
Using your GPU with CuPy
Last updated on 2023-11-13 | Edit this page

Introduction to CuPy
CuPy is a GPU array library that implements a subset of the NumPy and SciPy interfaces. Thanks to CuPy, people conversant with NumPy can very

conveniently harvest the compute power of GPUs without writing code in GPU programming languages such as CUDA, OpenCL, and HIP.

From now on we can also use the word host to refer to the CPU on the laptop, desktop, or cluster node you are using as usual, and device to refer to the

graphics card and its GPU.

Convolutions in Python
We start by generating an image using Python and NumPy code. We want to compute a convolution on this input image once on the host and once on

the device, and then compare both the execution times and the results.

In an iPython shell or a Jupyter notebook, we can write and execute the following code on the host. The pixel values will be zero everywhere except for a

regular grid of single pixels having value one, very much like a Dirac’s delta function; hence the input image is named deltas.

We can display the top-left corner of the input image to get a feeling of how it looks like, as follows:

and you should obtain the following image:

Grid of delta functions

Gaussian convolutions
The illustration below shows an example of convolution (courtesy of Michael Plotke, CC BY-SA 3.0, via Wikimedia Commons). Looking at the terminology

in the illustration, be forewarned that the word kernel happens to have different meanings that, inconveniently, apply to both mathematical convolution

and coding on a GPU device. To know more about convolutions, we encourage you to check out this GitHub repository by Vincent Dumoulin and

Francesco Visin with some great animations.

OVERVIEW

Questions

• “How can I increase the performance of code that uses NumPy?”

• “How can I copy NumPy arrays to the GPU?”

Objectives

• “Be able to indicate if an array, represented by a variable in an iPython shell, is stored in host or device memory.”

• “Be able to copy the contents of this array from host to device memory and vice versa.”

• “Be able to select the appropriate function to either convolve an image using either CPU or GPU compute power.”

• “Be able to quickly estimate the speed bene�ts for a simple calculation by moving it from the CPU to the GPU.”

import numpy as np

Construct an image with repeated delta functions

diracs = np.zeros((2048, 2048))

diracs[8::16,8::16] = 1

PYTHON

import pylab as pyl

Jupyter 'magic' command to render a Matplotlib image in the notebook

%matplotlib inline

Display the image

You can zoom in/out using the menu in the window that will appear

pyl.imshow(diracs[0:32, 0:32])

pyl.show()

PYTHON

GPU Programming

GPU Programming: Using your GPU with CuPy

1 of 10 13/11/2023, 11:21

https://github.com/carpentries-incubator/lesson-gpu-programming/edit/main/episodes/cupy.Rmd
https://github.com/carpentries-incubator/lesson-gpu-programming/edit/main/episodes/cupy.Rmd
https://github.com/carpentries-incubator/lesson-gpu-programming/edit/main/episodes/cupy.Rmd
https://github.com/carpentries-incubator/lesson-gpu-programming/edit/main/episodes/cupy.Rmd
https://github.com/carpentries-incubator/lesson-gpu-programming/edit/main/episodes/cupy.Rmd
https://cupy.dev/
https://cupy.dev/
https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic

Example of animated convolution.

In this course section, we will convolve our image with a 2D Gaussian function, having the general form:

where and are distances from the origin, and controls the width of the Gaussian curve. Since we can think of an image as a matrix of color values,

the convolution of that image with a kernel generates a new matrix with different color values. In particular, convolving images with a 2D Gaussian

kernel changes the value of each pixel into a weighted average of the neighboring pixels, thereby smoothing out the features in the input image.

Convolutions are frequently used in computer vision to �lter images. For example, Gaussian convolution can be required before applying algorithms for

edge detection, which are sensitive to the noise in the original image. To avoid con�icting vocabularies, in the remainder we refer to convolution kernels

as �lters.

Identifying the data�ow inherent in an algorithm is often useful. Say, if we want to square the numbers in a list, the operations on each item of

the list are independent one of another. The data�ow of a one-to-one operation is called a map.

Data�ow of a map operation.

A convolution is slightly more complex because of a many-to-one data�ow, also known as a stencil.

Data�ow of a stencil operation.

GPUs are exceptionally well suited to compute algorithms that follow either data�ow.

Convolution on the CPU Using SciPy
Let’s �rst construct and then display the Gaussian �lter. Remember that we are still coding everything in standard Python, without using the GPU.

The code above produces this image of a symmetrical two-dimensional Gaussian:

Two-dimensional Gaussian.

Now we are ready to compute the convolution on the host. Very conveniently, SciPy provides a method for convolutions. Let’s also record the time to

perform this convolution and inspect the top-left corner of the convolved image, as follows:

𝐺(𝑥, 𝑦) = exp(−)
1

2𝜋𝜎2

+𝑥2 𝑦2

2𝜎2

𝑥 𝑦 𝜎

CALLOUT

x, y = np.meshgrid(np.linspace(-2, 2, 15), np.linspace(-2, 2, 15))

dist = np.sqrt(x*x + y*y)

sigma = 1

origin = 0.000

gauss = np.exp(-(dist - origin)**2 / (2.0 * sigma**2))

pyl.imshow(gauss)

pyl.show()

PYTHON

PYTHON

GPU Programming: Using your GPU with CuPy

2 of 10 13/11/2023, 11:21

https://en.wikipedia.org/wiki/Gaussian_blur#Edge_detection
https://en.wikipedia.org/wiki/Gaussian_blur#Edge_detection

Obviously, the compute power of your CPU in�uences the actual execution time very much. We expect that to be in the region of a couple of seconds, as

shown in the timing report below:

Displaying just a corner of the image shows that the Gaussian has so much blurred the original pattern of ones surrounded by zeros that we end up with

a regular pattern of Gaussians.

Grid of Gaussians in the convoluted image.

Convolution on the GPU Using CuPy
This is a lesson on GPU programming, so let’s use the GPU. In spite of being physically connected – typically with special interconnects – the CPU and the

GPU do not share the same memory space. This picture depicts the different components of CPU and GPU and how they are connected:

CPU and GPU are separate entities with an own memory.

This means that the array created with NumPy is physically stored in a memory of the host’s and, therefore, is only available to the CPU. Since our input

image and convolution �lter are not yet present in the device memory, we need to copy both data to the GPU before executing any code on it. In practice,

we use CuPy to copy the arrays diracs and gauss from the host’s Random Access Memory (RAM) to the GPU memory as follows:

Now it is time to compute the convolution on our GPU. Inconveniently, SciPy does not offer methods running on GPUs. Hence, we import the convolution

function from a CuPy package aliased as cupyx, whose sub-package cupyx.scipy performs a selection of the SciPy operations. We will soon verify that

the GPU convolution function of cupyx works out the same calculations as the CPU convolution function of SciPy. In general, CuPy proper and NumPy

are so similar as are the cupyx methods and SciPy; this is intended to invite programmers already familiar with NumPy and SciPy to use the GPU for

computing. For now, let’s again record the execution time on the device for the same convolution as the host, and can compare the respective

performances.

Also the execution time of the GPU convolution will depend very much on the hardware used, as seen for the host. The timing using a NVIDIA Tesla T4 on

Google Colab was:

This is way faster than the host: more than a 24000-fold performance improvement, or speedup. Impressive, but is that true?

Measuring performance
So far we used timeit to measure the performance of our Python code, no matter whether it was running on the CPU or was GPU-accelerated.

However, the execution on the GPU is asynchronous: the Python interpreter takes back control of the program execution immediately, while the GPU is

still executing the task. Therefore, the timing of timeit is not reliable.

Conveniently, cupyx provides the function benchmark() that measures the actual execution time in the GPU. The following code executes

convolve2d_gpu() with the appropriate arguments ten times, and stores inside the .gpu_times attribute of the variable execution_gpu the

execution time of each run in seconds.

from scipy.signal import convolve2d as convolve2d_cpu

convolved_image_cpu = convolve2d_cpu(diracs, gauss)

pyl.imshow(convolved_image_cpu[0:32, 0:32])

pyl.show()

%timeit -n 1 -r 1 convolve2d_cpu(diracs, gauss)

2.4 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

OUTPUT

import cupy as cp

diracs_gpu = cp.asarray(diracs)

gauss_gpu = cp.asarray(gauss)

PYTHON

from cupyx.scipy.signal import convolve2d as convolve2d_gpu

convolved_image_gpu = convolve2d_gpu(diracs_gpu, gauss_gpu)

%timeit -n 7 -r 1 convolved_image_gpu = convolve2d_gpu(diracs_gpu, gauss_gpu)

PYTHON

98.2 µs ± 0 ns per loop (mean ± std. dev. of 1 run, 7 loops each)

OUTPUT

PYTHON

GPU Programming: Using your GPU with CuPy

3 of 10 13/11/2023, 11:21

https://en.wikipedia.org/wiki/Interconnect_(integrated_circuits)
https://en.wikipedia.org/wiki/Interconnect_(integrated_circuits)
https://docs.cupy.dev/en/stable/reference/scipy.html
https://docs.cupy.dev/en/stable/reference/scipy.html
https://docs.cupy.dev/en/stable/reference/scipy.html

These measurements are also more stable and representative, because benchmark() disregards the compile time and the repetitions warm up the GPU.

We can then average the execution times, as follows:

whereby the performance revisited is:

We now have a more reasonable, but still impressive, 116-fold speedup with respect to the execution on the host.

Try to convolve the NumPy array diracs with the NumPy array gauss directly on the GPU, that is, without CuPy arrays. If this works, it will save

us the time and effort of transferring the arrays diracs and gauss to the GPU.

Solution

We can call the GPU convolution function convolve2d_gpu() directly with deltas and gauss as argument:

However, this throws a long error message ending with:

Unfortunately, it is impossible to access directly from the GPU the NumPy arrays that live in the host RAM.

Validation
To check that the host and the device actually produced the same output, we compare the two output arrays convolved_image_gpu and

convolved_image_cpu as follows:

As you may have expected, the outcome of the comparison con�rms that the results on the host and on the device are the same:

Compute again the speedup achieved using the GPU, taking into account also the time spent transferring the data from the CPU to the GPU and

back.

Hint: use the cp.asnumpy() method to copy a CuPy array back to the host.

from cupyx.profiler import benchmark

benchmark_gpu = benchmark(convolve2d_gpu, (diracs_gpu, gauss_gpu), n_repeat=10)

gpu_execution_avg = np.average(benchmark_gpu.gpu_times)

print(f"{gpu_execution_avg:.6f} s")

PYTHON

0.020642 s

OUTPUT

CHALLENGE: CONVOLUTION ON THE GPU WITHOUT CUPY

convolve2d_gpu(diracs, gauss)

PYTHON

TypeError: Unsupported type <class 'numpy.ndarray'>

OUTPUT

np.allclose(convolved_image_gpu, convolved_image_cpu)

PYTHON

array(True)

OUTPUT

CHALLENGE: FAIRER COMPARISON OF CPU VS. GPU

GPU Programming: Using your GPU with CuPy

4 of 10 13/11/2023, 11:21

Solution

A convenient strategy is to time the execution of a single Python function that groups the transfers to and from the GPU and the convolution, as

follows:

The speedup taking into account the data transfer decreased from 116 to 67. Nonetheless, accounting for the necessary data transfers is a

better and fairer way to compute performance speedups. As an aside, here timeit would still provide correct measurements, because the data

transfers force the device and host to sync one with another.

A shortcut: performing NumPy routines on the GPU
We saw in a previous challenge that we cannot launch the routines of cupyx directly on NumPy arrays. In fact, we �rst needed to transfer the data from

the host to the device memory. Conversely, we also encounter an error when we launch a regular SciPy routine, designed to run on CPUs, on a CuPy

array. Try out the following:

which results in

So, SciPy routines do not accept CuPy arrays as input. However, instead of performing a 2D convolution, we can execute a simpler 1D (linear) convolution

that uses the NumPy routine np.convolve() instead of a SciPy routine. To generate the input appropriate to a linear convolution, we �atten our input

image from 2D to 1D using the method .ravel(). To generate a 1D �lter, we take the diagonal elements of our 2D Gaussian �lter. Let’s launch a linear

convolution on the CPU with the following three instructions:

A realistic execution time is:

After having performed this regular linear convolution on the host with NumPy, let’s try something bold. We transfer the 1D arrays to the device and do

the convolution with the same NumPy routine, as follows:

You may be surprised that these commands do not throw any error. Contrary to SciPy, NumPy routines accept CuPy arrays as input, even though the

latter exist only in GPU memory. Indeed, can you recall when we validated our codes using a NumPy and a CuPy array as input of np.allclose()? That

worked for the same reason. The CuPy documentation explains why NumPy routines can handle CuPy arrays.

The last linear convolution has actually been performed on the GPU, and faster than the CPU:

With this Numpy shortcut and without much coding effort, we obtained a good 18-fold speedup.

A scientific application: image processing for
radio astronomy
In this section, we will perform four classical steps in image processing for radio astronomy: determination of the background characteristics,

segmentation, connected component labeling, and source measurements.

Import the FITS file
We import a 2048²-pixel image of the electromagnetic radiation at 150 MHz around the Galactic Center, as observed by the Indian Giant Metrewave

def push_compute_pull():

 diracs_gpu = cp.asarray(diracs)

 gauss_gpu = cp.asarray(gauss)

 convolved_image_gpu = convolve2d_gpu(diracs_gpu, gauss_gpu)

 convolved_image_gpu_in_host = cp.asnumpy(convolved_image_gpu)

benchmark_gpu = benchmark(push_compute_pull, (), n_repeat=10)

gpu_execution_avg = np.average(benchmark_gpu.gpu_times)

print(f"{gpu_execution_avg:.6f} s")

PYTHON

0.035400 s

OUTPUT

convolve2d_cpu(diracs_gpu, gauss_gpu)

PYTHON

...

...

...

TypeError: Implicit conversion to a NumPy array is not allowed.

Please use `.get()` to construct a NumPy array explicitly.

OUTPUT

diracs_1d_cpu = diracs.ravel()

gauss_1d_cpu = gauss.diagonal()

%timeit -n 1 -r 1 np.convolve(diracs_1d_cpu, gauss_1d_cpu)

PYTHON

270 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

OUTPUT

diracs_1d_gpu = cp.asarray(diracs_1d_cpu)

gauss_1d_gpu = cp.asarray(gauss_1d_cpu)

benchmark_gpu = benchmark(np.convolve, (diracs_1d_gpu, gauss_1d_gpu), n_repeat=10)

gpu_execution_avg = np.average(benchmark_gpu.gpu_times)

print(f"{gpu_execution_avg:.6f} s")

PYTHON

0.014529 s

OUTPUT

GPU Programming: Using your GPU with CuPy

5 of 10 13/11/2023, 11:21

https://docs.cupy.dev/en/stable/user_guide/interoperability.html#numpy
https://docs.cupy.dev/en/stable/user_guide/interoperability.html#numpy

Radio Telescope (GMRT).

The image is stored in this lesson’s repository as a FITS �le. The astropy Python package enables us to read in this �le and, for compatibility with

Python, convert the byte ordering from the big to little endian, as follows:

Inspect the image
Let’s have a look at this image. Left and right in the data will be swapped with the method np.fliplr() just to adhere to the astronomical convention

of the right ascension increasing leftwards.

Image of the Galactic Center at the radio frequency of 150 MHz

Stars, remnants of supernovas (massive exploded stars), and distant galaxies are possible radiation sources observed in this image. We can spot a few

dozen radiation sources in fairly good quality in the lower left and upper right. In contrast, the quality is worse in the diagonal from the upper left to the

lower right, because the radio telescope has a limited sensitivity and cannot look into large radiation sources. Nonetheless, you can notice the Galactic

Center in the middle of the image and supernova shells as ring-like formations elsewhere.

The telescope accuracy has added background noise to the image. Yet, we want to identify all the radiation sources in this image, determine their

positions, and measure their radiation �uxes. How can we then assert whether a high-intensity pixel is a peak of the noise or a genuine source?

Assuming that the background noise is normally distributed with standard deviation , the chance of its intensity being larger than 5 is 2.9e-7. The

chance of picking from our image of 2048² (4.2e6) pixels at least one that is so extremely bright because of noise is thus less than 50%.

Before moving on, let’s determine some summary statistics of the radiation intensity in the input image:

This gives (in Jy/beam):

The maximum �ux density is 2506 mJy/beam coming from the Galactic Center, the overall standard deviation 19.9 mJy/beam, and the median 1.57e-05

mJy/beam.

Step 1: Determining the characteristics of the background
First, we separate the background pixels from the source pixels using an iterative procedure called - clipping, which assumes that high intensity is

more likely to result from genuine sources. We start from the standard deviation () and the median () of all pixel intensities, as computed above. We

then discard (clip) the pixels whose intensity is larger than or smaller than . In the next pass, we compute again the median and

standard deviation of the clipped set, and clip once more. We repeat these operations until no more pixels are clipped, that is, there are no outliers in the

designated tails.

In the meantime, you may have noticed already that - clipping is a compute intensive task that could be implemented in a GPU. For the moment, let’s

from astropy.io import fits

with fits.open("GMRT_image_of_Galactic_Center.fits") as hdul:

 data = hdul[0].data.byteswap().newbyteorder()

PYTHON

from matplotlib.colors import LogNorm

maxim = data.max()

fig = pyl.figure(figsize=(50, 12.5))

ax = fig.add_subplot(1, 1, 1)

im_plot = ax.imshow(np.fliplr(data), cmap=pyl.cm.gray_r, norm=LogNorm(vmin = maxim/10, vmax=maxim/100))

pyl.colorbar(im_plot, ax=ax)

PYTHON

𝜎 𝜎

mean_ = data.mean()

median_ = np.median(data)

stddev_ = np.std(data)

max_ = np.amax(data)

print(f"mean = {mean_:.3e}, median = {median_:.3e}, sttdev = {stddev_:.3e}, maximum = {max_:.3e}")

PYTHON

mean = 3.898e-04, median = 1.571e-05, sttdev = 1.993e-02, maximum = 2.506e+00

OUTPUT

𝜅 𝜎

𝜎 𝜇1/2

+ 3𝜎𝜇1/2 − 3𝜎𝜇1/2

𝜅 𝜎

GPU Programming: Using your GPU with CuPy

6 of 10 13/11/2023, 11:21

file:///home/waterbeweging/dx/P/onderwijs/0000-carpentries/gpu-programming/lesson-gpu-programming/site/docs/data/GMRT_image_of_Galactic_Center.fits
file:///home/waterbeweging/dx/P/onderwijs/0000-carpentries/gpu-programming/lesson-gpu-programming/site/docs/data/GMRT_image_of_Galactic_Center.fits
https://en.wikipedia.org/wiki/FITS
https://en.wikipedia.org/wiki/FITS
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Right_ascension
https://en.wikipedia.org/wiki/Right_ascension

implement the algorithm with the NumPy code for a CPU, as follows:

The performance is close to 1 s and, hopefully, can be sped up on the GPU.

Finally, let’s see how the - clipping has in�uenced the summary statistics:

The �rst-order statistics have become smaller, which reassures us that data_clipped contains background pixels:

The standard deviation of the intensity in the background pixels is be the basis for the next step.

Now that you know how the - clipping algorithm works, perform it on the GPU using CuPy. Compute the speedup, including the data transfer

to and from the GPU.

Solution

Step 2: Segmenting the image
We have already estimated that clipping an image of 2048² pixels at the level yields a chance of less than 50% that at least one out of all the sources

we detect is a noise peak. So let’s set the threshold at and segment it.

Flattening our 2D data makes subsequent steps easier

data_flat = data.ravel()

Here is a kappa-sigma clipper for the CPU

def ks_clipper_cpu(data_flat):

while True:

 med = np.median(data_flat)

 std = np.std(data_flat)

 clipped_below = data_flat.compress(data_flat > med - 3 * std)

 clipped_data = clipped_below.compress(clipped_below < med + 3 * std)

if len(clipped_data) == len(data_flat):

break

 data_flat = clipped_data

return data_flat

data_clipped_cpu = ks_clipper_cpu(data_flat)

timing_ks_clipping_cpu = %timeit -o ks_clipper_cpu(data_flat)

fastest_ks_clipping_cpu = timing_ks_clipping_cpu.best

print(f"Fastest ks clipping time on CPU = {1000 * fastest_ks_clipping_cpu:.3e} ms.")

PYTHON

793 ms ± 17.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Fastest ks clipping time on CPU = 7.777e+02 ms.

OUTPUT

𝜅 𝜎

clipped_mean_ = data_clipped.mean()

clipped_median_ = np.median(data_clipped_cpu)

clipped_stddev_ = np.std(data_clipped_cpu)

clipped_max_ = np.amax(data_clipped_cpu)

print(f"mean of clipped = {clipped_mean_:.3e},

 median of clipped = {clipped_median_:.3e} \n

 standard deviation of clipped = {clipped_stddev_:.3e},

 maximum of clipped = {clipped_max_:.3e}")

PYTHON

mean of clipped = -1.945e-06, median of clipped = -9.796e-06

standard deviation of clipped = 1.334e-02, maximum of clipped = 4.000e-02

OUTPUT

CHALLENGE: - CLIPPING ON THE GPU𝜅 𝜎

𝜅 𝜎

def ks_clipper_gpu(data_flat):

 data_flat_gpu = cp.asarray(data_flat)

 data_gpu_clipped = ks_clipper_cpu(data_flat_gpu)

return cp.asnumpy(data_gpu_clipped)

data_clipped_gpu = ks_clipper_gpu(data_flat)

timing_ks_clipping_gpu = benchmark(ks_clipper_gpu,

 (data_flat,),

 n_repeat=10)

fastest_ks_clipping_gpu = np.amin(timing_ks_clipping_gpu.gpu_times)

print(f"{1000 * fastest_ks_clipping_gpu:.3e} ms")

PYTHON

6.329e+01 ms

OUTPUT

speedup_factor = fastest_ks_clipping_cpu/fastest_ks_clipping_gpu

print(f"The speedup factor for ks clipping is: {speedup_factor:.3e}")

PYTHON

The speedup factor for ks clipping is: 1.232e+01

OUTPUT

5𝜎

5𝜎

GPU Programming: Using your GPU with CuPy

7 of 10 13/11/2023, 11:21

First let’s check that the standard deviation from our clipper on the GPU is the same:

We then apply the threshold to the image with this standard deviation:

Step 3: Labeling the segmented data
This is called connected component labeling (CCL). It will replace pixel values in the segmented image - just consisting of zeros and ones - of the �rst

connected group of pixels with the value 1 - so nothing changed, but just for that �rst group - the pixel values in the second group of connected pixels will

all be 2, the third connected group of pixels will all have the value 3 etc.

This is a CPU code for connected component labeling.

This gives, on my machine:

Let’s not just accept the answer, but also do a sanity check. What are the values in the labeled image?

This should show the following output:

Step 4: Measuring the radiation sources
We are ready for the �nal step. We have been given observing time to make this beautiful image of the Galactic Center, we have determined its

background statistics, we have separated actual cosmic sources from noise and now we want to measure these cosmic sources. What are their positions

and what are their �ux densities?

Again, the algorithms from scipy.ndimage help us to determine these quantities. This is the CPU code for measuring our sources.

stddev_gpu_ = np.std(data_clipped_gpu)

print(f"standard deviation of background_noise = {stddev_gpu_:.4f} Jy/beam")

PYTHON

standard deviation of background_noise = 0.0133 Jy/beam

OUTPUT

5𝜎

threshold = 5 * stddev_gpu_

segmented_image = np.where(data > threshold, 1, 0)

timing_segmentation_CPU = %timeit -o np.where(data > threshold, 1, 0)

fastest_segmentation_CPU = timing_segmentation_CPU.best

print(f"Fastest CPU segmentation time = {1000 * fastest_segmentation_CPU:.3e} ms.")

PYTHON

6.41 ms ± 55.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Fastest CPU segmentation time = 6.294e+00 ms.

OUTPUT

from scipy.ndimage import label as label_cpu

labeled_image = np.empty(data.shape)

number_of_sources_in_image = label_cpu(segmented_image, output = labeled_image)

sigma_unicode = "\u03C3"

print(f"The number of sources in the image at the 5{sigma_unicode} level is {number_of_sources_in_image}.")

timing_CCL_CPU = %timeit -o label_cpu(segmented_image, output = labeled_image)

fastest_CCL_CPU = timing_CCL_CPU.best

print(f"Fastest CPU CCL time = {1000 * fastest_CCL_CPU:.3e} ms.")

PYTHON

The number of sources in the image at the 5σ level is 185.

26.3 ms ± 965 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Fastest CPU CCL time = 2.546e+01 ms.

OUTPUT

print(f"These are all the pixel values we can find in the labeled image: {np.unique(labeled_image)}")

PYTHON

These are all the pixel values we can find in the labeled image:

[0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.

 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.

 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41.

 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55.

 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69.

 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83.

 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97.

 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111.

 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125.

 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139.

 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153.

 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167.

 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180. 181.

 182. 183. 184. 185.]

OUTPUT

GPU Programming: Using your GPU with CuPy

8 of 10 13/11/2023, 11:21

which gives the Galactic Center as the most luminous source, which makes sense when we look at our image.

Now we can try to measure the execution times for both algorithms, like this:

Which yields, on my machine:

To collect the result from that timing in our next cell block, we need a trick that uses the _ variable.

Which yields

Combine the �rst two steps of image processing for astronomy, i.e. determining background characteristics e.g. through - clipping and

segmentation into a single function, that works for both CPU and GPU. Next, write a function for connected component labeling and source

measurements on the GPU and calculate the overall speedup factor for the combined four steps of image processing in astronomy on the GPU

relative to the CPU. Finally, verify your output by comparing with the previous output, using the CPU.

from scipy.ndimage import center_of_mass as com_cpu

from scipy.ndimage import sum_labels as sl_cpu

all_positions = com_cpu(data, labeled_image,

range(1, number_of_sources_in_image+1))

all_integrated_fluxes = sl_cpu(data, labeled_image,

range(1, number_of_sources_in_image+1))

print (f'These are the ten highest integrated fluxes of the sources in my \n image: {np.sort(all_integrated_fluxes)[-10:]}')

PYTHON

These are the ten highest integrated fluxes of the sources in my image:

[38.90615184 41.91485894 43.02203498 47.30590784 51.23707351

 58.07289425 68.85673917 70.31223921 95.16443585 363.58937774]

OUTPUT

%%timeit -o

all_positions = com_cpu(data, labeled_image,

range(1, number_of_sources_in_image+1))

all_integrated_fluxes = sl_cpu(data, labeled_image,

range(1, number_of_sources_in_image+1))

PYTHON

797 ms ± 9.32 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

<TimeitResult : 797 ms ± 9.32 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)>

OUTPUT

timing_source_measurements_CPU = _

fastest_source_measurements_CPU = timing_source_measurements_CPU.best

print(f"Fastest CPU set of source measurements = {1000 * fastest_source_measurements_CPU:.3e} ms.")

PYTHON

Fastest CPU set of source measurements = 7.838e+02 ms.

OUTPUT

CHALLENGE: PUTTING IT ALL TOGETHER

𝜅 𝜎

GPU Programming: Using your GPU with CuPy

9 of 10 13/11/2023, 11:21

Solution

• “CuPy provides GPU accelerated version of many NumPy and Scipy functions.”

• “Always have CPU and GPU versions of your code so that you can compare performance, as well as validate your code.”

def first_two_steps_for_both_CPU_and_GPU(data):

 data_flat = data.ravel()

 data_clipped = ks_clipper_cpu(data_flat)

 stddev_ = np.std(data_clipped)

 threshold = 5 * stddev_

 segmented_image = np.where(data > threshold, 1, 0)

return segmented_image

def ccl_and_source_measurements_on_CPU(data_CPU, segmented_image_CPU):

 labeled_image_CPU = np.empty(data_CPU.shape)

 number_of_sources_in_image = label_cpu(segmented_image_CPU,

 output= labeled_image_CPU)

 all_positions = com_cpu(data_CPU, labeled_image_CPU,

 np.arange(1, number_of_sources_in_image+1))

 all_fluxes = sl_cpu(data_CPU, labeled_image_CPU,

 np.arange(1, number_of_sources_in_image+1))

return np.array(all_positions), np.array(all_fluxes)

CPU_output = ccl_and_source_measurements_on_CPU(data,

 first_two_steps_for_both_CPU_and_GPU(data))

timing_complete_processing_CPU = benchmark(

 ccl_and_source_measurements_on_CPU,

 (data,

 first_two_steps_for_both_CPU_and_GPU(data)), n_repeat=

fastest_complete_processing_CPU = np.amin(timing_complete_processing_CPU.cpu_times)

print(f"The four steps of image processing for astronomy take {1000 * fastest_complete_processing_CPU:.3e} ms\n on our CPU.")

from cupyx.scipy.ndimage import label as label_gpu

from cupyx.scipy.ndimage import center_of_mass as com_gpu

from cupyx.scipy.ndimage import sum_labels as sl_gpu

def ccl_and_source_measurements_on_GPU(data_GPU, segmented_image_GPU):

 labeled_image_GPU = cp.empty(data_GPU.shape)

 number_of_sources_in_image = label_gpu(segmented_image_GPU,

 output= labeled_image_GPU)

 all_positions = com_gpu(data_GPU, labeled_image_GPU,

 cp.arange(1, number_of_sources_in_image+1))

 all_fluxes = sl_gpu(data_GPU, labeled_image_GPU,

 cp.arange(1, number_of_sources_in_image+1))

This seems redundant, but we want to return ndarrays (Numpy)

and what we have are lists.

These first have to be converted to

Cupy arrays before they can be converted to Numpy arrays.

return cp.asnumpy(cp.asarray(all_positions)),

 cp.asnumpy(cp.asarray(all_fluxes))

GPU_output = ccl_and_source_measurements_on_GPU(cp.asarray(data), first_two_steps_for_both_CPU_and_GPU(cp.asarray(data)))

timing_complete_processing_GPU = benchmark(ccl_and_source_measurements_on_GPU, (cp.asarray(data), first_two_steps_for_both_CPU_and_GPU(cp.asarray(data))), n_

fastest_complete_processing_GPU = np.amin(timing_complete_processing_GPU.gpu_times)

print(f"The four steps of image processing for astronomy take {1000 * fastest_complete_processing_GPU:.3e} ms\n on our GPU.")

overall_speedup_factor = fastest_complete_processing_CPU / fastest_complete_processing_GPU

print(f"This means that the overall speedup factor GPU vs CPU equals: {overall_speedup_factor:.3e}\n")

all_positions_agree = np.allclose(CPU_output[0], GPU_output[0])

print(f"The CPU and GPU positions agree: {all_positions_agree}\n")

all_fluxes_agree = np.allclose(CPU_output[1], GPU_output[1])

print(f"The CPU and GPU fluxes agree: {all_positions_agree}\n")

PYTHON

The four steps of image processing for astronomy take 1.060e+03 ms on our CPU.

The four steps of image processing for astronomy take 5.770e+01 ms on our GPU.

This means that the overall speedup factor GPU vs _mCPU equals: 1.838e+01

The CPU and GPU positions agree: True

The CPU and GPU fluxes agree: True

OUTPUT

KEYPOINTS

GPU Programming: Using your GPU with CuPy

10 of 10 13/11/2023, 11:21

