Skip to content
Carpyncho web client
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.

Carpyncho web client

Carpyncho, a data mining catalog browser which we hope will reutilized to search for and characterize time variable data of the ~PiB size VVV/VVVx[1] survey.

Carpyncho is being developed for the detection and classification of periodic and non-periodic (or transient variables). For this purpose the stacked pawprint data from the VDFS CASU v 1.3 catalogues have been crossed matched with the VDFS CASU v1.3 tile catalogues into a PostgreSql data-base. The Carpyncho infraestructure is being developed entirely in python on top of a Custom-Framework for data processing[2, 3] and a Django web-framework[4] (for the webapp).

For calculation purposes Carpyncho is layered on-top of a scientific-Python library stack that includes:

  • Numpy[5], Pandas[6] & Scipy[7]: for Numerical calculations
  • Astropy[8]: for Processing of Fits tables, astrometric and photometric calculations.
  • PyAstronomy[9]: for GLS, PDM and time conversion algorithms.
  • feets[10, 11]: for feature extraction.
  • Scikit-learn[12]: for machine learning algorithms.

Help & discussion mailing list

You can contact me at:

Code Repository & Issues


If you use Carpyncho in a scientific publication, we would appreciate citations to the following paper:

Cabral, J. B., ... Astronomy and Computing.

Bibtex entry


Full Publication: -


  • [1]: Minniti, D., Lucas, P. W., Emerson, J. P., Saito, R. K., Hempel, M., Pietrukowicz, P., ... & Bandyopadhyay, R. M. (2010). VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way. New Astronomy, 15(5), 433-443.
  • [2]: Cabral, J. B., Sánchez, B., Beroiz, M., Domínguez, M., Lares, M., Gurovich, S., & Granitto, P. (2017). Corral framework: Trustworthy and fully functional data intensive parallel astronomical pipelines. Astronomy and computing, 20, 140-154.
  • [3]: Cabral, J., Sanchez, B., Beroiz, M., Dominguez, M., Lares, M., Gurovich, S., & Granitto, P. (2018). CPF: Corral Pipeline Framework. Astrophysics Source Code Library.
  • [4]: Forcier, J., Bissex, P., & Chun, W. J. (2008). Python web development with Django. Addison-Wesley Professional.
  • [5]: Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: a structure for efficient numerical computation. Computing in Science & Engineering, 13(2), 22.
  • [6]: McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. " O'Reilly Media, Inc.".
  • [7]: Jones, E., Oliphant, T., & Peterson, P. (2014). SciPy: Open source scientific tools for Python.
  • [8]: Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., ... & Conley, A. (2013). Astropy: A community Python package for astronomy. Astronomy & Astrophysics, 558, A33.
  • [9]: This work made use of PyAstronomy.
  • [10]: Cabral, J. B., Sánchez, B., Ramos, F., Gurovich, S., Granitto, P. M., & Vanderplas, J. (2018). From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning. Astronomy and computing, 25, 213-220.
  • [11]: Cabral, J., Sanchez, B., Ramos, F., Gurovich, S., Granitto, P., & VanderPlas, J. (2018). feets: feATURE eXTRACTOR for tIME sERIES. Astrophysics Source Code Library.
  • [12]: Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of machine learning research, 12(Oct), 2825-2830.
You can’t perform that action at this time.