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Chapter 6

The Cell Painting Assay as a Screening Tool for the
Discovery of Bioactivities in New Chemical Matter

Axel Pahl and Sonja Sievers

Abstract

Multiparametric phenotypic screening based on cellular morphology interrogates many biological pathways
simultaneously and is therefore a valuable screening tool for the discovery of new biological activities. The
cell painting assay stains various cellular features using six different dyes in one well. By automated image
analysis, hundreds of parameters are calculated from the images which deliver a phenotypic profile of the
cell. It has been shown that compounds with similar modes of action deliver similar phenotypic profiles.
Using a reference set of compounds with known modes of action, it is possible to assign probable modes of
action to new compounds and to discover compounds with potentially new modes of action.

Here we describe the cell painting assay as a screening tool using a hit identification workflow which has
been implemented using open-source software.

Key words Cell painting assay, Phenotypic profile, Screening, Hit identification, Morphological

profiling

1 Introduction

Traditionally, high-throughput screening (HTS) has been divided
into target-based and phenotypic approaches. Target-based screens
are often carried out in in vitro set ups and therefore suffer from a
lack of physiological relevance, while offering excellent opportu-
nities for hit optimization and hit-to-lead development especially
when structural information on the target is available. Phenotypic
screens are in most cases carried out in a target-agnostic manner
and offer a higher degree of physiological relevance, especially when
pluripotent stem cell models are used [1]. On the flipside, hit
optimization may be difficult and target identification via for exam-
ple proteomic methods is a huge effort requiring many resources
[2]. While phenotypic screens offer the chance to analyze the cell as
a whole, investigators still often choose to limit the readout to a
single or only a few parameters, often picked because of special
significance for a pathway of interest [ 3]. As a consequence, most of

Slava Ziegler and Herbert Waldmann (eds.), Systems Chemical Biology: Methods and Protocols, Methods in Molecular Biology,
vol. 1888, https://doi.org/10.1007/978-1-4939-8891-4_6, © Springer Science+Business Media, LLC, part of Springer Nature 2019

115


http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8891-4_6&domain=pdf
https://doi.org/10.1007/978-1-4939-8891-4_6

116

Axel Pahl and Sonja Sievers

the information which lies in the phenotype is disregarded in
conventional phenotypic screening.

Multiparameter phenotypic screens based on cellular morphol-
ogy hold promise in enabling unbiased screening for the discovery
of (new) bioactivities and have the potential to replace a whole fleet
of single parameter assays. Thus multiparametric phenotypic
screening might be more efficient than conventional screening [4].

The comprehensive description of hundreds of cellular features
generates a phenotypic profile of a chemical compound. By com-
paring phenotypic profiles between agents with related modes of
action, it could be shown that similar perturbations lead to similar
changes in cellular morphology. For example, structurally unrelated
tubulin inhibitors or HDAC inhibitors, respectively, were found to
induce particular phenotypes and cluster together after hierarchical
clustering analysis [5, 6]. Multiparametric phenotypic screening
also has the potential to distinguish between new and already
known bioactivities when a set of annotated reference compounds
is screened alongside the new compound collection. For screening
compounds with a phenotypic profile similar to a reference profile,
multiparametric screening can deliver information about possible
targets or mechanisms of action. Any compound with a phenotypic
profile that significantly difters from the DMSO control but shows
little or no similarity to the reference profiles of known compounds
potentially modulates a new kind of bioactivity. It must be noted
that in every case the screening results depend heavily on the
reference compound set used. Focused libraries with drugs or
drug candidates like the LOPAC library, the Prestwick Chemical
library or the US-Drug collection are mostly used for this purpose
[7]. However, it should be pointed out that drugs often do not
only have one cellular target but that therapeutic efficacy may be
linked to the modulation of several targets [8, 9]. Compound
annotations seldom contain this polypharmacology information.
Thus, it may be very well the case that an observed phenotype
might be derived from the modulation of a target other than the
annotated one [10].

The cell painting assay (CPA) has been described as a morpho-
logical profiling tool for the generation of multiparametric profiles
of cells [5]. While not being the first example of a morphological
multiparametric profiling assay [11], CPA has the potential to be
applied to large compound sets [12] because of its relative ease of
use and fairly low costs associated with the used dyes as opposed to
antibody-based staining in other approaches [6]. It is also highly
versatile in the adaptation to different cell lines. CPA is highly
multiplexed, it highlights various cellular features by staining
eight cellular compartments (nucleus, nucleoli, mitochondria,
ER, Golgi, plasma membrane, actin cytoskeleton, cytosolic RNA)
in five different fluorescent channels in one well [13]. By
subsequent image analysis hundreds of parameters are deduced
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from every channel which are combined into the morphological
profile of the cell.

We combined the cell painting assay with a hit identification

workflow to efficiently identify bioactive compounds in large
compound sets.

2 Materials

2.1 Cell Staining

10.
11.

12.
13.

14.

15.

. U208 cells.

. DMEM containing 10% fetal bovine serum, 1% L-glutamine,

1% sodium pyruvate, and 1% nonessential amino acids.

. Black clear-bottomed 384 well plates.
. Automated Dispenser: Multidrop Combi (Thermo).
. Acoustic dispensing machine: Echo 520 dispenser (Labcyte

Inc.).

. Automated cell washer: EIx405 (Biotek).
. Dulbecco’s Phosphate-buffered saline (PBS): 137 mM NaCl,

2.7 mM KCl, 10 mM Na,HPO4*2 H,0, 2 mM KH,POy, in
ultrapure water H,O, adjust pH to 7.2 to 7.4 and autoclave.

. MitoTracker staining solution: dilute MitoTracker stock solu-

tion (1 mM) to 100 nM with DMEM containing 10% fetal
bovine serum freshly every screening day.

. Fixing solution: dilute formaldehyde (37% stock solution) to

18.5% with PBS freshly very screening day.
Permeabilization solution: 0.1% (v/v) Triton X-100 in PBS.

Staining solution: 5 pg,/ml Hoechst 33342, 1.5 pg/ml WGA,
25 pg/ml concanavalin A, 5 pl /ml phalloidin solution, 1.5 pM
SYTO 14, and 1% BSA in PBS (see Notes 1 and 2). Prepare
freshly every screening day.

Self-adhesive aluminum foil.

Reference set of compounds: e.g., LOPAC (Library of Phar-
macologically Active Compounds) (Sigma), Prestwick Chemi-
cal Library (Prestwick Chemical), US-Drug collection
(MicroSource Discovery Systems), Selleckchem kinase inhibi-
tor library (Selleckchem), the published kinase inhibitor set
(PKIS [14]).

Automated microscope: ImageXpress Micro XL (Molecular
Devices) with filter sets for DAPI, FITC, SybrGold, TxRed,
and Cy5 (see Table 1).

CellProfiler (http: //cellprofiler.org/ and https: //github.com/
CellProfiler/CellProfiler last accessed 18 July 2017).
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Table 1

Overview about the different dyes and filter sets used for the cell painting assay

Dye

Cellular component(s) Filter set Ex/nm Em/nm

Hoechst 33342

Concanavalin A /Alexa Fluor

488 conjugate

350400 410-480
470-500 510-540

Nucleus DAPI

Endoplasmic reticulum FITC

SYTO 14 green fluorescent nucleic  Nucleoli, cytoplasmic RNA Spectrum Gold 520-545 560-585

acid stain

Phalloidin /Alexa Fluor 568
Wheat-germ agglutinin/Alexa

Fluor 555
MitoTracker Deep Red

535-585 600-650
535-585 600-650

F-actin cytoskeleton TxRed

Golgi, plasma membrane  TxRed

Mitochondria Cy5 605-650 670-715

2.2 Software

. Python 2.7 (https: //www.python.org/; for CellProfiler on the

Cluster in an Anaconda (https://www.continuum.io/
downloads) environment),

. Python 3.5 (for the processing workflow).
. Nim (https: //nim-lang.org/; for small scripts on the cluster).
. Jupyter (http://jupyter.org/; as execution environment for the

data processing workflow).

. Pandas (http://pandas.pydata.org/; Python Data Analysis

Library).

. RDKit (http: //rdkit.org/; Cheminformatics toolkit for work-

ing with chemical structures).

All last accessed 18 July 2017.

3 Methods

3.1 Cell Gulture and
Gompound Treatment

. Grow U20S cells in supplemented DMEM. Split twice a week,

using 600 cells per cm” for reseeding of the cells.

. Seed U20S cells at 1600 cells/ well in 25 pl medium in

384 well plates using a multichannel pipette or automated
dispensing and incubate for 4 h at 37 °C and 5% CO, (see
Notes 3-5).

. Add compounds to a final screening concentration of 10 pM,

for example using acoustic dispensing (se¢ Note 6).

. Incubate cells with compounds for approx. 20 h at 37 °C with

5% COs,.
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3.2 Live Cell Staining

3.3 Fixation and
Permeabilization

3.4 Staining

3.5 Imaging

3.6 Image Analysis
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Mitochondrial staining has to be performed in live cells. Mito-
Tracker dyes diffuse passively across membranes and accumulate
in active mitochondria. Most of the MitoTracker dyes are also well
retained in the mitochondria after fixation.

1. For the live cell staining, aspirate medium from the plates
leaving ca. 10 pl of residual volume using an automated cell
washer.

2. Add 25 pl of MitoTracker staining solution using a multichan-
nel pipette or automated dispensing.

3. Incubate plates for 30 min in the dark at 37 °C.

1. Fix the cells by addition of 7 pl of fixing solution to give a final
concentration of 3.1% (v/v) formaldehyde using a multichan-
nel pipette or automated dispensing and incubate at room
temperature for 20 min (see Note 7).

2. Wash the plates three times with 70 pl PBS with final aspiration
using an automated washer.

3. Permeabilize the cells by addition of 25 pl of permeabilization
solution using a multichannel pipette or automated dispensing
and incubate in the dark at room temperature for 10-20 min.

4. Wash the plates three times with 70 pl PBS with final aspiration
using an automated washer.

1. Stain the cells by addition of 25 pl of staining solution to each
well using a multichannel pipette or automated dispensing and
incubate in the dark at room temperature for 30 min.

2. Wash the plates three times with 70 pl PBS with final aspiration
using an automated washer.

3. Seal the plate with self-adhesive aluminum foil.

1. Image the plate at 20x magnification using an automated
microscope with filter sets for the 5 wavelengths as shown in
Table 1. Take nine pictures per well to cover a large number of
cells (>1000 cells in total) (se¢ Notes 8 and 9).

CellProfiler is an open source image analysis software which is fully
compatible with high-throughput screening [15]. CellProfiler
offers a modular approach to single cell image analysis even to
non-image analysis experts. Different modules for image proces-
sing, object detection and measurements are combined into a
pipeline. Measured parameters include size, shape, intensity, and
texture features of the defined objects. For a small number of plates
CellProfiler can easily be run on a desktop PC. However, for HTS
mode CellProfiler needs to be installed and run on a cluster which
might require the help of IT experts.
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3.7 Data Mining

1. Analyze the images with CellProfiler software using the analysis
pipeline in https: //github.com/mpimp-comas/cellpainting.
This pipeline was based on Bray et al. [13] with slight mod-
ifications. First, images are loaded into the pipeline and an
illumination correction is performed. Then, object detection
is carried out: primary objects (nuclei) are detected in the
Hoechst channel, secondary objects (cytoplasm) are identified
from the TxRed channel using a watershed algorithm and
tertiary objects (cells) are defined as the sum of primary and
secondary objects. CellProfiler then measures more than 2300
parameters for each individual cell. During Cell Profiler analy-
sis, parameters are aggregated by the median values of the
microscope sites, resulting in 9 values per microtiter well for
every parameter.

2. For high-throughput analysis, install CellProfiler on a cluster.
In our case, the processing of each image set from one plate is
distributed over 96 parallel jobs. The processing of one plate
takes approx. 5 h. At the end of a distributed processing job on
the cluster, the result files from the individual processing jobs
are concatenated to one result file per plate of 3456 lines
(384 wells x 9 sites) and 1937 columns (~90 MB). The Cell-
Profiler pipeline is exported und reused in every run on the
cluster (see Notes 10 and 11).

To turther develop CPA into a screening assay, we established a data
mining procedure to transform phenotypic profiles into a direct
measure of compound activity (“CPA activity score”) without
losing similarity information gained by reference compounds
(Pahl et al., manuscript in preparation). For the CPA activity
score, first a phenotypic profile is established using median per
well values of the 307 parameters that were found to be nonredun-
dant (for selection of parameters see Subheading 2). For profile
comparison, we assign equal weight to all parameters and therefore,
the absolute change in the parameters is not taken into account.
Rather, for every parameter it is checked if it is identical to the
DMSO control (activity code = 1) or if it has a significantly
(>7.5 x Median Absolute Deviation, MAD) lower or higher
numeric value than the DMSO control (activity code = 0 or activity
code = 2, respectively). All activity codes are concatenated resulting
in a 307 digit-activity string. The CPA activity score is then calcu-
lated from the sum of parameters with an activity code different
from 1 divided by the total number of parameters and is expressed
in percent. Thus, the CPA activity score indicates in how many

parameters the phenotypic profile of a compound differs from the
DMSO profile.
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The data mining functionalities (Parts 1—4) are implemented as
a Python module and the workflows are run in Jupyter Notebooks.
All scripts have been uploaded to GitHub (se¢e Note 10).

1. Data preparation

First, the data is prepared for further analysis (se¢e Note 12).
In this script, the values for every parameter of each well are
grouped on the median, skipped wells from the Echo com-
pound transfer are removed, the well type (Control/Com-
pound) is assigned by their position on the plate (DMSO
controls are in columns 11 and 12) and results for toxic com-
pounds are flagged (a compound is considered toxic when it
has less than 50% of the median cell count of the controls) (see
Note 13).

Finally, data from all plates of a screening batch is concate-
nated into one result.

2. Finding relevant parameters

In this step, the relevant, uncorrelated parameters that are
used for calculation of the activity score are determined from
the compound set, from which toxic compounds have been
removed (see Note 14).

The measured parameters are first filtered for their rele-
vance, that is, parameters are removed that among the controls
have a standard deviation of less than 0.05% or more than 2.5%,
effectively removing parameters with constant values or very
small variability as well as parameters with high variance already
in the controls which would make them unsuitable for char-
acterizing test compounds.

For our data set this results in 773 parameters, which are
then submitted to a correlation filter which filters out para-
meters that are highly correlated to each other. A correlation
matrix is generated; the parameters which are correlated to the
highest number of other parameters are analyzed and only the
parameter with the lowest standard deviation is kept and the
other parameters are removed. From the remaining para-
meters, a new correlation matrix is generated and the process
is repeated until no correlated parameters remain in the data
set, leading to a set of 307 uncorrelated parameters at a cut-off
ot 0.9 for the correlation factor.

3. Calculation of CPA activity score for the reference set

In this part the phenotypic profiles are calculated for the
reference compounds from the set of relevant parameters. The
phenotypic profile is a fingerprint-like property that is calcu-
lated from each of the relevant parameters as follows: if the
value of a compound for a specific parameter is higher
(or lower) than the median of the controls for that parameter
+/—=7.5 times the MAD, then the fingerprint at that position
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gets assigned a 2 (or 0). Otherwise a 1 is assigned for inactivity.
The resulting fingerprint is a string with the length of the
number of relevant parameters that at each position has either
a 0 (lower than control), a 1 (inactive) or a 2 (higher than
control). Then, the activity score is calculated which consists of
the absolute number of active parameters in the activity profile
divided by the total number of parameters, and is expressed in
percent.

This categorization of parameters makes it very easy to
compare compounds by their activity profiles (see Note 15).
The profile similarity score is calculated by the Tanimoto
method [16] as follows: two activity profiles are compared
position by position. For all significant parameters (with value
0 or 2) that have the same value at the same position, a counter
is incremented. The similarity is then the final value of the
counter divided by the total number of significant positions
from both profiles, resulting in values from 0 (different in every
position) to 1 (completely identical).

The script for the calculation of the CPA activity score of
the reference compounds first processes the raw data as
described in step 1. In addition, the plate layout is joined
(linking plate position and Compound_ID), the structures
are joined as Smiles, low-purity or toxic reference compounds
are removed, activity profiles and activity scores are calculated
for the determined relevant parameter set, annotations (trivial
names, known activities) are joined to the reference compound
set, the data set is saved to a TSV file (tab-separated).

. Comparison of the screening compounds to the reference

compounds

A screening plate containing test compounds is processed
as in Subheading 3 whereby removal of impure and toxic
compounds is omitted. For active compounds (minimum activ-
ity score of 5%), profile similarity scores are calculated.
Finally, a report is generated for each test compound. If a test
compound shows similarity to a reference compound (mini-
mum similarity score of 25%), a list of reference compounds
and their annotations is also reported, otherwise it is noted that
no similar references could be found.

4 Notes

. As a cheaper alternative, Concanavalin A FITC conjugate can

also be used. We used it at the same concentration as the Alexa
488 conjugate and achieved similar staining results.

. As a cheaper alternative, MFP-DY-594-Phalloidin conjugate

(Dyomics) can also be used. We used it at the same
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concentration as the Alexa 594 conjugate and achieved similar
staining results.

. For most gentle cell seeding, standard tube cassettes should be

used with dispensing speed set to “medium.”

. Even cell seeding can be achieved by first dispensing 5 pl

medium only, followed by a second dispensing step of 20 pl
cell suspension. After that, the plate should be left at room
temperature for 10-20 min before putting it into the
incubator [17].

. CellCarrier Ultra plates outperformed all other plates tested

because their bottom is highly even and no drift in focusing was
observed across the images.

. When screening focused libraries of for example kinase inhibi-

tors or certain classes of natural compounds, which tend to be
toxic at high concentrations, the screening concentration
should be reduced to 1-2 pM. At a screening concentration
of 10 uM for known drugs and 2 pM for kinase inhibitors, we
tound 39% of our reference compound set to be active (activity
score >10%).

. Formaldehyde should be freshly diluted to 18.5% from the 37%

stock every screening day.

. Exposure times may vary for the different dyes. Make sure to

not saturate your images. We usually choose the brightest
objects to have an intensity of 10,000 of the 64,000 grey
shades.

If possible, use camera binning set to 2. This will quarter image
size and reduce storage space as well as data transfer and
processing times.

The setup of CellProfiler on a cluster may need the help of IT
experts. It is recommended to install the CellProfiler Python
program in an Anaconda virtual environment directly from the
CellProfiler GitHub sources. Scripts and helper tools to run
parallel jobs for the Sun Grid Engine (SGE) can be found on
the COMAS GitHub page (https://github.com/mpimp-
comas/cellpainting) and need to be adapted to the individual
setup.

After the parallel processing of the images by CellProfiler
and the concatenation of the results on the cluster, the result
data is transferred to a normal desktop computer on which all
downstream processing and reporting is performed.

CellProfiler offers multiple ways to handle configurations and
to output results. For parallel processing on a cluster, we found
the best solution to be working with *.cppipe configuration
files and to generate the result data in plain CSV (or TSV) files.
The CellProfiler pipeline (*.cppipe) is generated by
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12.

13.

14.

15.

configuring and exporting a workflow in the graphical interface
of CellProfiler which is accessed on the cluster via VNC client.

To construct a phenotypic profile for a compound from the
single cell data of the primary image analysis, the data needs to
be normalized (to account for plate and batch differences) and
aggregated: different statistical methods can be used to com-
bine data on the image level, the well level (several sites are
imaged per well) and the compound level (if replicates are
measured). Comparison of different statistical methods
showed that using a simple mean or median value per well
already delivers robust results, even for heterogeneous pheno-
types [18, 19]. However, improvements in the accuracy of
classification of a set of test compounds could be achieved
using the median combined with median absolute deviation

(MAD) or percentile values [18, 19].

We chose the toxicity cutoff at <50% of the median cell count
of the DMSO control. Admittedly, a potent antimitotic com-
pound could also lead to such a reduction in cell count over
20 h compound incubation time. However, using a screening
test set of 1400 proprietary compounds only 4% of compounds
were flagged to be toxic and in our reference set of 4220
compounds only 3.3% of compounds were flagged to be toxic.

During image analysis, several hundred parameters are calcu-
lated for every cell delivering the basis for a phenotypic profile.
Many approaches for the generation of phenotypic profiles
(also known as fingerprints) have been described. Thereby,
some approaches work with a high number of individual para-
meters; while others use dimension reduction or feature selec-
tion methods to come up with a screening result that can be
biologically interpreted and is more accessible to the human
mind [20, 21]. Reducing the number of highly correlated
parameters can be beneficial in subsequent analysis, for exam-
ple, in reducing processing times or because of higher impor-
tance of the chosen parameters which in turn can result in a
more stable phenotypic classification [19]. However, dimen-
sion reduction or feature selection also bears the risk of losing
information which could be valuable for phenotype discrimi-
nation. This is especially true for unbiased screening with an
undefined phenotype; thus it is expected that for such
approaches a high number of parameters should be included
into the phenotypic profile to cover a broad range of pheno-
types that might be induced by the screening compounds. In
every case caution should be applied to preserve as much of the
variance as possible.

Phenotypic profiles of the test compounds need to be com-
pared to those of DMSO controls and reference compounds.
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Because of the multiparametric nature of the phenotypic pro-
files, multivariate statistical measures are often applied to detect
relevant differences and similarities between phenotypic
profiles. For small molecule screening purposes, the Mahala-
nobis distance has often been used [22]. A study comparing
different distance- and correlation-based methods found that
correlation-based methods work best for different purposes
while distance-based methods are stronger in detecting all
phenotypes difterent from the neutral controls [23]. Multivari-
ate similarity measures are also a prerequisite for any kind of
clustering approaches which group similar phenotypic profiles
together. However, clustering workflows usually do not imple-
ment an activity threshold which is needed for screening pur-
poses to differentiate active from inactive compounds.

To overcome this problem, an arbitrary cutoff has been
applied to the Mahalanobis distance to define a hit [22]. In
another effort to create an activity score for phenotypic pro-
files, a “multidimensional perturbation value” (mp-value) has
been designed to define a hit [24, 25]. Mp-values are signifi-
cance measurements that are calculated from Mahalanobis dis-
tances by permutation analysis. Like for nominal significance
tests, a cutoff of 0.05 can be applied as a cutoft for active

compounds.

References

1

. Vincent F, Loria P, Pregel M, Stanton R,

Kitching L, Nocka K, Doyonnas R,
Steppan C, Gilbert A, Schroeter T, Peakman
MC (2015) Developing predictive assays: the
phenotypic screening "rule of 3". Sci Transl
Med 7(293):293ps215. https://doi.org/10.
1126 /scitranslmed.aab1201

. Vendrell-Navarro G,  Brockmeyer A,

Waldmann H, Janning P, Ziegler S (2015)
Identification of the targets of biologically
active small molecules using quantitative pro-
teomics. Methods Mol Biol 1263:263-286.
https: //doi.org,/10.1007 /978-1-4939-2269-
721

. Singh S, Carpenter AE, Genovesio A (2014)

Increasing the content of high-content screen-
ing: an overview. J Biomol Screen 19
(5):640-650. https://doi.org/10.1177 /
1087057114528537

. Pennisi E (2016) IMAGING. ’Cell painting’

highlights responses to drugs and toxins. Sci-
ence 352(6288):877-878. https://doi.org/
10.1126/science.352.6288.877

. Gustafsdottir SM, Ljosa V, Sokolnicki KL,

Anthony Wilson ], Walpita D, Kemp MM,
Petri Seiler K, Carrel HA, Golub TR, Schreiber
SL, Clemons PA, Carpenter AE, Shamji AF

10.

(2013) Multiplex cytological profiling assay to
measure diverse cellular states. PLoS One 8
(12):¢80999. https://doi.org,/10.1371/jour
nal.pone.0080999

. Reisen F, Sauty de Chalon A, Pfeifer M,

Zhang X, Gabriel D, Selzer P (2015) Linking
phenotypes and modes of action through high-
content screen fingerprints. Assay Drug Dev
Technol 13(7):415-427. https://doi.org/10.
1089 /adt.2015.656

. Jones LH, Bunnage ME (2017) Applications

of chemogenomic library screening in drug
discovery. Nat Rev Drug Discov 16
(4):285-296. https://doi.org,/10.1038 /nrd.
2016.244

.Boran AD, Iyengar R (2010) Systems

approaches to polypharmacology and drug dis-
covery. Curr Opin Drug Discov Devel 13
(3):297-309

. Hu Y, Bajorath J (2013) High-resolution view

of compound promiscuity. F1000 Res 2:144.
https://doi.org,/10.12688 /f1000rescarch.2-
144.v2

Ursu A, Illich DJ, Takemoto Y, Porfetye AT,
Zhang M, Brockmeyer A, Janning D,
Watanabe N, Osada H, Vetter IR, Ziegler S,
Scholer HR, Waldmann H (2016) Epiblastin A


https://doi.org/10.1126/scitranslmed.aab1201
https://doi.org/10.1126/scitranslmed.aab1201
https://doi.org/10.1007/978-1-4939-2269-7_21
https://doi.org/10.1007/978-1-4939-2269-7_21
https://doi.org/10.1177/1087057114528537
https://doi.org/10.1177/1087057114528537
https://doi.org/10.1126/science.352.6288.877
https://doi.org/10.1126/science.352.6288.877
https://doi.org/10.1371/journal.pone.0080999
https://doi.org/10.1371/journal.pone.0080999
https://doi.org/10.1089/adt.2015.656
https://doi.org/10.1089/adt.2015.656
https://doi.org/10.1038/nrd.2016.244
https://doi.org/10.1038/nrd.2016.244
https://doi.org/10.12688/f1000research.2-144.v2
https://doi.org/10.12688/f1000research.2-144.v2

126

11.

12.

13.

14.

15.

16.

17.

18.

Axel Pahl and Sonja Sievers

induces reprogramming of epiblast stem cells
into embryonic stem cells by inhibition of
casein kinase 1. Cell Chem Biol 23
(4):494-507. https: //doi.org,/10.1016/j.
chembiol.2016.02.015

Perlman ZE, Slack MD, Feng Y, Mitchison T7J,
Wu LF, Altschuler SJ (2004 ) Multidimensional
drug profiling by automated microscopy. Sci-
ence 306(5699):1194-1198. https: //doi.org/
10.1126/science.1100709

Bray MA, Gustafsdottir SM, Ljosa V, Singh S,
Sokolnicki KL, Bittker JA, Bodycombe NE,
Dancik V, Hasaka TP, Hon CS, Kemp MM,
Li K, Walpita D, Wawer MJ, Golub TR, Schrei-
ber SL, Clemons PA, Shamji AF, Carpenter AE
(2017) A dataset of images and morphological
profiles of 30,000 small-molecule treatments
using the Cell Painting assay. Gigascience 6
(12):1-5. https://doi.org,/10.1093 /
gigascience /giw014

Bray MA, Singh S, Han H, Davis CT,
Borgeson B, Hartland C, Kost-Alimova M,
Gustafsdottir SM, Gibson CC, Carpenter AE
(2016) Cell Painting, a high-content image-
based assay for morphological profiling using
multiplexed fluorescent dyes. Nat Protoc 11
(9):1757-1774.  https://doi.org,/10.1038/
nprot.2016.105

Knapp S, Arruda P, Blagg J, Burley S, Drewry
DH, Edwards A, Fabbro D, Gillespie P, Gray
NS, Kuster B, Lackey KE, Mazzafera P, Tom-
kinson NC, Willson TM, Workman P,
Zuercher WJ (2013) A public-private partner-
ship to unlock the untargeted kinome. Nat
Chem Biol 9(1):3-6. https://doi.org/10.
1038,/nchembio.1113

Carpenter AE, Jones TR, Lamprecht MR,
Clarke C, Kang IH, Friman O, Guertin DA,
Chang JH, Lindquist RA, Moftat ], Golland D,
Sabatini DM (2006) CellProfiler: image analysis
software for identifying and quantifying cell phe-
notypes. Genome Biol 7(10):R100. https: //doi.
org,/10.1186,/gb-2006-7-10-r100

Rogers DJ, Tanimoto TT (1960) A Computer
program for classifying plants. Science 132
(3434):1115-1118. https://doi.org,/10.
1126/science.132.3434.1115

Lundholt BK, Scudder KM, Pagliaro L (2003)
A simple technique for reducing edge effect in

cell-based assays. ] Biomol Screen 8
(5):566-570. https: //doi.org/10.1177 /
1087057103256465

Ljosa V, Caie PD, Ter Horst R, Sokolnicki KL,
Jenkins EL, Daya S, Roberts ME, Jones TR,
Singh S, Genovesio A, Clemons PA, Carragher
NO, Carpenter AE (2013) Comparison of
methods for image-based profiling of cellular
morphological responses to small-molecule

19.

20.

21.

22.

23.

24.

25.

treatment. ] Biomol Screen 18
(10):1321-1329. https://doi.org/10.1177/
1087057113503553

Kummel A, Selzer P, Beibel M, Gubler H,
Parker CN, Gabriel D (2011) Comparison of
multivariate data analysis strategies for high-
content screening. J Biomol Screen 16
(3):338-347. https: //doi.org/10.1177 /
1087057110395390

Twarog NR, Low JA, Currier DG, Miller G,
Chen T, Shelat AA (2016) Robust classification
of small-molecule mechanism of action using a
minimalist high-content microscopy screen
and multidimensional phenotypic trajectory
analysis. PLoS One 11(2):¢0149439. https://
doi.org,/10.1371 /journal.pone.0149439

Young DW, Bender A, Hoyt J, McWhinnie E,
Chirn GW, Tao CY, Tallarico JA, Labow M,
Jenkins JL, Mitchison TJ, Feng Y (2008) Inte-
grating high-content screening and ligand-
target prediction to identify mechanism of
action. Nat Chem Biol 4(1):59-68. https://
doi.org,/10.1038 /nchembio.2007.53

Gerry CJ, Hua BK, Wawer MJ, Knowles JD,
Nelson SD Jr, Verho O, Dandapani S, Wagner
BK, Clemons PA, Booker-Milburn KI, Bosko-
vic ZV, Schreiber SL (2016) Real-time
biological annotation of synthetic compounds.
J Am Chem Soc 138(28):8920-8927. https://
doi.org,/10.1021 /jacs.6b04614

Reisen F, Zhang X, Gabriel D, Selzer P (2013)
Benchmarking of multivariate similarity mea-
sures for high-content screening fingerprints
in phenotypic drug discovery. ] Biomol Screen
18(10):1284-1297. https://doi.org,/10.
1177,/1087057113501390

Hutz JE, Nelson T, Wu H, McAllister G,
Moutsatsos I, Jaeger SA, Bandyopadhyay S,
Nigsch F, Cornett B, Jenkins JL, Selinger DW
(2013) The multidimensional perturbation
value: a single metric to measure similarity
and activity of treatments in high-throughput
multidimensional screens. ] Biomol Screen 18
(4):367-377. https: //doi.org/10.1177 /
1087057112469257

Wawer MJ, Li K, Gustafsdottir SM, Ljosa V,
Bodycombe NE, Marton MA, Sokolnicki KL,
Bray MA, Kemp MM, Winchester E, Taylor B,
Grant GB, Hon CS, Duvall JR, Wilson JA,
Bittker JA, Dancik V, Narayan R,
Subramanian A, Winckler W, Golub TR, Car-
penter AE, Shamji AF, Schreiber SL, Clemons
PA (2014) Toward performance-diverse small-
molecule libraries for cell-based phenotypic
screening using multiplexed high-dimensional
profiling. Proc Natl Acad Sci U S A 111
(30):10911-10916. https: //doi.org/10.
1073 /pnas.1410933111


https://doi.org/10.1016/j.chembiol.2016.02.015
https://doi.org/10.1016/j.chembiol.2016.02.015
https://doi.org/10.1126/science.1100709
https://doi.org/10.1126/science.1100709
https://doi.org/10.1093/gigascience/giw014
https://doi.org/10.1093/gigascience/giw014
https://doi.org/10.1038/nprot.2016.105
https://doi.org/10.1038/nprot.2016.105
https://doi.org/10.1038/nchembio.1113
https://doi.org/10.1038/nchembio.1113
https://doi.org/10.1186/gb-2006-7-10-r100
https://doi.org/10.1186/gb-2006-7-10-r100
https://doi.org/10.1126/science.132.3434.1115
https://doi.org/10.1126/science.132.3434.1115
https://doi.org/10.1177/1087057103256465
https://doi.org/10.1177/1087057103256465
https://doi.org/10.1177/1087057113503553
https://doi.org/10.1177/1087057113503553
https://doi.org/10.1177/1087057110395390
https://doi.org/10.1177/1087057110395390
https://doi.org/10.1371/journal.pone.0149439
https://doi.org/10.1371/journal.pone.0149439
https://doi.org/10.1038/nchembio.2007.53
https://doi.org/10.1038/nchembio.2007.53
https://doi.org/10.1021/jacs.6b04614
https://doi.org/10.1021/jacs.6b04614
https://doi.org/10.1177/1087057113501390
https://doi.org/10.1177/1087057113501390
https://doi.org/10.1177/1087057112469257
https://doi.org/10.1177/1087057112469257
https://doi.org/10.1073/pnas.1410933111
https://doi.org/10.1073/pnas.1410933111

	Chapter 6: The Cell Painting Assay as a Screening Tool for the Discovery of Bioactivities in New Chemical Matter
	1 Introduction
	2 Materials
	2.1 Cell Staining
	2.2 Software

	3 Methods
	3.1 Cell Culture and Compound Treatment
	3.2 Live Cell Staining
	3.3 Fixation and Permeabilization
	3.4 Staining
	3.5 Imaging
	3.6 Image Analysis
	3.7 Data Mining

	4 Notes
	References




