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A SEARCH STRATEGY FOR THE ELEMENTARY 

CYCLES OF A DIRECTED GRAPH 

JAYME L. SZWARCFITEI~* and PETEI~ E. LAUER 

Abstrac t .  

The most successful known algorithms enumerating the elementary cycles of a 
directed graph are based on a backtracking strategy. Such existing algorithms 
are discussed and a new backtracking algorithm is proposed which is bounded by 
O(N÷M(C + 1)) time, for a directed graph with N vertices, M edges and 0 ele- 
mentary cycles. 

1. Introduct ion .  

Some problems, such as determining whether a graph has certain proper- 
ties, or constructing a set of objects related to the graph admit of algo- 
ri thmic solutions which have a time bound linear in the size of the graph. 
These include the problems of finding: the strongly connected components 
of a directed graph (Tarjan [18]), the biconnected components of a graph 
(Tarjan [18]), the graph fi'om its given line graph (l~oussopoulos [14], 
Lehot [9]), partitions of a graph into simple paths (Hopcroft and Tarjan 
[5]). Testing planarity of a graph can be performed in a time just propor- 
tional to the number of its vertices (Hopcroft and Tarjan [6]). Clearly, 
any  algorithm for listing a set of objects related to the graph must be at  
least proportional to the total number of such objects. If this number 
grows exponentially with the size of the graph, the algorithm has at 
least an exponential running time. For such problems, a given algorithm 
may  be additionally characterized by introducing a t ime bound per 
object obtained, and two algorithms can be compared according to their 
bounds per object. The problem of finding all elementary cycles of a 
directed graph falls into this category. Among the great number of cycle 
algorithms surveyed by  Prabhaker  and Deo [10], the algorithm by John- 
son [7], presents the best time bound, namely a linear bound in the size 
of the graph, per cycle. This algorithm was devised by imposing further  
constraints on the backtracking performed by an already constrained 
backtracking algorithm [19]. 
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The present paper proposes a cycle finding algorithm that  has a 
similar (worst case) t ime bound as [7]. However, while maintaining all 
the constraints of [7], we are proposing new strategies that  represent 
further  restrictions to the backtracking. 

The graph definitions presently adopted are those commonly found in 
the literature. Refer for instance to [18]. By N, M, C respectively, we 
denote the number of vertices, edges and elementary cycles of a digraph 
D ( V , E ) ,  w i t h  V the set of vertices and E the set of edges. We assume 
tha t  V = {1 . . . .  N}. 

2. Elementary cycles in directed graphs. 

Tiernan [20] finds all elementary paths v 1 . . . . .  v k, v 1 < vi, 1 < i < k and 
1 < k < N .  I f  (vk, v l ) e  E then the cycle v 1 . . . . .  Vk,V ~ is enumerated. This 
strategy corresponds to an essentially unconstrained backtracking and 
was also presented by  Roberts and Flores [13] and Berztiss [1]. Floyd [4] 
has described a non-deterministic version of this algorithm. Weinblatt  
[21] also searches for elementary paths, but  proposes to improve execu- 
tion time by  storing cycles already found and constructing new ones 
from these. In  [19] Tarjan gives examples illustrating that  the algo- 
ri thms [20] and [21] may  take exponential t ime in the number of cycles 
enumerated. Lauer [8] discusses the generalization of Tiernan's algorithm 
to different representations of digraphs, improves storage requirements 
and proposes alternate proofs. Another backtracking algorithm pre- 
sented by Berztiss [2] has been shown by Prabhaker and Dec [10] also 
to have a t ime bound exponential in the number of cycles. The algorithm 
by Syslo [15, 16] is also based on a backtracking strategy and constitutes 
a variation of Tiernan's method.  

Tarjan's algorithm [19] is based on Tiernan's depth-first method. I t  
makes use of two stacks, the point stack for storing the path currently 
being examined and a mark stack, as well as a boolean vector called 
mark vector. The mark stack is used as a set of pointers ~o the mark  
vector. ~Vhenever a new cycle is found, all vertices in the current  point 
stack will eventually be unmarked when popped from this stack. 

If no cycle is found involving a vertex, it will be deleted from the point 
stack, but  continue to be marked. Some of the unnecessary work done 
by  Tiernan is avoided by  the condition tha t  a vertex can be added to 
the point stack only if it is found unmarked. However, we mention two 
points where this algorithm still does unnecessary work. First, whenever 
a ver tex v is going to be unmarked because a cycle involving it was 
found, all the vertices that  are above v in the mark stack will also be 
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unmarked, even if some of them are involved in no cycle. Second, Tarjan 
follows Tiernan's principle of only searching for elementary cycles 
vj . . . . .  v k with vj<vl, 1 <i</c ,  where vj is the vertex at the bottom of 
the stack, called start vertex. The inefficiency involved in this is discussed 
in section 5. The algorithm [19] is bounded by  O(NM(C+ 1)) t ime and 
O(N + M) space. 

Another method was developed by  Ehrenfeucht,  Fosdick and Oster- 
weft [3] which includes both breadth-first and depth-first search, and 
makes use of an additional phase for collecting information about the 
digraph. This preprocessing requires O(N a) t ime and the actual process 
enumeration of the elementary cycles is bounded by O(NM) time per 
cycle. 

An algorithm with the time bound of O(N+M(C+ 1)) has been pre- 
sented by  Read and Tarjan [12]. I t  should be noted tha t  a first version 
of the present paper contained a counter-example to a previous formula- 
tion of the Read and Tarjan algorithm [11], showing tha t  the strategy 
described in [11] has a time bound greater than O(N+M(C+ 1)). 

The algorithm by Johnson [7] also employs the technique of construct- 
ing elementary paths from a start  vertex, in a stack. For each strongly 
connected component, the least vertex of the component becomes the 
start  vertex. Subsequently, a new maximal strongly connected partial 
subdigraph is obtained, which does not contain that  vertex. The least 
vertex of this partial subdigraph becomes the new start  vertex and so 
on. For each start  vertex s, a recursive backtracking procedure is in- 
voked and its computation is similar to tha t  of Tarjan's algorithm, ex- 
cept for the marking system, which was considerably enhanced. A vertex 
v is marked each time it enters the stack. Upon leaving the stack, if an 
elementary cycle was found involving v and the start  vertex s, then v is 
unmarked. Otherwise, it remains marked until another vertex u is popped 
from the stack and such tha t  an elementary cycle existed involving u 
and s, and there exists a path from v to u consisting of vertices that  are 
marked and not in the stack. Johnson implements this strategy efficiently 
using a scheme of lists B, one list B(v) per vertex v. At any given moment, 
B(v) contains those vertices u such that. (u,v) e E and u is marked and 
not in the stack. The actual unmarking is performed by a procedure 
UNBLOCK (v) which will reeursivety call UNBLOCK (u), if u e B(v). 
This algorithm is bounded by O(N + (C + 1)M) time and O(N + M) space. 
Fur ther  remarks concerning this method and comparisons with the pro- 
posed algorithm can be found in section 5. 
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3. The Proposed Algorithm. 

Our algorithm also uses a recursive backtracking procedure but a more 
efficient system for detecting elementary cycles. This detection occurs as 
soon as the elementary cycle is generated anywhere in the current path 
under examination. This path is kept in a stack (Tarjan's point stack). 
The boolean vector is retained but not the mark stack. Instead, we have 
utilised and slightly modified Johnson's marking system using one list 
B(v), per vertex v. A vertex u is inserted in list B(v) if (u,v) E E and the 
exploration of edge (u, v) has not led to a new elementary cycle. In addi- 
tion to these structures, we use a position vector and a boolean reach vector. 
If  a vertex v is the j t h  vertex from the bottom of the stack, then posi- 
tion (v)=j;  when v is deleted from the stack then position (v)=25+ I. 
I f  a vertex v has not yet  left the stack for the first time, then reach (v) = 
false, otherwise reach (v)= true. A vertex v is marked when it enters the 
stack, and the mark is kept at least as long as this vertex remains in the 
stack. Upon leaving the stack, v is unmarked only if a new elementary 
cycle was fouud with v but not necessarily with the vertex at the bottom 
of the stack (start vertex). If  v leaves the stack with the mark on, then 
it will be unmarked when a vertex z 1 is popped from the stack in such a 
way tha t  a new elementary cycle was found with Zl, and there exists a 
path %,%-1 . . . . .  zl, (zk=v) such tha t  zi+ t ~ B(z~), k < i < 1, at. tha t  time. 

The digraph is represented by a set of adjacency lists with one list 
A(v)  per vertex v. A pre-processing is performed to find the strongly 
connected components of the digraph, using the method described in [18]. 
For each strongly connected component a start  vertex is chosen to be 
the vertex with maximal indegree in this component. The present method 
ensures that,  when this start  vertex is deleted from the stack, all the 
elementary cycles of this component have been enumerated. Therefore 
only one start  vertex per component is required. As it can be observed 
from the proposed strategy, if a start  vertex would have been chosen 
to be an arbitrary vertex of the d i g r a p h -  instead of a vertex with 
maximal indegree in a strongly connected c o m p o n e n t -  the algorithm 
could be easily modified so as to avoid finding the strongly connected 
components. The modified algorithm would have the same time bound 
as the one currently described. 

The basic idea of the algorithm is similar to all previously described 
methods, namely to t ry  to extend the current elementary path under 
examination. Consider the case where the content of the stack is 
v l v 2 . . .  Vk_ 1 and edge (Vk_l, Vk) is reached: 
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(i) If  v k is not marked then necessarily v k is not in the stack, the ele- 
mentary path will be extended with vk, and an edge from v k will be 
examined. 

(ii) If  v k is marked and not in the stack then, necessarily, there can be 
no new elementary cycles generated from the path v 1, v 2 . . . . .  vk_l, v k and 
therefore v k is not re-explored, at  this stage. Vertex vk_ 1 is inserted in 
list B(Vk) and v k is deleted from A(vk_l). 

(iii) If  v~ is marked and lies in the stack then an elementary cycle 
was found, and it can be recorded at once. The algorithms [21] and [2] 
also consider this cycle at  that  stage. However,  some efficient algorithms 
as [19], [3], [7] and [12] disregard it, if v k is not  the start  vertex. The 
problem that  arises when considering such a cycle with v k ~: vl, is that  a 
mechanism for detecting duplicate cycles must be set up. The nature of 
this mechanism follows from the observation that  a cycle is a new cycle, 
if and only if at  least one of its vertices had never been deleted from the 
stack. The fact that  it has not been deleted before is indicated by  setting 
a variable q, local to the recursive procedure. For a given computation 
of this procedure q indicates the top-most vertex of the stack that  has 
never been deleted from it. Therefore, if position (Vk) < q a new elementary 
cycle is found. Otherwise, this is a duplicate cycle: vk_ 1 is inserted in 
B(vk) and v k is deleted from A(Vk_l). 

In  cases (ii) and (iii), when v~ is marked the elementary path is not 
extended. If  a certain elementary path cannot be extended any more, 
the algorithm backtracks to the previous vertex in the stack, and so on. 
When the start  vertex is deleted from the stack, a new strongly connected 
component is considered, and so on, until all such components have been 
processed. 

Below is an ALGOL-like formulation of the proposed algorithm. The 
combined action of variables f and g ensures the correct propagation of 
the information that  a new elementary cycle was found with a certain 
vertex v at  the top of the stack, for all vertices that  are below v in the 
stack. 

begin comment f inding the elementary cycles of a digraph; 
procedure C Y C L E  (integer value v, q; logical result f ) ;  
begin procedure N O C Y C L E  (integer value x,y);  

begin insert x in  B(y); 
delete y f rom A(x)  

end N O C Y C L E ;  
procedure U I V M A R K  (integer value x); 
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begin mark(x):= false; 
for y e B(x) do 
begin insert x in A(y); 

if mark(y) then U N M A R K  
end; 
empty B(x) 

end U N M A R K  ; 
logical g; 
mark(v) := true; f := false; 
insert v in the stack; 
t := number of vertices in the stack; 
position(v) := t; 
if --7 reach(v) then q :=  t; 
for w e A(v) do 

if -7 mark(w) then 
begin CYCLE(w, q, g); 

if g then f : = true else NOCYCLE(v,  w) 
end 
else if position(w) < q then 

begin output cycle w to v from stack then w; 
f : =  true 

end else NOCYCLE(v,  w); 
delete v from stack; 
if f then UNMARK(v) ;  
reach(v) := true; 
position(v) :=  N +  1 

end CYCLE;  
read the digraph D; 
A : = adjacency lists of the strongly connected components of D; 
for j :=  1 step 1 until N do mark(j) := reach(j) := false; 
for each non-trivial strongly connected component do 
begin s := vertex with maximal indegree in this component; 

CYCLE(s,  dummy, dummy) 
end 

end 

4. Correctness and Performance. 

The following sequence of lemmas and theorems establish the correct- 
ness of the method and determine its performance. The proofs have been 
omitted but they can be established using basically inductive arguments.* 

* The proofs can be found  in references [22] and  [23]. 
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L e t  D ( V , E )  be an input  d igraph wi th  no t r iv ia l  components :  

L~MMA 1. Every vertex enters the stack at least once. 

LEM~IA 2. I f  V 1 . . . V k constitutes the stack at a given moment and a new 
elementary cycle is found with v k then all vertices vl . . . .  , v~ are unmarked 
upon leaving the stack. 

L E n A  3. Let v 1 . . . .  ,v k,vl be an elementary cycle such that v x . . .  v k or 
a cyclic permutation of it have already appeared in the k top positions of 
the stack at some earlier time, and at least one of these vertices has been 
deleted from it before. I f  v 1 . . .  v k now occupy the k top positions of the stack, 
then all v 1 . . . .  ,v k have already been deleted from it. 

Ln~MA 4. Let z 1 . . . . .  % be an elementary path, (zk, v ) an edge of D, 
where v is a vertex in the stack that has never been deleted from it. Then 
i f  z 1 . . . . .  z k are not in the stack, z I is unmarked. 

L E M ~  5. Let v~, . . .  ,vk, v I be a convenient cyclic permutation for an 
elementary cycle, such that v 1 was the f irst  among vj, 1 <j  < k to ever enter 
the stack. Then there exists a configuration of the stack such that before v 1 
leaves the stack for the f irst  time, v~v~ . . . vj, 1 < j < k appear in the j top 
positions of the stack. 

L~M~A 6. I f  a vertex is in the stack, it is marked. 

L ~ M A  7. Each elementary cycle of D is listed at least once. 

L ~ M A  8. Each elementary cycle of D is listed at most once. 

T ] z E O ~  1. The proposed algorithm for f inding the elementary cycles 
of D is correct. 

L ~ M A  9. I f  a vertex changes from marked to unmarked twice, a new 
elementary cycle is enumerated. 

T]z~OaWM 2. The algorithm requires O(N + (C + 1)M) time and O(N + M) 
space to enumerate C elementary cycles. 

C o ~ o L I ~ ¥  1. A time bound per cycle is O(M) for any elementary cycle 
except for the f irst  enumerated, whose bound is O(N + M).  

3. Cri t ical  Remarks .  

P r ab hak e r  and  Deo [10] have  a l ready  shown t h a t  so far,  the  most  
successful cycle-finding algori thms are those  based on a backt rack ing  
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search strategy. Tiernan's algorithm adopts an essentially unconstrained 
backtracking. The main difference between the algorithms of Tiernan 
and Tarjan is tha t  the lat ter  has introduced a marking mechanism 
which avoids the exploratio n of a vertex if this vertex is found marked 
when it is reached. This situation can occur even if this vertex does not  
lie in the path currently under examination. As a result the backtracking 
becomes constrained. The basic difference between the algorithms by  
Tarjan and Johnson is that  the lat ter  has modified and improved the 
marking system. If  an elementary cycle is found with a certain vertex v, 
then upon v leaving the stack, Tarjan unmarks v and all vertices of a 
set Z which is the set of vertices which are marked, not in the stack, and 
which entered the stack for the last time, after v. Instead, Johnson 
unmarks v and only such vertices z e Z for which there exists a path 
from z to v, involving solely vertices of Z. Also, all N vertices become 
star t  vertices in Tarjan's algorithm. In Johnson's method, for each 
strongly connected component the number of s tar t  vertices equals the 
nuraber of vertices v such that  there exists an edge to v, from a descend- 
ant  of v in a directed rooted tree, obtained by  a depth-first search of 
this component. These conditions represent further constraints to the 
backtracking. 

The principal difference between Johnson's algorithm and the presen~ 
one is that  we detect an elementary cycle, as soon as it appears in the 
top positions of the stack. Consequently, while exploring a vertex v we 
do not seek exclusively cycles involving v and the start  vertex, but  any 
other new cycle is considered. Since this earlier detection means that  
the algorithm will not initiate an explicit new search aimed to find this 
cycle, as [7] does, this new strategy imposes a further constraint on the 
backtracking. Also unlike [7] for each non-trivial strongly connected 
component the present algorithm considers exactly one start  vertex. 
Another difference between the two strategies lies in the marking system: 
if w is a vertex that  is marked and (v, w) e E then in the proposed method 
only one unsuccessful exploration of edge (v,w) can occur whilst w re- 
mains marked. In  [7] each time vertex v is found unmarked, an explora- 
tion of edge (v,w) certainly occurs. The effect of ~hese differences in the 
actual  manipulation of digraphs may  be appreciated in the following 
examples. The digraph of Figure 1 has Zv" vertices, 2 N -  3 edges and N - 2 
elementary cycles. I t  has the property that  certain vertices (1, 2 and 3 
in the example) are involved in every possible existing cycle. Digraphs 
with this property seem to provide favourable examples for Johnson's 
a l g o r i t h m -  because if one of these special vertices is the start  vertex 
~hen each elementary cycle is generated only once. In  fact, for such 
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digraphs both algorithms ([7] and the present) may perform exactly the 
same number of steps, for identical adjacency lists. In Figure 1 the start 
vertex is vertex 1 for both algorithms, and both would explore each edge 
exactly once in the search for the N - 2 elementary cycles, thus requiring 
2h r -  3 steps, for termination, l~ote that by number of steps we mean the 
frequency of execution of a given statement which has the highest fre- 
quency among all by the end of the process (this corresponds to the 
number of edge explorations). If the digraph is re-labelled such that the 
new vertex 1 is the previous vertex 2, Johnson's algorithm would take 
357-6 steps, because the previous vertex 1 (and the edge from it to the 
new vertex 1) suffers N - 3  additional explorations. Since this vertex is 
the vertex with maximal indegree, the present algorithm would always 
consider it as start vertex and consequently would find all elementary 

2 3 4 N - - 1  N 

i F igu re  1. 

2 ¢ - 1  1 V - 2  ~ V - 3  2 1 

Ar Figure 2. 

cycles in 2 N - 3  steps. For this class of digraphs, the worst case for 
Johnson's algorithm occurs when the vertices are labelled as in Figure 2, 
in which the sub-digraph composed of vertices N, N - 1 ,  N - 2 ,  is ex- 
plored N - 2  times, the sub-digraph composed of N, N - 1 ,  N - 2 ,  N - 3  
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is explored N -  3 times, and so on. A total of N ( N -  2) steps are required 
for the enumeration of the elementary cycles of this digraph, using [7] 
compared with 2 N - 3  using the present method. 

Concerning the choice of the start  vertex we have adopted a different 
strategy from [7] which always chooses the least vertex as start  vertex. 
Our approach is based on the fact tha t  if vi, v ~ . . . .  ,vk,v i and vl',v~', . . . .  
vk', v 1' are elementary cycles involving precisely the same vertices, vl = v x' 
and there exists an index j ,  such that  vj #vj ' ,  then this information is 
sufficient to reeognise those cycles as non identical (Johnson has imposed 
as a further condition - -  following [20] - -  that  v i must be the least vertex 
of vi, v~ . . . .  ,vk). The alternative that  has been adopted in the present 
method consists of choosing for the start  vertex one that  is likely not 
to produce many unfruitful explorations of other vertices in the search 
for elementary cycles involving the start  vertex. If  vx is the start  vertex 
and v¢ is such that  (v~,vi) e E, then every exploration of v~ leads to a new 
elementary cycle, hence is not unfruitful. Therefore, the choice for the 
start  vertex to be a vertex with maximal indegree among the vertices 
of the considered strongly connected component seems to be perhaps 
more appropriate. Observe tha t  a similar choice could be made as to 
which vertex to explore, among the vertices v~,(v~,v~)eE and v i the 
start  vertex. Also, this strategy extends to which vertex v~ to explore 
among the vertices v¢ such that  (v¢_i, vj) ~ E,  vj_x being the vertex of the 
top of the stack and not having been deleted from it yet. 

Next  consider the digraph of Figure 3 with N vertices, 2 N - 2  edges 
and N - 1  elementary cycles. Johnson's algorithm would consider ver- 
tex 1 as start  vertex, explore the path 1 . . . .  ,N, generate all elementary 
cycles of the digraph, but  since this algorithm only considers cycles in- 
volving the start  vertex, only the cycle 1,2,1 is enumerated a t  this 
stage. Next, vertex 1 is deleted and a similar process occurs for the 
resulting subdigraph, with vertices 2 . . . .  ,N. Vertex 2 is the new start 
vertex, path 2, . . . .  N is again reconsidered, and so on. I t  takes N ( N -  1) 
steps for enumerating all N -  1 elementary cycles using the above strat- 
egy. The present algorithm would find all such cycles in the course of 
exploring the paths j , j +  1, . . .  ,N and j , j - 1  . . . . .  1, where j is the s tar t  
vertex, consuming precisely 2 N - 2  steps, for termination. Digraphs of 
this class have the additional property that  for any start  vertex chosen, 
the present algorithm requires 2N-2-s teps ,  whilst in [7] there is no 
possible choice of the start  vertex for which the algorithm requires just 
O(N) steps. 

Consider now the complete digraph K~, with n vertices. Since a new 
elementary cycle exists with every possible exploration of a given ver- 
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rex, any vertex is found unmarked, when reached, and this is true for 
both algorithms. Therefore, in the course of finding the elementary 
cycles involving the start vertex, all elementary cycles of K~ are gener- 
ated, but [7] would only enumerate those with the start vertex. Assume 
now a modified version of [7] with the marking system of the present 
algorithm incorporated. If T~ is the total number of steps required by 
the present algorithm to enumerate all elementary cycles of K~ then this 
modified version of [7] would require Z~=2Ti steps for the diagraph K=. 

1 2 3 '4 / ~ - 1  /~T 

0 0 0 ~ Figure 3. 

K + 2  2 K + 3  

K+I 

2K+ 1 2 K + 2  2 K + 3  

Figure 4. 

Consequently, the total number of steps Tn' required by the actual 
Johnson algorithm for enumerating all elementary cycles of K~ satis- 
fies T~' >~=2Tj ,  n > 2 .  Observe, however, that  ~.']=2Tj tends to T n as n 
increases. 

The example of Figure 4 with 2K+ 3 vertices, 6K+2  edges and 3K 
elementary cycles was shown by Johnson to be a worst case for Tarjan's 
algorithm, since it realizes the time bound of [19]. The number of steps 
taken with this input digraph has been decreased by [7] to O ( K  ~) - -  
more precisely to 6K~+ l l K - 1  steps. This value can still be reduced 
using the present algorithm, which requires 2K~+6K or 7K+ 1 steps, 
depending on which vertex, K +  2 or 2K+ 2 respectively, was chosen 
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for the start vertex. Note that in this last fortunate case (vertex 2K + 2 
the start vertex), each edge of the digraph is explored just once during 
the entire process, with exception of edge (3K+ 3, 2K + 2) which is ex- 
plored K times. 

6. Conclusions .  

An algorithm was presented to enumerate all elementary cycles of a 
directed graph, based on work by Tiernan-Tarjan-Johnson. Although 
its (worst case) time bound is similar to that achieved by Johnson, 
namely O(N+ M) per cycle, we believe that the techniques for detecting 
an elementary cycle, anywhere in the path under examination, and its 
enumeration at the earliest possible time the cycle is contained in this 
path, which were used by the present algorithm, represent important 
features for cycle finding methods. 

The present paper has shown examples where unnecessary work was 
done by existing algorithms. The question that arises is, what about 
inefficiencies of the proposed algorithm ? Clearly, they still exist because 
a vertex or an edge may be unsuccessfully explored many times, during 
the process. However, these same inefficiencies are also present in the 
existing backtracking methods. Since we have eliminated some of the 
inefficiences of those methods, we believe that the proposed algorithm 
compares favourably with them. 

I t  should be noted that a previous version of the present algorithm 
[17] was an unsatisfactory attempt to devise a method that would ex- 
plore unsuccessfully any vertex, at most. once during the entire process. 
An open question still remains about the existence of an algorithm that  
would find all elementary cycles of a digraph, in such a way that any 
edge or vertex would be unsuccessfully explored, at most a constant 
number of times, during the entire process. Such an algorithm would 
have an optimal time bound. 

REFERENCES 

1. A. T. Berztiss, Data Structures: Theory and Practice, Academic Press, New York,  
N.Y. 1971. 

2. A. T. Berztiss, A k-tree Algorithm for Simple Cycles of a Directed Graph, Tech. Rep.  
73-6, Depar tment  of Computer  Science, Universi ty  of Pi t tsburgh,  Penn. ,  1973. 

3. A. Ehrenfeucht ,  L. D. Fosdick and  L. J .  Osterweil, An Algorithm for ~indlng the 
Elementary Circuits of a Directed Graph, Tech. Rep. ~CU-UC-024-73, Depar tment  of 
Computer Science, Universi ty  of Colorado, Colorado 1973. 

4. 1%. W. Floyd, 1Vondeterministio Algorithms, J, ACM, 14 (1967), 636-644. 



~ 0 4  JAYME L. SZWARCFITER AND PETER E. LAUER 

5. ft. Hoperoft  and  R. Tarjan,  Efficient Algorittvms for Graph Manipulation, Comm. 
ACM. 16 (1973), 372-378. 

6. J .  Hoperoft  and  R. Tarjan,  Efficient Planarity Testing, J. ACM. 21 (1974), 549-568. 
7. D. B. Johnson,  Finding all the Elementary Circuits of a Directed Graph, SIAM J.  

Comp. 4 (1975), 77-84. 
8. P. E. Lauer,  The Perils of Indirect Proof or Another Efficient Search Algorithm to Find 

the Elementary Circuits of Directed Graphs, Teeh. Rep. 42, Computing Laboratory,  
Universi ty  of Newcastle upon Ty-ae, Newcastle upon Tyne,  1973 (revised Sep. 1973). 

9. P. G. H.  Lehot,  An Optimal Algorithm to Detect a Line Graph and Output its Yoot Graph, 
ft. AC~.  21 (1974), 569-575. 

1O. M. P rabhaker  and  N, Deo, On Algorithms for Enumerating all Circuits of a Graph, 
Teeh. Rep. UIUCDCS-R-73-585, Depar tmen t  of Computer  Seience, Univers i ty  of 
Illinois, Illinois, 1973 (revised Mar. 1974). 

11. R. C. Read  and  R. E. Tar jan,  Bounds on Backtrack Algorithms for Listing Cycles, Paths 
and Spanning Trees, Mem. ERL-M433, Electronics Research Laboratory,  Univers i ty  
of Berkeley, Berkeley, California, 1973. 

12. R. C. Read  and  R. E. Tarjan,  Bounds on Backtrack Algorithms for Listing Cycles, 
Paths and Spanning Trees, Networks (to appear). 

13. S. M. Rober ts  and  B. Flores, Systematic Generation of Hamiltonian Circuits, Comm. 
ACM. 9 (1966), 690-694. 

14. N. D. Roussopoulos, A m ax  {re, n) Algorithm for Determining the Graph H from its 
Line Graph G, Inf. Proe. Left .  2 (1973), 108-112. 

15. hi. ~I. Syslo, Algorithm 459: The Elementary Circui~ of a Graph, Comm. ACM. 16 
(1973), 632-633. 

16. M. 1YL Syslo, Remark on Algorithm 459: The Elementary Circuits of a Graph, Comm. 
ACM. 18 (1975), 119. 

17. J.  L. Szwarcfiter and  P. E. Lauer,  Finding the Elementary Cycles of a Directed Graph 
in O(N-~M) per Cycle, Tech. Rep. 60, Universi ty of Newcastle upon  Tyne,  Newcastle 
upon Tyuae, 1974. 

18. R. Tar jan,  Depth.First Search and Linear Graph Algorithms, SIAM J.  Comp. 2 (1972), 
146-160. 

19. R. Tarjan,  Enumeration of the Elementary Circuits of a Directed Graph, SIAM J.  
Comp. 3 (1973), 211-216. 

20. ft. C. Tiernan, An Efficient Search Algorithm to Find the Elementary Circuits of a Graph, 
Comm. ACM. 13 (1970), 722-726. 

21. I-I. Weinbla t t ,  A New Search Algorithm for Finding the Simple Cycles of a Finite Di. 
rected Graph, ft. ACM. 19 (1972), 43-56. 

22. 5. L. Szwarcfiter and  P. E.  Lauer,  A New Backtracking Search Strategy for the Enumera- 
tion of the Elementary Cycles of a Directed Graph, Tech. Repor t  Series, 69, Univers i ty  
of Newcastle upon Tyne (1975). 

23. J .  L. Szwarefiter, On Optimal and Near.Optimal Algorithms for Some Computational 
Graph Problems, P h . D .  Thesis, Universi ty  of Newcastle upon Tyne (1975). 

UNIVERSIDADE FEDERAL 
DO RIO DE ffANEIRO, 
CAIXA POSTAL 2324 ZC-00, 
20.000 RIO DE JAI~EIRO 
RJ - BRASIL 

UNIVERSITY OF 
l~EWCASTLE UPON TYNE 
COI~IPUTING LABORATORY, 
NEWCASTL]~ UPON TYNE, 
ENGLAND 


