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Abstract

Data integration of single-cell measurements is critical for our understanding of cell development
and disease, but the lack of correspondence between different types of single-cell measurements
makes such efforts challenging. Several unsupervised algorithms are capable of aligning hetero-
geneous types of single-cell measurements in a shared space, enabling the creation of mappings
between single cells in different data modalities. We present Single-Cell alignment using Optimal
Transport (SCOT), an unsupervised learning algorithm that uses Gromov Wasserstein-based optimal
transport to align single-cell multi-omics datasets. SCOT calculates a probabilistic coupling ma-
trix that matches cells across two datasets. The optimization uses k-nearest neighbor graphs, thus
preserving the local geometry of the data. We use the resulting coupling matrix to project one single-
cell dataset onto another via a barycentric projection. We compare the alignment performance of
SCOT with state-of-the-art algorithms on three simulated and two real datasets. Our results demon-
strate that SCOT yields results that are comparable in quality to those of competing methods, but
SCOT is significantly faster and requires tuning fewer hyperparameters. The code is available at
https://github.com/rsinghlab/SCOT

1 Introduction
Single-cell measurements provide a fine-grained view of the heterogeneous landscape of cells in a sam-
ple, revealing distinct subpopulations and their developmental and regulation trajectories across time.
The availability of measurements capturing various properties of the genome, such as gene expression,
chromatin accessibility, DNA methylation, histone modifications, and chromatin 3D conformation, has
increased the need for data integration methods capable of combining these disparate data types.

Despite the importance of this task, the heterogeneity among single cells presents unique challenges.
For example, due to technical limitations, it is hard to obtain multiple types of measurements from
the same individual cell. Furthermore, when we measure very different properties of a cell—such as its
transcriptional and 3D chromatin profiles—we cannot a priori identify correspondences between features
in the two domains. Accordingly, integrating two or more single-cell data modalities requires methods
that do not rely on either common cells or common features across the data types. This property of the
data prevents the application of some existing single-cell alignment methods because they require some
correspondence information, either among the cells or the features [1–4].
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Figure 1: Schematic of application of SCOT to single-cell multi-omics data alignment. A population
of cells is aliquoted for different single-cell sequencing assays in order to capture complementary aspects
(e.g. gene expression and chromatin accessibility) of the molecular dynamics in single cells. Data
obtained from these assays may exhibit different observed manifolds but share a common latent manifold.
SCOT constructs k-NN graphs, where vertices represent cells, and Euclidean distances between them
weigh the edges between the k-nearest neighbors. The SCOT algorithm finds a probabilistic coupling
between the samples of each domain that will minimize the distance between the two intra-domain graph
distance matrices. Barycentric projection uses this coupling matrix to project one domain onto another.

Some approaches have tried to align datasets in an entirely unsupervised fashion. One of the earliest
attempts, the joint Laplacian manifold alignment (JLMA) algorithm, constructs eigenvector projections
based on local k-nearest neighbor graph Laplacians of the data [5]. The generalized unsupervised man-
ifold alignment (GUMA) [6] algorithm seeks a one-to-one correspondence between two datasets based
on a local geometry matching term. Liu et al. [7] showed that these methods do not perform well on the
single-cell alignment task. Specifically, the GUMA implementation was non-trivial to run, and JLMA
gave poor a performance and did not scale well to larger values of k.

Liu et al. [7] proposed a manifold alignment algorithm based on the maximum mean discrepancy
(MMD) measure, called MMD-MA, which can integrate different types of single-cell measurements.
Another method, UnionCom [8], performs unsupervised topological alignment for single-cell multi-
omics data. MMD-MA aims to match the global distributions of the datasets in a shared latent space,
whereas UnionCom emphasizes learning both local and global alignments between the two distributions.
Neither method requires any correspondence information either among samples or among the features of
the different datasets. The papers demonstrate the state-of-the-art performance of the algorithms on sim-
ulated and real-world datasets. Although these results are encouraging, both MMD-MA and UnionCom
require that the user specify four hyperparameters. In practice, selecting these hyperparameter values
can be difficult and time-consuming in an unsupervised setting.

An emerging number of applications across different research areas [9, 10] are using optimal transport
to learn a mapping between different data distributions. Optimal transport finds the most cost-effective
way to move data points from one domain to another. One way to think about optimal transport is as the
problem of moving a pile of sand to fill in a hole through the least amount of work. The optimal transport
framework has been used in biological applications. Schiebinger et al. [11] use optimal transport to
study how gene expression changes over time; they use regularized unbalanced optimal transport to
compute differences in gene expression from one time point to the next. ImageAEOT [12] maps single-
cell images to a common latent space through an autoencoder and then uses optimal transport to track
cell trajectories. Its related work [13] uses autoencoders and optimal transport to learn transport maps
between multiple domains. However, the application of this method to single-cell datasets requires some
form of supervision, like class labels, to preserve the underlying structure during transport.
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The classical optimal transport method requires datasets to be in the same metric space and is hard
to implement for domains in different dimensions. Mémoli et al. [14] generalized optimal transport
by using the Gromov-Wasserstein distance that compares metric spaces directly instead of comparing
samples across spaces. In the natural language processing community, Alvarez et al. [10] used this
approach to measure similarities between pairs of words across languages. They created uniform prob-
ability distributions on words in each language and used Gromov Wasserstein-based optimal transport
to compute the distances between languages. As far as we are aware, the only biological application
of Gromov-Wasserstein optimal transport comes from [15], that uses it to reconstruct the spatial orga-
nization of cells from transcriptional profiles. This approach assumes that the data consists of cells that
were originally connected in tissue and that closer cells share similar transcriptional profiles but that the
original spatial context and relationships among cells have been lost. With this setup, Nitzan et al.[15]
use Gromov-Wasserstein optimal transport to map the cells to physical locations that preserve distances
in the expression space.

In this paper, we present Single-Cell alignment using Optimal Transport (SCOT), an unsupervised
learning algorithm that uses Gromov Wasserstein-based optimal transport to align single-cell multi-omics
datasets (presented schematically in Figure 1). Like UnionCom, SCOT aims to preserve local geometry
when aligning single-cell data. The algorithm achieves this by constructing a k−nearest neighbor graph
for each dataset. SCOT then finds a probabilistic coupling between the samples of each dataset that
minimizes the distance between the graph distance matrices produced by the k-NN graph. Finally, it
uses the coupling matrix to project one single-cell dataset onto another through barycentric projection,
thus aligning them. Unlike MMD-MA and UnionCom, our algorithm requires tuning of only two hy-
perparameters and is robust to the choice of one. We compare the alignment performance of SCOT with
MMD-MA and UnionCom on three simulated and two real-world datasets. We demonstrate that SCOT
aligns all the datasets as well as the state-of-the-art methods and converges ∼15 and ∼50 times faster
than MMD-MA and UnionCom, respectively.

2 Method
SCOT uses Gromov Wasserstein-based optimal transport, which preserves local neighborhood geometry
when moving data points. The output of this transport problem is a matrix of probabilities that represent
how likely it is that data points from one space correspond to data points in the other space. These
probabilities can then be used to project the data into the same space for alignment. In this section,
we first introduce the formulation of optimal transport followed by its extension using the Gromov-
Wasserstein distance. Finally, we present the details of our SCOT algorithm.

Without loss of generality, we present the case for two datasets. Let the two sets of points be
X = (x1, x2, . . . , xnx) from X and Y = (y1, y2, . . . , yny) from Y . The datasets have nx and ny points,
respectively. We do not require any correspondence information across the datasets but assume that there
is some underlying shared structure so that the datasets can be aligned.

Optimal Transport The Kantorovich optimal transport problem seeks to find a minimal cost mapping
between two probability distributions [16]. Referring back to the problem of moving a sand pile to fill in
a hole, Kantorovich optimal transport allows us to split the mass of a grain of sand instead of moving the
whole grain. For probability measures µ and ν defined on X and Y , respectively, this optimal transport
problem learns a minimal coupling π that attains

min
π∈Π(ν,µ)

∫
X×Y

c(x, y)dπ(x, y), (1)
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where c(x, y) is a cost function and Π(µ, ν) is the set of couplings of µ and ν given by

Π(µ, ν) = {π ∈ P (X × Y) : π(A× Y) = µ(A) for A ⊂ X , π(X ×B) = ν(B) for B ⊂ Y}. (2)

Intuitively, the cost function says how many resources it will take to move x to y, and the coupling
π assigns a probability that x should be moved to y for each x and y in the two spaces. Note that
when the spaces of interest are both the same metric space with set M, distance d, and cost function
c(x, y) = d(x, y)p, then the optimal transport distance (Equation 1) is equivalent to the p−th Wasserstein
distance:

W p(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
M×M

d(x, y)pdπ(x, y)

) 1
p

. (3)

Wasserstein distances measure the distances between probability distributions on a metric space and are
commonly used in machine learning applications.

Since we want to align data, we work with discrete measures p and q over our data points, which we
can write as

p =
nx∑
i=1

piδxi and q =

ny∑
j=1

qjδyj ,

where δxi is the Dirac measure. Then, the cost function is given as a matrix C ∈ Rnx×ny , e.g. Cij =
‖xi − yj‖, and the set of possible couplings are the matrices

Π(p, q) = {Γ ∈ Rnx×ny

+ : Γ1ny = p, ΓT1nx = q}. (4)

A discrete coupling Γ relates two measures p and q in a meaningful way: Each row Γi tells us how to split
the mass of data point xi onto the points yj for j = 1, . . . , ny, and the condition Γ1ny = p requires that
the sum of each row Γi is equal to the probability of sample xi. The discrete optimal transport problem
attempts to find a coupling that minimizes the cost of moving samples through the linear program:

min
Γ∈Π(p,q)

〈Γ, C〉. (5)

Although this problem can be solved with minimum cost flow solvers, it is usually regularized with
entropy for more efficient optimization and empirically better results [17]. The addition of entropy
diffuses the optimal coupling, meaning that more masses will be split. Thus, the optimal transport
problem that is solved numerically is

min
Γ∈Π(p,q)

〈Γ, C〉 − εH(Γ), (6)

where ε > 0 and H(Γ) is the entropy defined by

H(Γ) =
nx∑
i=1

ny∑
j=1

Γij log Γij. (7)

Equation 6 is a strictly convex optimization problem, and for some unknown vectors u ∈ Rnx and
v ∈ Rny , the solution has the form Γ∗ = diag(u)Kdiag(v), with K = exp

(
−C

ε

)
, element-wise. This

solution can be obtained efficiently via Sinkhorn’s algorithm, which iteratively computes

u← p�Kv and v ← q �KTu, (8)

where � denotes element-wise division. This derivation immediately follows from solving the corre-
sponding dual problem for Equation 6 [16].
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Algorithm 1: Gromov-Wasserstein Alignment
Input: Datasets X, Y . Regularization ε. Number of neighbors k.
// Compute graph distances Dx, Dy;
p = Uniform(X), q = Uniform(Y);
Dxy ← D2

x1
T
ny

+ 1nxq(D
2
x)
T ;

while not converged do
// Compute cost matrix
D̂Γ ← Dxy − 2DxΓD

T
y ;

// Perform Sinkhorn iterations
u← 1 , K ← exp{−D̂Γ/ε};
while not converged do

u← p�Kv, v ← qT �KTu;
end
Γ← diag(u)Kdiag(v);

end
Return: Γ

Gromov-Wasserstein distance Classic optimal transport requires defining a cost function across do-
mains, which can be difficult to implement when the domains are in different dimensions. Gromov-
Wasserstein distance extends optimal transport by comparing distances between samples rather than
directly comparing the samples themselves [10]. For this extension we need to assume we have metric
measure spaces (X , dx, µ) and (Y , dy, ν), where dx and dy are distances on X and Y , respectively [14].
Instead of defining a cost function between spaces as in classic optimal transport, Gromov-Wasserstein
uses the difference between pairwise distances. Specifically, given a cost function L : R × R → R, the
Gromov-Wasserstein distance between µ and ν is defined by

GW (µ, ν) := min
π∈Π(µ,ν)

∫
X×Y

∫
X×Y

L(dx(x1, x2), dy(y1, y2))dπ(x1, y1)dπ(x2, y2). (9)

The main change from basic optimal transport (Equation 1) to Gromov-Wasserstein (Equation 9) is that
we consider the effect of transporting pairs of points rather than single points. Intuitively, L(dx(x1, x2),
dy(y1, y2)) now captures how transporting x1 onto y1 and x2 onto y2 would distort the original distances
between x1 and x2 and between y1 and y2. This change ensures that the optimal transport plan π will
preserve some local geometry. In the case of L(x, y) = L2(x, y) = 1

2
(x− y)2, Gromov-Wasserstein is a

distance on the space of metric measure spaces [14].
For the discrete case, we can compute pairwise distance matrices Dx and Dy as well as the fourth

order tensor L ∈ Rnx×nx×ny×ny , where Lijkl = L(Dx
ik, D

y
jl). The discrete Gromov-Wasserstein problem

is then defined by
GW (p, q) = min

Γ∈Π(p,q)

∑
i,j,k,l

LijklΓijΓkl. (10)

For each tuple (xi, xk, yj, yl), we are computing the cost of altering the pairwise distances between xi
and xk when splitting their masses to yj and yl by weighting them by Γij and Γkl, respectively. The
summation can also be expressed as the inner product 〈L(Dx, Dy)⊗Γ,Γ〉. Equation 10 is now both non-
linear and non-convex and involves operations on a fourth-order tensor, including theO(n2

xn
2
y) operation

tensor product L(Dx, Dy)⊗Γ for a naive implementation. Peyré et al. show that for some choices of loss
function this product can be computed in O(n2

xny + nxn
2
y) cost [18]. In particular, for the case L = L2,
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the inner product can be computed by

L(Dx, Dy)⊗ Γ = (Dx)2p1Tny
+ 1nxq

T ((Dy)2)T −DxΓ(Dy)T . (11)

As in the classical optimal transport case, the coupling matrix can then be efficiently computed for an
entropically regularized optimization problem:

GW (p, q) = min
Γ∈Π(p,q)

〈L(Dx, Dy)⊗ Γ,Γ〉 − εH(Γ). (12)

Larger values of ε lead to an easier optimization problem but also lead to a denser coupling matrix,
meaning that more data points exhibit significant correspondences with one another. Smaller values of
ε lead to sparser solutions, meaning that the coupling matrix is more likely to find the correct one-to-
one correspondences for datasets where there are one-to-one correspondences. However, it also yields a
harder (more non-convex) optimization problem [10].

Peyré et al. [18] propose using a projected gradient descent approach for optimization, where both
the projection and the gradient are taken with respect to Kullback-Leibler divergence. These projections
are computed via Sinkhorn iterations. Algorithm 1 presents the algorithm for L = L2.

Single-Cell alignment using Optimal Transport (SCOT) Our method, SCOT, works as follows:
First, we compute the pairwise distances on our data by using a geodesic distance as in [15]. To do
this, we construct a k-nearest neighbor graph weighted by Euclidean distances within each dataset. Then
we compute the shortest path distance on the graph between each pair of nodes. We set the distance of
any unconnected nodes to be the maximum (finite) distance in the graph and rescale the resulting dis-
tance matrix by dividing by the maximum distance for numerical stability. Our approach is robust to the
choice of k (Supplementary Section 1.4).

Since we do not know the true distribution of the original datasets, we follow [10] and set p and
q to be the uniform distributions on the data points. With these graph distance matrices and marginal
distributions, we solve for the optimal coupling Γ which minimizes Equation 12. To implement this
method, we use the Python Optimal Transport toolbox (https://pot.readthedocs.io/en/
stable/) [19]. The Sinkhorn iterations can often be unstable for small values of ε due to division by
K, so we use the log stabilized version of the Sinkhorn iterations as proposed by [20, 21].

One of the major advantages of using Gromov-Wasserstein to align datasets is that we end up with
a coupling matrix Γ with a probabilistic interpretation. In particular, the entries of the normalized row
nxΓi are the probabilities that the fixed data point xi corresponds to each yj . However, to use the cor-
respondence metrics previously used in the field to evaluate the alignment, we need to project the two
datasets into the same space. The Procrustes approach proposed in in [10] does not generalize to datasets
with different feature and sample dimensions, so we use a barycentric projection:

xi 7→ nx

ny∑
j=1

Γijyj. (13)

This barycentric projection of point xi is a weighted average of the yj’s, where the weight Γij is the
probability of correspondence between xi and yj . This projection averages over all the points. Thus, it
has a tendency to center the projected data onto the mean of the dataset it is being projected on. Figure
1 presents the schematic of the SCOT algorithm.
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3 Experimental Setup
Simulated datasets We follow Liu et al. [7] and benchmark our method on three different simulation
schemes 1. All three simulations contain two domains with 300 samples that have been projected non-
linearly to 1000- and 2000-dimensional feature spaces, respectively. The first simulation is a bifurcated
tree in two-dimensional space. The second simulation maps the branching structure onto a Swiss roll
in three-dimensional space. The third simulation is a circular frustum in three-dimensional space (Sup-
plementary Figure S1). Simulations are generated with known sample-wise correspondences, which are
used to benchmark methods and evaluate their performance in recovering them. We Z-score normalize
the features of all simulation datasets before running the alignment algorithms.

Single-cell multi-omics datasets We use two sets of single-cell multi-omics data to demonstrate the
applicability of our model to real-world biological datasets. Both datasets are generated by co-assays;
thus, we have known cell-level correspondence information for use in benchmarking.

The first dataset is generated using the sc-GEM assay [22], which simultaneously profiles gene ex-
pression and DNA methylation. The dataset (Sequence Read Archive accession SRP077853) is derived
from human somatic cell samples undergoing conversion to induced pluripotent stem cells (iPSCs). This
dataset was also used by Cao et al. [8] to demonstrate the performance of their UnionCom algorithm.
The data dimensions are 177×34 for the gene expression data and 177×27 for the chromatin accessibility
data.

The second dataset is generated by SNARE-seq [23], which links chromatin accessibility with gene
expression. The data (Gene Expression Omnibus accession GSE126074) is derived from a mixture of
human cell lines: BJ, H1, K562, and GM12878. We pre-processed the datasets following Chen et al.
[23], as follows. We reduced data sparsity and noise in the ATAC-seq data by performing dimensionality
reduction using the topic modeling framework cisTopic [24]. The dimensions of the RNA-seq data were
reduced using PCA. The resulting input matrices for the SNARE-seq data were of size 1047 × 19 and
1047 × 10 for ATAC-seq and RNA-seq, respectively. Similar to the simulation datasets, we Z-score
normalized all real-world datasets.

Baselines We compare SCOT with the two state-of-the-art unsupervised single-cell alignment methods
MMD-MA [7] and UnionCom [8]. Note that none of these methods use any correspondence information
for aligning the datasets.

Hyperparameter tuning To select hyperparameters, we ran each method over a grid of hyperparam-
eters and selected the setting that yielded the maximal average FOSCTTM. For SCOT, the grid cov-
ers the regularization weight ε ∈ {0.00001, 0.0001, 0.0002, 0.0003, ..., 0.1} and number of neighbors
k ∈ {5, 10, 20, 30, 40, . . . n}, where n is the number of samples in the dataset. MMD-MA has four
parameters to tune: the width σ ∈ {0.01, 0.1, 1.0, 10} of the Gaussian for the initial kernel calcula-
tion, the weights λ1, λ2 ∈ {10−3, 10−4, 10−5, 10−6, 10−7} for the terms in the optimization problem, and
the dimensionality p ∈ {3, 4, 5} of the embedding space. UnionCom also requires the user to spec-
ify four hyperparameters: the number k ∈ {5, 10, 25, ..., n} (with increments of 25 after k = 25) of
neighbors in the graph, the dimensionality p ∈ {2, 5, 10} of the embedding space, the trade-off pa-
rameter β ∈ {0.001, 0.005, 0.01, 0.5, 0.1, 0.5, 1, 5, 10} for the embedding, and a regularization coeffi-
cient ρ ∈ {0.001, 0.005, 0.01, 0.5, 0.1, 0.5, 1, 5, 10}. While not related to the algorithmic formulation of

1https://noble.gs.washington.edu/proj/mmd-ma/
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Figure 2: Aligning simulated datasets. Each column presents a different simulation. The top row
presents our alignment (plotted in 2D using PCA), and the bottom row plots the “fraction of samples
closer than the true match” (FOSCTTM) metric for MMD-MA, UnionCom, and SCOT. We also report
the average FOSCTTM values in the legend. SCOT achieves the lowest average FOSCTTM values for
all three simulations.

UnionCom, we also tuned the learning rate to achieve smoother convergence. We present alignment and
runtime results for the best performing hyperparameters of SCOT, MMD-MA, and UnionCom.

Evaluation metrics All datasets have one-to-one sample-level correspondence information. We use
this information solely to quantify the alignment performance of SCOT and the baselines. We use the
evaluation metric previously introduced by Liu et al. [7] called “fraction of samples closer than the true
match” (FOSCTTM). For each domain, we compute the Euclidean distances between a fixed sample
point and all the data points in the other domain. Next, we compute the fraction of those distances that
are closer to the sample than the distance to the true match. Next, we average these values for all the
samples to give us an average FOSCTTM score. For perfect alignment, all samples would be closest to
their true match, yielding a value of zero. Therefore, a lower average FOSCTTM corresponds to better
alignment performance.

For the scGEM dataset, we also adopt a metric used by Cao et al. [8] called “label transfer accuracy.”
This metric assesses the alignment performance of the cell label assignment. Specifically, it measures the
ability to correctly transfer sample labels from one domain to another based on their neighborhood in the
aligned domain. As described in [8], we train a k-nearest neighbor classifier on one of the domains and
predict the sample labels in the other domain. The label transfer accuracy is the percentage of correctly
predicted labels, so it ranges from 0 to 100%, and higher values indicate better performance.
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Figure 3: Aligning the scGEM dataset. A. The original scGEM datasets plotted in 2D using PCA. The
first plot colors cells by label, and subsequent plots segregate cells by data type. B. SCOT alignment
after performing optimal transport with barycentric projection. C. Comparison of the three algorithms,
MMD-MA, UnionCom, and SCOT, based on FOSCTTM.

4 Results
SCOT successfully aligns the simulated datasets We first compare SCOT’s performance with the
baseline methods for the three simulation datasets. In Figure 2, we sort and plot the FOSCTTM score
for each sample. We observe that SCOT achieves the lowest average FOSCTTM metric (averaged over
all samples in the datasets) and demonstrates its ability to recover the correct correspondences in simu-
lations.

SCOT gives state-of-the-art performance for single-cell multi-omics alignment Next, we apply
our method to real-world single-cell sequencing assays and observe that SCOT gives comparable per-
formance to the baseline methods. For scGEM data, the best FOSCTTM values are 0.201, 0.217, and
0.2066 for MMD-MA, UnionCom, and ScOT, respectively (Figure 3). Since the barycentric projection
averages the data together, we observe that the expression data clusters near the mean of the manifold it
is projected on (methylation data) in Figure 3(B).

As in [8], we use the label transfer accuracy metric to quantify how well the cells with the same
label cluster together after alignment. For k = 5 (the default value used by Cao et al.), the label transfer
accuracy values for MMD-MA, UnionCom, and SCOT are 0.5876, 0.5311, and 0.5650, respectively,
when the chromatin accessibility dataset is used as the training set. For the training set comprised of
gene expression, the values are 0.6384, 0.4689, and 0.6554, respectively. We report results for other
values of k for 1 ≤ k ≤ 8 in the Supplementary Figure S2.

Next, we compare all three methods for the SNARE-seq dataset (Figure 4). This dataset consists
of a larger number of cells (1047) compared to scGEM (177). MMD-MA yields the best FOSCTTM,
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Figure 4: Aligning SNARE-seq dataset. A. The original SNARE-seq datasets plotted in 2D using
PCA. B. SCOT alignment results after performing optimal transport with barycentric projection. C.
Comparison of the three algorithms, MMD-MA, UnionCom, and, SCOT based on FOSCTTM.

Sim. 1 Sim. 2 Sim. 3 scGEM SNAREseq
SCOT 2.33 1.43 3.41 3.17 40.52
MMD-MA 30.06 29.69 28.84 16.12 547.71
UnionCom 525.85 442.19 302.69 143.60 2169.74
UnionCom (GPU) 117.72 112.41 109.73 70.21 345.37

Table 1: Running times (in seconds) of SCOT, MMD-MA, and UnionCom for simulated and real
datasets. We observe that SCOT takes the least amount of time to converge.

followed by SCOT, with average FOSCTTM values of 0.1499 and 0.1985. UnionCom achieves lower
performance with an average FOSCTTM value of 0.265.

A primary difference between MMD-MA and UnionCom versus SCOT is that, rather than projecting
both the datasets to a lower-dimensional space, our method projects one dataset onto the other. To test
whether the direction of the embedding matters, we ran SCOT in both directions for all datasets. In each
case, we do not observe significant difference in performance between the two directions, with average
FOSCTTM values of 0.0712 (Sim 1), 0.0063 (Sim 2), 0.0084 (Sim 3), 0.2220(scGEM), and 0.2281
(SNARE-seq).

SCOT is faster than other alignment algorithms We directly compared the running times of SCOT
with the baseline methods for the best performing hyperparameters. We ran the CPU versions of the
algorithms on an Intel i5-8259U CPU (base frequency 2.30GHz) with 16GB memory. UnionCom also
has a GPU version that we ran on a single NVIDIA GTX 1080ti with VRAM of 11GB. We observe that
SCOT converges ∼15, ∼50, and ∼10 times faster than MMD-MA, UnionCom, and UnionCom-GPU,
respectively, for the largest SNARE-Seq dataset (Table 1).
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5 Discussion
Integrating different single-cell modalities is an important task with challenges that require development
of effective alignment algorithms. We have demonstrated that SCOT, which uses Gromov Wasserstein-
based optimal transport to perform unsupervised integration of single-cell multi-omics data, performs
well when compared to two state-of-the-art methods but in less time and with fewer hyperparameters.

To apply an evaluation metric and quantify the quality of alignment, we need to project the data into
the same space. Here, we choose to use a barycentric projection to project one domain onto another, but
there are various other ways to use the coupling matrix to infer alignment. For example, the coupling
matrix could also be used with other dimension reduction methods such as t-SNE (as in UnionCom)
to align the manifolds while embedding them both into new spaces. Additionally, depending on the
application, a projection may not be required. For some downstream analyses, it may be sufficient to
have probabilities relating the samples to one another. Our future work will focus on developing effective
ways to utilize the coupling matrix and extend our framework to handle more than two alignments at a
time.

We demonstrated the relative speed of convergence of SCOT. This speed benefit is further enhanced
by the fact that, unlike MMD-MA and UnionCom which require tuning of four parameters, SCOT re-
quires tuning of only two parameters. We also show (Supplementary Section 1.4) that SCOT is robust
to the choice of k. In this way, SCOT dramatically reduces the hyperparameter search space, making
application of the algorithm faster and easier.

Acknowledgments We are grateful to Yang Lu, Jean-Philippe Vert, and Marco Cuturi for helpful dis-
cussion of Gromov-Wasserstein optimal transport.
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[24] Carmen Bravo González-Blas, Liesbeth Minnoye, Dafni Papasokrati, Sara Aibar, Gert Hulselmans, Valerie
Christiaens, Kristofer Davie, Jasper Wouters, and Stein Aerts. cisTopic: cis-regulatory topic modelling on
single-cell ATAC-seq data. 16(5):397–400, 2018.

12

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 29, 2020. . https://doi.org/10.1101/2020.04.28.066787doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.066787
http://creativecommons.org/licenses/by/4.0/


1 Supplementary Information

1.1 Simulation Data Sets

Figure S1: Simulation data visualized before alignment. Data was generated by Liu et al [7] and
retrieved from https://noble.gs.washington.edu/proj/mmd-ma/. Each simulation set
has two domains. Their MDS projections in two dimensional and three dimensional space are visualized
here. The first set of simulations form a branched tree in two dimensional space (first column); the
second set of simulations form Swiss roll in three dimensional space (second column); and lastly, the
third set of simulations form a circular frustum.

1.2 Barycentric Projections in Both Directions

Dataset Domain 1 onto Domain 2 Domain 2 onto Domain 1
Simulation 1 0.0700 0.0712
Simulation 2 0.0063 0.0059
Simulation 3 0.0083 0.0084

scGEM 0.2066 0.2220
SNARE-seq 0.2281 0.1985

Table 2: Best mean FOSCTTM for each direction of the barycentric projection for all datasets. The
method is robust to the direction of the projection.
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1.3 Label Transfer Accuracy for scGEM Data Set

(a) (b)

Figure S2: Label transfer accuracy across alignment methods for scGEM data set (a) Label transfer
accuracy with varying values for k when kNN classifier is trained on the gene expression data set and
predicts the cell labels of DNA methylation data set. (b) Label transfer accuracy with varying values for
k when kNN classifier is trained on the DNA methylation data set and predicts the cell labels of gene
expression data set.

1.4 Hyperparameter Tuning for SCOT

(a) (b)

Figure S3: Hyperparameter optimization results for simulation data set 1. Mean FOSCTTM metric
was used to assess performance. (a) Results when domain 1 (X) is projected onto domain 2 (y). (b)
Results when domain 2 (y) is projected onto domain 1 (X).The algorithm is largely robust to the choice of
k. For domain 1 projection on domain 2, the best performing hyperparameter setting was ε = 0.001, k =
30. For domain 2 projection on domain 1, it was ε = 0.005, k = 80. The hyperparameter combination
that yielded the best performance is highlighted with red square. For ease of visualization, a subset of
the ε values are plotted.
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(a) (b)

Figure S4: Hyperparameter optimization results for simulation data set 2. Mean FOSCTTM metric
was used to assess performance (indicated by color). (a) Results when domain 1 (X) is projected onto
domain 2 (y). (b) Results when domain 2 (y) is projected onto domain 1 (X). The algorithm is largely
robust to the choice of k. For domain 1 projection on domain 2, the best performing hyperparameter
setting was ε = 0.0005, k = 70. For domain 2 projection on domain 1, it was ε = 0.001, k = 90. The
hyperparameter combination that yielded the best performance is highlighted with red square. For ease
of visualization, a subset of the ε values are plotted.

(a) (b)

Figure S5: Hyperparameter optimization results for simulation data set 3. Mean FOSCTTM metric
was used to assess performance (indicated by color). (a) Results when domain 1 (X) is projected onto
domain 2 (y). (b) Results when domain 2 (y) is projected onto domain 1 (X). The algorithm is largely
robust to the choice of k. For domain 1 projection on domain 2, the best performing hyperparameter
setting was ε = 0.0005, k = 60. For domain 2 projection on domain 1, it was ε = 0.001, k = 60. The
hyperparameter combination that yielded the best performance is highlighted with red square. For ease
of visualization, a subset of the ε values are plotted.
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(a) (b)

Figure S6: Hyperparameter optimization results for scGEM dataset. Mean FOSCTTM metric was
used to assess performance (indicated by color). (a) Results when gene expression domain (X) is pro-
jected onto DNA methylation domain (y). (b) Results when DNA methylation domain (y) is projected
onto gene expression domain (X). The algorithm is largely robust to the choice of k. For both projections,
the best performing hyperparameter setting was ε = 0.005, k = 20. The hyperparameter combination
that yielded the best performance is highlighted with red square. For ease of visualization, a subset of
the ε values are plotted.

(a) (b)

Figure S7: Hyperparameter optimization results for SNARE-seq dataset. Mean FOSCTTM metric
was used to assess performance (indicated by color). (a) Results when chromatin accessibility domain
(X) is projected onto gene expression domain (y). (b) Results when expression domain (y) is projected
onto chromatin accessibility domain (X). The algorithm is largely robust to the choice of k. For both
projections, he best performing hyperparameter setting was ε = 0.0038, k = 30. The hyperparameter
combination that yielded the best performance is highlighted with red square. For ease of visualization,
a subset of the ε values are plotted.
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