
:BIT 16 (1976), 192--204

A SEARCH STRATEGY FOR THE ELEMENTARY

CYCLES OF A DIRECTED GRAPH

JAYME L. SZWARCFITEI~* and PETEI~ E. LAUER

Abstrac t .

The most successful known algorithms enumerating the elementary cycles of a
directed graph are based on a backtracking strategy. Such existing algorithms
are discussed and a new backtracking algorithm is proposed which is bounded by
O(N÷M(C + 1)) time, for a directed graph with N vertices, M edges and 0 ele-
mentary cycles.

1. Introduct ion .

Some problems, such as determining whether a graph has certain proper-
ties, or constructing a set of objects related to the graph admit of algo-
ri thmic solutions which have a time bound linear in the size of the graph.
These include the problems of finding: the strongly connected components
of a directed graph (Tarjan [18]), the biconnected components of a graph
(Tarjan [18]), the graph fi'om its given line graph (l~oussopoulos [14],
Lehot [9]), partitions of a graph into simple paths (Hopcroft and Tarjan
[5]). Testing planarity of a graph can be performed in a time just propor-
tional to the number of its vertices (Hopcroft and Tarjan [6]). Clearly,
any algorithm for listing a set of objects related to the graph must be at
least proportional to the total number of such objects. If this number
grows exponentially with the size of the graph, the algorithm has at
least an exponential running time. For such problems, a given algorithm
may be additionally characterized by introducing a t ime bound per
object obtained, and two algorithms can be compared according to their
bounds per object. The problem of finding all elementary cycles of a
directed graph falls into this category. Among the great number of cycle
algorithms surveyed by Prabhaker and Deo [10], the algorithm by John-
son [7], presents the best time bound, namely a linear bound in the size
of the graph, per cycle. This algorithm was devised by imposing further
constraints on the backtracking performed by an already constrained
backtracking algorithm [19].

* Research suppor ted by the Conselho Nat iona l do Desenvolvimento Cientifico e Tee.

nolSgico - CNPq - Brasil.

l~eeeived J u l y 17, 1975. l~evised Feb i~a ry 7, 1976.

i SEARCH STRATEGY FOR THE ELEMENTARY C Y C L E S . . . 193

The present paper proposes a cycle finding algorithm that has a
similar (worst case) t ime bound as [7]. However, while maintaining all
the constraints of [7], we are proposing new strategies that represent
further restrictions to the backtracking.

The graph definitions presently adopted are those commonly found in
the literature. Refer for instance to [18]. By N, M, C respectively, we
denote the number of vertices, edges and elementary cycles of a digraph
D (V , E) , w i t h V the set of vertices and E the set of edges. We assume
tha t V = {1 N}.

2. Elementary cycles in directed graphs.

Tiernan [20] finds all elementary paths v 1 v k, v 1 < vi, 1 < i < k and
1 < k < N . I f (vk, v l) e E then the cycle v 1 Vk,V ~ is enumerated. This
strategy corresponds to an essentially unconstrained backtracking and
was also presented by Roberts and Flores [13] and Berztiss [1]. Floyd [4]
has described a non-deterministic version of this algorithm. Weinblatt
[21] also searches for elementary paths, but proposes to improve execu-
tion time by storing cycles already found and constructing new ones
from these. In [19] Tarjan gives examples illustrating that the algo-
ri thms [20] and [21] may take exponential t ime in the number of cycles
enumerated. Lauer [8] discusses the generalization of Tiernan's algorithm
to different representations of digraphs, improves storage requirements
and proposes alternate proofs. Another backtracking algorithm pre-
sented by Berztiss [2] has been shown by Prabhaker and Dec [10] also
to have a t ime bound exponential in the number of cycles. The algorithm
by Syslo [15, 16] is also based on a backtracking strategy and constitutes
a variation of Tiernan's method.

Tarjan's algorithm [19] is based on Tiernan's depth-first method. I t
makes use of two stacks, the point stack for storing the path currently
being examined and a mark stack, as well as a boolean vector called
mark vector. The mark stack is used as a set of pointers ~o the mark
vector. ~Vhenever a new cycle is found, all vertices in the current point
stack will eventually be unmarked when popped from this stack.

If no cycle is found involving a vertex, it will be deleted from the point
stack, but continue to be marked. Some of the unnecessary work done
by Tiernan is avoided by the condition tha t a vertex can be added to
the point stack only if it is found unmarked. However, we mention two
points where this algorithm still does unnecessary work. First, whenever
a ver tex v is going to be unmarked because a cycle involving it was
found, all the vertices that are above v in the mark stack will also be

194 JAY~IE L. SZWARCFITER AND PETER E. LAUER

unmarked, even if some of them are involved in no cycle. Second, Tarjan
follows Tiernan's principle of only searching for elementary cycles
vj v k with vj<vl, 1 <i</c , where vj is the vertex at the bottom of
the stack, called start vertex. The inefficiency involved in this is discussed
in section 5. The algorithm [19] is bounded by O(NM(C+ 1)) t ime and
O(N + M) space.

Another method was developed by Ehrenfeucht, Fosdick and Oster-
weft [3] which includes both breadth-first and depth-first search, and
makes use of an additional phase for collecting information about the
digraph. This preprocessing requires O(N a) t ime and the actual process
enumeration of the elementary cycles is bounded by O(NM) time per
cycle.

An algorithm with the time bound of O(N+M(C+ 1)) has been pre-
sented by Read and Tarjan [12]. I t should be noted tha t a first version
of the present paper contained a counter-example to a previous formula-
tion of the Read and Tarjan algorithm [11], showing tha t the strategy
described in [11] has a time bound greater than O(N+M(C+ 1)).

The algorithm by Johnson [7] also employs the technique of construct-
ing elementary paths from a start vertex, in a stack. For each strongly
connected component, the least vertex of the component becomes the
start vertex. Subsequently, a new maximal strongly connected partial
subdigraph is obtained, which does not contain that vertex. The least
vertex of this partial subdigraph becomes the new start vertex and so
on. For each start vertex s, a recursive backtracking procedure is in-
voked and its computation is similar to tha t of Tarjan's algorithm, ex-
cept for the marking system, which was considerably enhanced. A vertex
v is marked each time it enters the stack. Upon leaving the stack, if an
elementary cycle was found involving v and the start vertex s, then v is
unmarked. Otherwise, it remains marked until another vertex u is popped
from the stack and such tha t an elementary cycle existed involving u
and s, and there exists a path from v to u consisting of vertices that are
marked and not in the stack. Johnson implements this strategy efficiently
using a scheme of lists B, one list B(v) per vertex v. At any given moment,
B(v) contains those vertices u such that. (u,v) e E and u is marked and
not in the stack. The actual unmarking is performed by a procedure
UNBLOCK (v) which will reeursivety call UNBLOCK (u), if u e B(v).
This algorithm is bounded by O(N + (C + 1)M) time and O(N + M) space.
Fur ther remarks concerning this method and comparisons with the pro-
posed algorithm can be found in section 5.

A SEARCH STRATEGY FOR THE ELEMENTARY CYCLES ... 195

3. The Proposed Algorithm.

Our algorithm also uses a recursive backtracking procedure but a more
efficient system for detecting elementary cycles. This detection occurs as
soon as the elementary cycle is generated anywhere in the current path
under examination. This path is kept in a stack (Tarjan's point stack).
The boolean vector is retained but not the mark stack. Instead, we have
utilised and slightly modified Johnson's marking system using one list
B(v), per vertex v. A vertex u is inserted in list B(v) if (u,v) E E and the
exploration of edge (u, v) has not led to a new elementary cycle. In addi-
tion to these structures, we use a position vector and a boolean reach vector.
If a vertex v is the j t h vertex from the bottom of the stack, then posi-
tion (v)=j; when v is deleted from the stack then position (v)=25+ I.
I f a vertex v has not yet left the stack for the first time, then reach (v) =
false, otherwise reach (v)= true. A vertex v is marked when it enters the
stack, and the mark is kept at least as long as this vertex remains in the
stack. Upon leaving the stack, v is unmarked only if a new elementary
cycle was fouud with v but not necessarily with the vertex at the bottom
of the stack (start vertex). If v leaves the stack with the mark on, then
it will be unmarked when a vertex z 1 is popped from the stack in such a
way tha t a new elementary cycle was found with Zl, and there exists a
path %,%-1 zl, (zk=v) such tha t zi+ t ~ B(z~), k < i < 1, at. tha t time.

The digraph is represented by a set of adjacency lists with one list
A(v) per vertex v. A pre-processing is performed to find the strongly
connected components of the digraph, using the method described in [18].
For each strongly connected component a start vertex is chosen to be
the vertex with maximal indegree in this component. The present method
ensures that, when this start vertex is deleted from the stack, all the
elementary cycles of this component have been enumerated. Therefore
only one start vertex per component is required. As it can be observed
from the proposed strategy, if a start vertex would have been chosen
to be an arbitrary vertex of the d i g r a p h - instead of a vertex with
maximal indegree in a strongly connected c o m p o n e n t - the algorithm
could be easily modified so as to avoid finding the strongly connected
components. The modified algorithm would have the same time bound
as the one currently described.

The basic idea of the algorithm is similar to all previously described
methods, namely to t ry to extend the current elementary path under
examination. Consider the case where the content of the stack is
v l v 2 . . . Vk_ 1 and edge (Vk_l, Vk) is reached:

196 JAYME L. SZWARCFITER AND P E T E R E. LAUER

(i) If v k is not marked then necessarily v k is not in the stack, the ele-
mentary path will be extended with vk, and an edge from v k will be
examined.

(ii) If v k is marked and not in the stack then, necessarily, there can be
no new elementary cycles generated from the path v 1, v 2 vk_l, v k and
therefore v k is not re-explored, at this stage. Vertex vk_ 1 is inserted in
list B(Vk) and v k is deleted from A(vk_l).

(iii) If v~ is marked and lies in the stack then an elementary cycle
was found, and it can be recorded at once. The algorithms [21] and [2]
also consider this cycle at that stage. However, some efficient algorithms
as [19], [3], [7] and [12] disregard it, if v k is not the start vertex. The
problem that arises when considering such a cycle with v k ~: vl, is that a
mechanism for detecting duplicate cycles must be set up. The nature of
this mechanism follows from the observation that a cycle is a new cycle,
if and only if at least one of its vertices had never been deleted from the
stack. The fact that it has not been deleted before is indicated by setting
a variable q, local to the recursive procedure. For a given computation
of this procedure q indicates the top-most vertex of the stack that has
never been deleted from it. Therefore, if position (Vk) < q a new elementary
cycle is found. Otherwise, this is a duplicate cycle: vk_ 1 is inserted in
B(vk) and v k is deleted from A(Vk_l).

In cases (ii) and (iii), when v~ is marked the elementary path is not
extended. If a certain elementary path cannot be extended any more,
the algorithm backtracks to the previous vertex in the stack, and so on.
When the start vertex is deleted from the stack, a new strongly connected
component is considered, and so on, until all such components have been
processed.

Below is an ALGOL-like formulation of the proposed algorithm. The
combined action of variables f and g ensures the correct propagation of
the information that a new elementary cycle was found with a certain
vertex v at the top of the stack, for all vertices that are below v in the
stack.

begin comment f inding the elementary cycles of a digraph;
procedure C Y C L E (integer value v, q; logical result f) ;
begin procedure N O C Y C L E (integer value x,y);

begin insert x in B(y);
delete y f rom A(x)

end N O C Y C L E ;
procedure U I V M A R K (integer value x);

A SEARCH STRATEGY FOR THE ELEMENTARY C Y C L E S . . . 197

begin mark(x):= false;
for y e B(x) do
begin insert x in A(y);

if mark(y) then U N M A R K
end;
empty B(x)

end U N M A R K ;
logical g;
mark(v) := true; f := false;
insert v in the stack;
t := number of vertices in the stack;
position(v) := t;
if --7 reach(v) then q := t;
for w e A(v) do

if -7 mark(w) then
begin CYCLE(w, q, g);

if g then f : = true else NOCYCLE(v, w)
end
else if position(w) < q then

begin output cycle w to v from stack then w;
f : = true

end else NOCYCLE(v, w);
delete v from stack;
if f then UNMARK(v) ;
reach(v) := true;
position(v) := N + 1

end CYCLE;
read the digraph D;
A : = adjacency lists of the strongly connected components of D;
for j := 1 step 1 until N do mark(j) := reach(j) := false;
for each non-trivial strongly connected component do
begin s := vertex with maximal indegree in this component;

CYCLE(s, dummy, dummy)
end

end

4. Correctness and Performance.

The following sequence of lemmas and theorems establish the correct-
ness of the method and determine its performance. The proofs have been
omitted but they can be established using basically inductive arguments.*

* The proofs can be found in references [22] and [23].

198 J A Y M E L. 8 Z W A R C F I T E ~ A N D P E T E R E. LATJEI~

L e t D (V , E) be an input d igraph wi th no t r iv ia l components :

L~MMA 1. Every vertex enters the stack at least once.

LEM~IA 2. I f V 1 . . . V k constitutes the stack at a given moment and a new
elementary cycle is found with v k then all vertices vl , v~ are unmarked
upon leaving the stack.

L E n A 3. Let v 1 ,v k,vl be an elementary cycle such that v x . . . v k or
a cyclic permutation of it have already appeared in the k top positions of
the stack at some earlier time, and at least one of these vertices has been
deleted from it before. I f v 1 . . . v k now occupy the k top positions of the stack,
then all v 1 ,v k have already been deleted from it.

Ln~MA 4. Let z 1 % be an elementary path, (zk, v) an edge of D,
where v is a vertex in the stack that has never been deleted from it. Then
i f z 1 z k are not in the stack, z I is unmarked.

L E M ~ 5. Let v~, . . . ,vk, v I be a convenient cyclic permutation for an
elementary cycle, such that v 1 was the f irst among vj, 1 <j < k to ever enter
the stack. Then there exists a configuration of the stack such that before v 1
leaves the stack for the f irst time, v~v~ . . . vj, 1 < j < k appear in the j top
positions of the stack.

L~M~A 6. I f a vertex is in the stack, it is marked.

L ~ M A 7. Each elementary cycle of D is listed at least once.

L ~ M A 8. Each elementary cycle of D is listed at most once.

T] z E O ~ 1. The proposed algorithm for f inding the elementary cycles
of D is correct.

L ~ M A 9. I f a vertex changes from marked to unmarked twice, a new
elementary cycle is enumerated.

T]z~OaWM 2. The algorithm requires O(N + (C + 1)M) time and O(N + M)
space to enumerate C elementary cycles.

C o ~ o L I ~ ¥ 1. A time bound per cycle is O(M) for any elementary cycle
except for the f irst enumerated, whose bound is O(N + M).

3. Cri t ical Remarks .

P r ab hak e r and Deo [10] have a l ready shown t h a t so far, the most
successful cycle-finding algori thms are those based on a backt rack ing

A SEARCH STRATEGY FOR THE ELEMENTARY CYCLES... 199

search strategy. Tiernan's algorithm adopts an essentially unconstrained
backtracking. The main difference between the algorithms of Tiernan
and Tarjan is tha t the lat ter has introduced a marking mechanism
which avoids the exploratio n of a vertex if this vertex is found marked
when it is reached. This situation can occur even if this vertex does not
lie in the path currently under examination. As a result the backtracking
becomes constrained. The basic difference between the algorithms by
Tarjan and Johnson is that the lat ter has modified and improved the
marking system. If an elementary cycle is found with a certain vertex v,
then upon v leaving the stack, Tarjan unmarks v and all vertices of a
set Z which is the set of vertices which are marked, not in the stack, and
which entered the stack for the last time, after v. Instead, Johnson
unmarks v and only such vertices z e Z for which there exists a path
from z to v, involving solely vertices of Z. Also, all N vertices become
star t vertices in Tarjan's algorithm. In Johnson's method, for each
strongly connected component the number of s tar t vertices equals the
nuraber of vertices v such that there exists an edge to v, from a descend-
ant of v in a directed rooted tree, obtained by a depth-first search of
this component. These conditions represent further constraints to the
backtracking.

The principal difference between Johnson's algorithm and the presen~
one is that we detect an elementary cycle, as soon as it appears in the
top positions of the stack. Consequently, while exploring a vertex v we
do not seek exclusively cycles involving v and the start vertex, but any
other new cycle is considered. Since this earlier detection means that
the algorithm will not initiate an explicit new search aimed to find this
cycle, as [7] does, this new strategy imposes a further constraint on the
backtracking. Also unlike [7] for each non-trivial strongly connected
component the present algorithm considers exactly one start vertex.
Another difference between the two strategies lies in the marking system:
if w is a vertex that is marked and (v, w) e E then in the proposed method
only one unsuccessful exploration of edge (v,w) can occur whilst w re-
mains marked. In [7] each time vertex v is found unmarked, an explora-
tion of edge (v,w) certainly occurs. The effect of ~hese differences in the
actual manipulation of digraphs may be appreciated in the following
examples. The digraph of Figure 1 has Zv" vertices, 2 N - 3 edges and N - 2
elementary cycles. I t has the property that certain vertices (1, 2 and 3
in the example) are involved in every possible existing cycle. Digraphs
with this property seem to provide favourable examples for Johnson's
a l g o r i t h m - because if one of these special vertices is the start vertex
~hen each elementary cycle is generated only once. In fact, for such

7 0 0 JAYIVIE L. SZWARCFITER AND P E T E R E. L A U E R

digraphs both algorithms ([7] and the present) may perform exactly the
same number of steps, for identical adjacency lists. In Figure 1 the start
vertex is vertex 1 for both algorithms, and both would explore each edge
exactly once in the search for the N - 2 elementary cycles, thus requiring
2h r - 3 steps, for termination, l~ote that by number of steps we mean the
frequency of execution of a given statement which has the highest fre-
quency among all by the end of the process (this corresponds to the
number of edge explorations). If the digraph is re-labelled such that the
new vertex 1 is the previous vertex 2, Johnson's algorithm would take
357-6 steps, because the previous vertex 1 (and the edge from it to the
new vertex 1) suffers N - 3 additional explorations. Since this vertex is
the vertex with maximal indegree, the present algorithm would always
consider it as start vertex and consequently would find all elementary

2 3 4 N - - 1 N

i F igu re 1.

2 ¢ - 1 1 V - 2 ~ V - 3 2 1

Ar Figure 2.

cycles in 2 N - 3 steps. For this class of digraphs, the worst case for
Johnson's algorithm occurs when the vertices are labelled as in Figure 2,
in which the sub-digraph composed of vertices N, N - 1 , N - 2 , is ex-
plored N - 2 times, the sub-digraph composed of N, N - 1 , N - 2 , N - 3

A S E A R C H S T R A T E G Y F O R T H E E L E M E N T A R Y C Y C L E S . . . 201

is explored N - 3 times, and so on. A total of N (N - 2) steps are required
for the enumeration of the elementary cycles of this digraph, using [7]
compared with 2 N - 3 using the present method.

Concerning the choice of the start vertex we have adopted a different
strategy from [7] which always chooses the least vertex as start vertex.
Our approach is based on the fact tha t if vi, v ~ ,vk,v i and vl',v~',
vk', v 1' are elementary cycles involving precisely the same vertices, vl = v x'
and there exists an index j , such that vj #vj ' , then this information is
sufficient to reeognise those cycles as non identical (Johnson has imposed
as a further condition - - following [20] - - that v i must be the least vertex
of vi, v~ ,vk). The alternative that has been adopted in the present
method consists of choosing for the start vertex one that is likely not
to produce many unfruitful explorations of other vertices in the search
for elementary cycles involving the start vertex. If vx is the start vertex
and v¢ is such that (v~,vi) e E, then every exploration of v~ leads to a new
elementary cycle, hence is not unfruitful. Therefore, the choice for the
start vertex to be a vertex with maximal indegree among the vertices
of the considered strongly connected component seems to be perhaps
more appropriate. Observe tha t a similar choice could be made as to
which vertex to explore, among the vertices v~,(v~,v~)eE and v i the
start vertex. Also, this strategy extends to which vertex v~ to explore
among the vertices v¢ such that (v¢_i, vj) ~ E, vj_x being the vertex of the
top of the stack and not having been deleted from it yet.

Next consider the digraph of Figure 3 with N vertices, 2 N - 2 edges
and N - 1 elementary cycles. Johnson's algorithm would consider ver-
tex 1 as start vertex, explore the path 1 ,N, generate all elementary
cycles of the digraph, but since this algorithm only considers cycles in-
volving the start vertex, only the cycle 1,2,1 is enumerated a t this
stage. Next, vertex 1 is deleted and a similar process occurs for the
resulting subdigraph, with vertices 2 ,N. Vertex 2 is the new start
vertex, path 2, N is again reconsidered, and so on. I t takes N (N - 1)
steps for enumerating all N - 1 elementary cycles using the above strat-
egy. The present algorithm would find all such cycles in the course of
exploring the paths j , j + 1, . . . ,N and j , j - 1 1, where j is the s tar t
vertex, consuming precisely 2 N - 2 steps, for termination. Digraphs of
this class have the additional property that for any start vertex chosen,
the present algorithm requires 2N-2-s teps , whilst in [7] there is no
possible choice of the start vertex for which the algorithm requires just
O(N) steps.

Consider now the complete digraph K~, with n vertices. Since a new
elementary cycle exists with every possible exploration of a given ver-

202 JAY!~E L. SZWARCFITER AND PETER E. LAUER

rex, any vertex is found unmarked, when reached, and this is true for
both algorithms. Therefore, in the course of finding the elementary
cycles involving the start vertex, all elementary cycles of K~ are gener-
ated, but [7] would only enumerate those with the start vertex. Assume
now a modified version of [7] with the marking system of the present
algorithm incorporated. If T~ is the total number of steps required by
the present algorithm to enumerate all elementary cycles of K~ then this
modified version of [7] would require Z~=2Ti steps for the diagraph K=.

1 2 3 '4 / ~ - 1 /~T

0 0 0 ~ Figure 3.

K + 2 2 K + 3

K+I

2K+ 1 2 K + 2 2 K + 3

Figure 4.

Consequently, the total number of steps Tn' required by the actual
Johnson algorithm for enumerating all elementary cycles of K~ satis-
fies T~' >~=2Tj , n > 2 . Observe, however, that ~.']=2Tj tends to T n as n
increases.

The example of Figure 4 with 2K+ 3 vertices, 6K+2 edges and 3K
elementary cycles was shown by Johnson to be a worst case for Tarjan's
algorithm, since it realizes the time bound of [19]. The number of steps
taken with this input digraph has been decreased by [7] to O (K ~) - -
more precisely to 6K~+ l l K - 1 steps. This value can still be reduced
using the present algorithm, which requires 2K~+6K or 7K+ 1 steps,
depending on which vertex, K + 2 or 2K+ 2 respectively, was chosen

A SEARCH STRATEGY FOR THE ELEMENTARY CYCLES . . . 2 0 3

for the start vertex. Note that in this last fortunate case (vertex 2K + 2
the start vertex), each edge of the digraph is explored just once during
the entire process, with exception of edge (3K+ 3, 2K + 2) which is ex-
plored K times.

6. Conclusions .

An algorithm was presented to enumerate all elementary cycles of a
directed graph, based on work by Tiernan-Tarjan-Johnson. Although
its (worst case) time bound is similar to that achieved by Johnson,
namely O(N+ M) per cycle, we believe that the techniques for detecting
an elementary cycle, anywhere in the path under examination, and its
enumeration at the earliest possible time the cycle is contained in this
path, which were used by the present algorithm, represent important
features for cycle finding methods.

The present paper has shown examples where unnecessary work was
done by existing algorithms. The question that arises is, what about
inefficiencies of the proposed algorithm ? Clearly, they still exist because
a vertex or an edge may be unsuccessfully explored many times, during
the process. However, these same inefficiencies are also present in the
existing backtracking methods. Since we have eliminated some of the
inefficiences of those methods, we believe that the proposed algorithm
compares favourably with them.

I t should be noted that a previous version of the present algorithm
[17] was an unsatisfactory attempt to devise a method that would ex-
plore unsuccessfully any vertex, at most. once during the entire process.
An open question still remains about the existence of an algorithm that
would find all elementary cycles of a digraph, in such a way that any
edge or vertex would be unsuccessfully explored, at most a constant
number of times, during the entire process. Such an algorithm would
have an optimal time bound.

REFERENCES

1. A. T. Berztiss, Data Structures: Theory and Practice, Academic Press, New York,
N.Y. 1971.

2. A. T. Berztiss, A k-tree Algorithm for Simple Cycles of a Directed Graph, Tech. Rep.
73-6, Depar tment of Computer Science, Universi ty of Pi t tsburgh, Penn. , 1973.

3. A. Ehrenfeucht , L. D. Fosdick and L. J . Osterweil, An Algorithm for ~indlng the
Elementary Circuits of a Directed Graph, Tech. Rep. ~CU-UC-024-73, Depar tment of
Computer Science, Universi ty of Colorado, Colorado 1973.

4. 1%. W. Floyd, 1Vondeterministio Algorithms, J, ACM, 14 (1967), 636-644.

~ 0 4 JAYME L. SZWARCFITER AND PETER E. LAUER

5. ft. Hoperoft and R. Tarjan, Efficient Algorittvms for Graph Manipulation, Comm.
ACM. 16 (1973), 372-378.

6. J . Hoperoft and R. Tarjan, Efficient Planarity Testing, J. ACM. 21 (1974), 549-568.
7. D. B. Johnson, Finding all the Elementary Circuits of a Directed Graph, SIAM J.

Comp. 4 (1975), 77-84.
8. P. E. Lauer, The Perils of Indirect Proof or Another Efficient Search Algorithm to Find

the Elementary Circuits of Directed Graphs, Teeh. Rep. 42, Computing Laboratory,
Universi ty of Newcastle upon Ty-ae, Newcastle upon Tyne, 1973 (revised Sep. 1973).

9. P. G. H. Lehot, An Optimal Algorithm to Detect a Line Graph and Output its Yoot Graph,
ft. AC~. 21 (1974), 569-575.

1O. M. P rabhaker and N, Deo, On Algorithms for Enumerating all Circuits of a Graph,
Teeh. Rep. UIUCDCS-R-73-585, Depar tmen t of Computer Seience, Univers i ty of
Illinois, Illinois, 1973 (revised Mar. 1974).

11. R. C. Read and R. E. Tar jan, Bounds on Backtrack Algorithms for Listing Cycles, Paths
and Spanning Trees, Mem. ERL-M433, Electronics Research Laboratory, Univers i ty
of Berkeley, Berkeley, California, 1973.

12. R. C. Read and R. E. Tarjan, Bounds on Backtrack Algorithms for Listing Cycles,
Paths and Spanning Trees, Networks (to appear).

13. S. M. Rober ts and B. Flores, Systematic Generation of Hamiltonian Circuits, Comm.
ACM. 9 (1966), 690-694.

14. N. D. Roussopoulos, A m ax {re, n) Algorithm for Determining the Graph H from its
Line Graph G, Inf. Proe. Left . 2 (1973), 108-112.

15. hi. ~I. Syslo, Algorithm 459: The Elementary Circui~ of a Graph, Comm. ACM. 16
(1973), 632-633.

16. M. 1YL Syslo, Remark on Algorithm 459: The Elementary Circuits of a Graph, Comm.
ACM. 18 (1975), 119.

17. J. L. Szwarcfiter and P. E. Lauer, Finding the Elementary Cycles of a Directed Graph
in O(N-~M) per Cycle, Tech. Rep. 60, Universi ty of Newcastle upon Tyne, Newcastle
upon Tyuae, 1974.

18. R. Tar jan, Depth.First Search and Linear Graph Algorithms, SIAM J. Comp. 2 (1972),
146-160.

19. R. Tarjan, Enumeration of the Elementary Circuits of a Directed Graph, SIAM J.
Comp. 3 (1973), 211-216.

20. ft. C. Tiernan, An Efficient Search Algorithm to Find the Elementary Circuits of a Graph,
Comm. ACM. 13 (1970), 722-726.

21. I-I. Weinbla t t , A New Search Algorithm for Finding the Simple Cycles of a Finite Di.
rected Graph, ft. ACM. 19 (1972), 43-56.

22. 5. L. Szwarcfiter and P. E. Lauer, A New Backtracking Search Strategy for the Enumera-
tion of the Elementary Cycles of a Directed Graph, Tech. Repor t Series, 69, Univers i ty
of Newcastle upon Tyne (1975).

23. J . L. Szwarefiter, On Optimal and Near.Optimal Algorithms for Some Computational
Graph Problems, P h . D . Thesis, Universi ty of Newcastle upon Tyne (1975).

UNIVERSIDADE FEDERAL
DO RIO DE ffANEIRO,
CAIXA POSTAL 2324 ZC-00,
20.000 RIO DE JAI~EIRO
RJ - BRASIL

UNIVERSITY OF
l~EWCASTLE UPON TYNE
COI~IPUTING LABORATORY,
NEWCASTL]~ UPON TYNE,
ENGLAND

