribution of a mechanism employing many of the above observations. At Har-
ILP in programs.) Albonesi describes a processor that automaticallyard, we are building a software-based on-line optimizer, called
reduces the complexity of its pipeline when ILP falls so that theDeco, with a multi-level approach to program monitoring that
clock frequency (and thus performance) can improve. Finally, weexhibits all of the characteristics mentioned above. We first use a
may be able to use our understanding of program phases to desi¢pw-overhead sampling system, such as those found in DCPI [5] or
better techniques for dynamically managing processor temperatufdorph [55], to identify the frequently executed program regions.

and power [39]. We then instrument these dynamically important regions to record
o ) . ) . details of the program behavior in that those regions. We refer to the
4.3 Monitoring to find the important run-time units instrumentation agphemerabecause it exists only temporarily—

. . . ) ... onlylong enough to identify the unit of optimization and its tenden-
To this point, we have discussed the need to build optimizationjeg accurately.

units whose boundaries reflect a program’s current behavior, and
the potential benefits of collecting many different and extensive5  Muytable Executables
kinds of temporal information. To take advantage of this informa-
tion in an optimizer, there are two more questions that we need to In this paper, | have expounded the virtues of being able to
discuss: how we can monitor a program’s execution to collect theechange the specification of a program’s execution while running it.
desired data about the program’s behavior; and how to use thi$o change the specification requires the ability to write into the
information to identify the actual unit of optimization. This section instruction stream, and the organization of modern, high-perfor-
concentrates on the issue of program monitoring. Young [52] proimance microprocessors does not make this easy to do. The cost of
vides an answer to the second question for optimizers based on patllashing a set of instructions from the instruction cache, for exam-
profiles; more general answers to this question will have to waitple, is relatively high on most machines. Furthermore, there exists a
until we have gained more experience with temporal profiles anccommon perception that we should not need to write into the
their use in selecting optimization units. instruction stream of a running executable. Most modern operating
In this section, | focus on the category of systems that perfornsystems initialize the text segments of an application as read-only.
optimization on-line and in software. Many of the existing systemsin effect, we are saying that there is something special about the
in this category already contain on-line monitoring systems thaexecutable. Software, once compiled and shipped, is no longer
allow them to focus their optimization efforts and better amortize“soft” or mutable.
their optimization costs. For example, the IBM DAISY system [19]  Figure 9 compares the process of creating an executable with
and the IBM Jalapefio dynamic optimizer [12] both employ a two-that of creating a microprocessor. Hardware architects figured out
tiered approach to optimization: each code region is “lightly” opti- long ago that the rapid changes in hardware technology made it
mized at first and then later aggressively optimized when it hasnappropriate to consider any implementation of an instruction set
been shown to be frequently executed. The HP Dynamo systerarchitecture (ISA) as something “special” and immutable. Today,
[10] implements a similar policy: it distinguishes between infre- computer architects are wary of including technology-dependent
guently and frequently executed code for the purposes of determirisolutions” to performance problems (e.g., delayed branches) in
ing which code to emulate and which code to optimize and place irtheir ISA; these solutions inevitably become “bad” ideas due to
its code cache. technology advances. As such, the hardware community is in a bet-
Though these existing monitoring systems work quite well forter state of mind for thinking about on-line optimizers than the soft-
their intended uses, they are also quite simple. They each use som&are community.
thing akin to the execution counts in point profiles as a threshold for  Even though executables are generally thought of as immutable,
determining how to classify a program point (i.e., as frequently orthe software community has taken a few small steps toward the idea
infrequently executed). Dynamo [10], for example, sets an execuef executables as mutable objects with its acceptance of DLLs and
tion threshold on blocks that are the target of backward brancheslynamically-loadable classes. Furthermore, existing systems that
and it optimizes the first trace of blocks extending from such aemploy run-time code generation also write executables while they
block when the threshold is exceeded. Perhaps this is all that weun. Yet, the most aggressive on-line optimizers (the lower two cat-
will ever be able to afford in a monitor for an on-line optimizer; egories of Table 1 on page 4) often take extraordinary steps to make
however if our monitoring system is to collect information about sure that they do not touch the original executable or cause any vis-
program behavior that will help select the dynamically-importantible side effects that deviate from the sequence of side effects that
units of optimization, we need something more. would have occurred during execution of the original executable.
To see how we can afford more, consider the following observaAgain, this is an odd view given that the same executable would
tions about a system that monitors for phased behavior. Due to thiacur a different sequence of, say, TLB misses on two different
inherent characteristics of phased behavior, we are going to have implementations of the same ISA.
monitor a program’s behavior during its entire execution. This may My point is that we as a community are not consistent in our
sound like an expensive proposition, but realize that we do not haveiews and expectations of the execution environment. If you
to monitor all of the details all of the time. Programs are predict-believe my earlier arguments about the increasing need for FDO,
able. Once we have identified and optimized a program for someave should invest in discussions and experiments that help to iden-
common behavior, we do not have to keep recognizing that behawify the level of mutability that we could profitably support in our
ior. We simply want to know when the common behavior changesexecutables. In addition, we should consider what hardware and
Furthermore, an on-line optimizer cannot afford to optimize everyoperating system primitives would aid in the development and sup-
segment of a program’s execution. It must be selective and focus oport of mutable executables. Perhaps, in the future, mutable execut-
the common behaviors, behaviors where we can amortize the oveables will be as accepted as virtual memory is today.
head of run-time optimization. In other words, the monitoring sys-
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Figure 9. A comparison of the process of compiling an executable with the process of designing a microprocessor. In the
upper flow, the executable is considered (mostly) immutable. In the lower flow, the ISA is considered (mostly) immutable.

6 Challenges Infrastructure. Compilers are very large pieces of software that
take many person-years of work to develop. One of the goals of the
There are many challenges to overcome if we are to make thelarvard Deco project is to find ways to share code and technology
vision described in the prior sections into reality. This section pre-between our traditional compile-time optimizers and our experi-
sents my list of the most important of these. You should not viewmental on-line optimizers. Though we may wish to adapt our cur-
this as an exhaustive list; its purpose is as a starting point for furthefent optimizations so that they execute more efficiently in a run-
discussion. | truly believe that we can overcome each of these chatime environment, simply moving them between the compile-time
lenges. As proof of my belief, | provide references to some of theand run-time environments should not be a reason to have to re-
promising current research efforts that may provide full or partialcode. In Machine SUIF [45], we have developed a programming
solutions. | also include a set of lofty objectives that | would like to interface for specifying optimization analyses and transformations
see the community attain while overcoming each barrier. that will allow us to test our on-line optimizations in a traditional

Mindset. The biggest challenge to the vision in this paper is ourcompile-time environment and do so without having to re-code
existing mindset. | have found it difficult for people to think about them.
executables as mutable objects. Some of this aversion comes fromulti-disciplinary approach. To make significant changes to
the concern of programmers that the process of optimization catday’s execution environment requires that the members of many
silently turn a correct program into a buggy one. Kernighan andresearch communities cooperate. | have seen the beginnings of such
Pike [31, page 176] state that “the more aggressively the compilegooperative efforts in the development of DCPI [5] and Morph [55],
optimizes, the more likely it is to introduce bugs into the compiledtwo profiling systems based on statistical sampling. These two
program.” This seems to be a common perception, though | coulgyrojects drew together researchers from the operating system and
not find any published studies supporting this view. compiler communities. In my discussions with computer architects
We may achieve some leverage on this problem by adaptingrom large microprocessor vendors, | have heard them express their
some of the work on safety and correctness in the area of mobil@illingness to implement new performance monitors in hardware,
code. For example, Rinard [38] proposes that we build compilersut they first need some justification that what is requested will be
that validate the correctness of each transformation when it isiseful.

applied. He believes that this is.a more fruitiul approach than one irZ:ommercial realities. A large body of research exists in support of
Yégghpngr%\f that the compiler works correctly on all Ioc)SS"blethe performance p_otential of FD_O. Only recently, however, has the
) research community begun to investigate the hurdles that must be
Debugging.Even if we can guarantee that the optimizer performscrossed in order for an approach like PGC to be used daily within
transformations correctly, many software vendors refuse to compiléhe development group of a large commercial software vendor. To
with high levels of optimization because optimized code is difficult achieve such acceptance, we must look scientifically at the prob-
to debug. As optimizations have become more sophisticated, it haems of profile collection and maintenance. The recent works of
become increasingly difficult to have the debugger mask the effectalbert [4], Wang et al. [51], and Savari and Young [41] are note-
of the optimization process from the programmer. If automatic andvorthy examples of this kind of research. Finally, there are other
on-line optimization systems are to be successful, we need to buildommercial realities like testing that must be carefully considered.
tools that help the programmer debug optimized executables. Tice
[48] proposes one such tool. Her system helps programmers t¢  Conclusions
understand the effects of optimization on their applications without ) ) )
having to know how or exactly what optimizations were performed. ~ In this paper, | proposed a broad view of what FDO is and when
If the current trends continue, hardware manufacturers will soorit should be used. By considering any technique that alters a pro-
consider the implementation of on-line code transformations thagram based on information gathered at run time to be FDO, it is
software vendors hesitate to invoke at compile time. Since it isasy to see that this approach is already successful and ubiqui-
already difficult for programmers to debug their own optimized tous—nearly every hardware manufacturer implements some set of
code, it is unreasonable for the industry to assume that a user coufdPO techniques in its microprocessors. | also presented a classifi-
diagnose the cause of a fault in an on-line optimized executable anggtion that encompasses much of the prior work in FDO. Even with
create a bug report. A bug report should be generated by someof@is rich body of prior work, I believe that we are just beginning to
intimate with the details of the program execution at the time of thetap the potential of and explore the design space in FDO.
fault. On-line optimization systems provide us with such an Furthermore, | dlscusseq sevgral important trends in application
agent—the monitor. Perhaps we could adapt existing monitoringlevelopment, software engineering, hardware technology, and the
techniques to gather information helpful in diagnosing a program'dnternet that are increasing the need for and interest in FDO. To

run-time faults and useful in transforming that program so that itmeet these needs adequately, | argued for a movement away from
avoids those faults in future runs. two static models: units of program optimization based on program-
mer-defined code boundaries, and immutable executables. Instead,



we should build optimization units with boundaries defined by the[13] R. Cohn and G. Lowney. “Hot Cold Optimization of Large
program'’s run-time behavior. This frees the programmer to set code  Windows/NT Applications,”Proc. 29th Annual International
boundaries that make the program easy to understand and maintain, Symposium on Microarchitectyrpp. 80—89, December 1996.
and it enables the optimizer to uncover optimization opportunitie
unavailable when it considers all program paths to be equall
important. We should also consider our executables to be mutable shop on Feedback-Directed Optimizatidreld in conjunction
objects. By making it easy to change executables after they have with MICRO-33 3_12 November 1999

been shipped and the instruction stream while programs run, we can » PP- ’ :

build optimizers that are able to adapt applications so that they15] C. Consel, et al. “Tempo: Specializing systems applications
always run well, no matter how things change. and beyond,ACM Computing Surveys, Symposium on Partial

Evaluation 30(3), 1998.
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