
DIMENSIONALITY REDUCTION TECHNIQUES
FOR SEARCH RESULTS CLUSTERING

by
STANISŁAW OSIŃSKI

Supervisor
YOSHI GOTOH

This report is submitted in partial fulfilment
of the requirement for the degree of

MSc in Advanced Software Engineering

Department of Computer Science
The University of Sheffield, UK

20 August 2004

About this document
This document has been generated from XSL (Extensible Stylesheet Language) source with RenderX XEP Formatter, version 3.7.4 Client Academic.For more information about XSL, visit the official World Wide Web Consortium XSL homepage: http://www.w3.org/Style/XSLFor more information about RenderX and XEP, visit the RenderX site: http://www.renderx.com

Declaration
All sentences or passages quoted in this dissertation from other people's work have been
specifically acknowledged by clear cross-referencing to author, work and page(s). Any illus-
trations which are not the work of the author of this dissertation have been used with the
explicit permission of the originator and are specifically acknowledged. I understand that
failure to do this amounts to plagiarism and will be considered grounds for failure in this
dissertation and the degree examination as a whole.

Name: Stanisław Osiński

Signature:

Date:

Abstract
Search results clustering is an attempt to automatically organise a linear list of document
references returned by a search engine into a set of meaningful thematic categories. Such a
clustered view helps the users to identify documents of interest more quickly. One search
results clustering method is the description-comes-first approach, whereby using a dimension-
ality reduction technique a number of meaningful group labels are identified, which then
determine the content of the actual clusters.

The aim of this project was to compare how three different dimensionality reduction tech-
niques would perform as parts of the description-comes-first method in terms of quality of
clustering and computational efficiency. The evaluation stage was based on the standard
merge-then-cluster model, in which we used the Open Directory Project web catalogue as a
source of human-clustered document references.

During the course of the project we implemented a number of dimensionality reduction
techniques in Java and integrated them with our description-comes-first search results clus-
tering algorithm. We also created a simple benchmarking application, which we used to
gather data for further comparisons and analysis. Finally, we have chosen one dimensionality
reduction technique that performed best both in terms of clustering quality and computational
efficiency.

Table of Contents
1. Introduction .. 1

1.1. Motivation .. 1
1.2. Project goal and scope .. 2
1.3. Thesis structure ... 3
1.4. Typographic conventions ... 3

2. Background ... 4
2.1. Search results clustering ... 4

2.1.1. Stages of search results clustering ... 5
2.1.2. Vector Space Model ... 8
2.1.3. Numerical clustering algorithms .. 9
2.1.4. Suffix Tree Clustering .. 9
2.1.5. Semantic Hierarchical Online Clustering 10

2.2. The description-comes-first approach .. 11
2.2.1. Cluster label induction ... 12
2.2.2. Cluster content assignment .. 12
2.2.3. Pseudo-code and illustrative example ... 12

2.3. Dimensionality reduction techniques .. 15
2.3.1. Singular Value Decomposition ... 16
2.3.2. Non-negative Matrix Factorisation ... 17
2.3.3. Local Non-negative Matrix Factorisation 19
2.3.4. Concept Decomposition ... 21

3. Implementation .. 22
3.1. Matrix factorisation in Java ... 22

3.1.1. MatLab prototypes .. 22
3.1.2. Java implementations .. 23
3.1.3. Performance improvements ... 23

3.2. Search results clustering in Carrot2 ... 25
3.2.1. The framework .. 25
3.2.2. New components .. 25

4. Evaluation ... 27
4.1. Problems ... 27
4.2. Methods .. 28

4.2.1. Standard IR metrics ... 28
4.2.2. User evaluation ... 28
4.2.3. Merge-then-cluster approach ... 28

4.3. Open Directory Project ... 29
4.4. Evaluation methodology .. 30

4.4.1. Cluster Contamination measure ... 30
4.4.2. Topic Coverage ... 31
4.4.3. Snippet Coverage .. 32

iv

4.4.4. Additional measures ... 32
5. Results and discussion .. 33

5.1. Experimental setup .. 33
5.2. Dimensionality reduction techniques .. 34

5.2.1. Topic separation .. 35
5.2.2. Outlier detection ... 37
5.2.3. Cluster label quality .. 38
5.2.4. Computational efficiency ... 38

5.3. Quality level settings .. 39
5.3.1. Topic separation .. 39
5.3.2. Outlier detection ... 39
5.3.3. Cluster label quality .. 40
5.3.4. Computational efficiency ... 40

5.4. Factorisation seeding strategies ... 41
5.4.1. Topic separation .. 41
5.4.2. Outlier detection ... 41
5.4.3. Cluster label quality .. 42
5.4.4. Computational efficiency ... 42

5.5. Lingo vs. STC and TRC .. 43
5.5.1. Topic separation .. 43
5.5.2. Outlier detection ... 43
5.5.3. Cluster label quality .. 44
5.5.4. Computational efficiency ... 44

5.6. Summary .. 45
6. Conclusions and future work .. 46

6.1. Scientific contributions ... 46
6.2. Future work .. 47

Bibliography ... 48

v

List of Figures
2.1. Clustered view of an example web query .. 5
2.2. Stages of a search results clustering process ... 6
2.3. The cosine distance formula ... 9
2.4. Lingo pseudo-code .. 12
2.5. Lingo example: input data .. 13
2.6. Lingo example: basis vectors ... 14
2.7. Lingo example: phrase and single word matrix .. 14
2.8. Lingo example: phrase matching matrix .. 14
2.9. Lingo example: cluster content assignment .. 15
2.10. Matrix factorisation results ... 16
2.11. Singular Value Decomposition results ... 16
2.12. Euclidean Distance objective function .. 18
2.13. Euclidean Distance updating rules .. 18
2.14. Divergence objective function ... 18
2.15. Divergence updating rules .. 18
2.16. LNMF objective function .. 20
2.17. LNMF updating rules ... 20
3.1. Euclidean Distance NMF algorithm MatLab code ... 22
3.2. Euclidean Distance NMF algorithm Java code .. 23
3.3. Example HTML output from the clustering benchmark application 26
5.1. Dimensionality reductions: aggregated cluster measures for topic separation 35
5.2. Dimensionality reductions: contamination as a function of affinity level 35
5.3. Dimensionality reductions: topic coverage as a function of affinity level 36
5.4. Dimensionality reductions: contamination as a function of topic size balance 36
5.5. Dimensionality reductions: topic coverage as a function of topic size balance 36
5.6. Dimensionality reductions: aggregated topic coverage for outlier detection 37
5.7. Dimensionality reductions: cluster labels ... 38
5.8. Dimensionality reductions: computational efficiency .. 38
5.9. Quality level settings: aggregated cluster measures for topic separation 39
5.10. Quality level settings: cluster labels ... 40
5.11. Quality level settings: computational efficiency .. 40
5.12. Factorisation seeding strategies: cluster measures for topic separation 41
5.13. Factorisation seeding strategies: cluster labels .. 42
5.14. Factorisation seeding strategies: computational efficiency 42
5.15. Lingo vs. STC and TRC: aggregated cluster measures for topic separation 43
5.16. Lingo vs STC and TRC: cluster labels ... 44
5.17. Lingo vs. STC: computational efficiency ... 44
5.18. Lingo vs. STC and TRC: aggregated computational efficiency 45

vi

List of Tables
3.1. Java vs. native matrix routines (NMF-ED) .. 24
5.1. Example data set: topic separation .. 33
5.2. Example data set: outlier detection .. 33
5.3. Experimental setup .. 34
5.4. Dimensionality reductions: detected outliers ... 37
5.5. Quality level settings: detected outliers ... 39
5.6. Factorisation seeding strategies: detected outliers ... 41
5.7. Lingo vs. STC and TRC: detected outliers .. 43

vii

viii

Introduction1
With the development of the Internet the well-known classic Information Retrieval Problem:
given a set of documents and a query, determine the subset of documents relevant to the query, gained
its modern counterpart in the form of the Web Search Problem described by [Selberg, 99]:
find the set of documents on the Web relevant to a given user query. A broad range of so-called
web search engines has emerged to deal with the latter task, Google1 and AllTheWeb2 being
two examples of general-purpose services of this type. Available are also search engines that
help the users to locate very specific resources, such as CiteSeer3, which finds scientific papers
and Froogle4, which is a web shopping search engine. Practical and indispensable as all these
services are, their functioning can still be improved.

Motivation1.1
Low precision

searches
The vast majority of publicly available search engines adopt a so-called query-list paradigm,
whereby in response to a user's query the search engine returns a linear ranking of documents
matching that query. The higher on the list, the more relevant to the query the document is
supposed to be. While this approach works efficiently for well-defined narrow queries, when
the query is too general, the users may have to sift through a large number of irrelevant
documents in order to identify the ones they were interested in. This kind of situation is
commonly referred to as a low precision search [Zamir, 99].

As shown in [Jansen et al., 00], more than 60% of web queries consist of one or two words,
which inevitably leads to a large number of low precision searches. Several methods of
dealing with the results of such searches have been proposed. One method is pruning of the
result list, ranging from simple duplicate removal to advanced Artificial Intelligence al-
gorithms. The most common approach, however, is relevance feedback, whereby the search
engine assists the user in finding additional key words that would make the query more
precise and reduce the number of returned documents. An alternative and increasingly
popular method is also search results clustering.

Search results
clustering

Search results clustering is a process of organising document references returned by a search
engine into a number of meaningful thematic categories. In this setting, in response to a query
"Sheffield", for example, the user would be presented with search results divided into such
topical groups as "University of Sheffield", "Sheffield United", "Botanical gardens", "BBC
Radio Sheffield" etc. Users who look for information on a particular subject will be able to
identify the documents of interest much quicker, while those who need a general overview
of all related topics will get a concise summary of each of them.

Some important characteristics of the task of search results clustering must be emphasised
here. First of all, in contrast to the classical text clustering, search results clustering is based
on short document excerpts returned by the search engine called snippets [Pedersen et al.,
91] rather than the full-text source. Therefore, the algorithms must be prepared to deal with

1 http://www.google.com
2 http://www.alltheweb.com
3 http://citeseer.nj.nec.com
4 http://froogle.google.com

1Chapter 1. Introduction

http://www.google.com
http://www.alltheweb.com
http://citeseer.nj.nec.com
http://froogle.google.com

limited length and often low quality of input data. Secondly, as the clustering algorithm is
intended to be a part of an on-line search engine, the thematic groups must be created ad hoc
and fully automatically. Finally, as the main objective of search results clustering is to help
the users to identify the documents of interest more quickly, the algorithm must be able to
label the clusters in a meaningful, concise and unambiguous way.

The idea of web search results clustering was first introduced in the Scatter/Gather system
[Hearst and Pedersen, 96], which was based on a variant of the classic K-Means algorithm.
Scatter/Gather was followed by the Suffix Tree Clustering (STC) [Zamir, 99], in which snippets
sharing the same sequence of words were grouped together. Finally, the Semantic Hierarch-
ical On-line Clustering (SHOC) algorithm [Zhang, 02] uses the Singular Value Decomposition
to identify clusters of documents. With their respective advantages such as speed and
scalability, all these algorithms share one important shortcoming: none of them explicitly
addresses the problem of cluster description, which often results in the poor quality of cluster
labels they generate.

Lingo In our previous work [Osinski and Weiss, 04] we propose a search results clustering algorithm
called Lingo in which special emphasis is placed on the quality of group labels. The main
idea behind the algorithm is to reverse the usual order of the clustering process: Lingo first
identifies potential cluster labels using a dimensionality reduction technique called Singular
Value Decomposition (SVD), and only then assigns documents to these labels to form proper
thematic groups. For this reason we will be also referring to this algorithm as to the descrip-
tion-comes-first approach. One conclusion of our work was that although SVD performs
fairly successfully in the label discovery phase, alternative dimensionality reduction techniques
may prove even more efficient.

There are several reasons for which dimensionality reduction techniques can work well in
search results clustering tasks. First of all, they are viewed as a way of extracting conceptual
components out of multidimensional data. As shown in [Lee and Seung, 99] the Non-negative
Matrix Factorisation (NMF) applied to human face images yields components that clearly
correspond to such parts of face as eyes, mouth or nose. We believe that in search results
clustering these components should reveal different topics present in the input snippets.
Secondly, some dimensionality reduction techniques order the discovered components ac-
cording to their significance. This fact can be potentially exploited in the cluster ranking
formula. Finally, as the majority of dimensionality reduction methods can be implemented
using iterative improvement algorithms, the quality vs. time efficiency trade-off can be easily
balanced in either direction.

Project goal and scope1.2
The aim of this project is to compare how different dimensionality reduction techniques will
perform as parts of the description-comes-first search results clustering algorithm. In partic-
ular, three techniques will be evaluated: Singular Value Decomposition (SVD), Non-negative
Matrix Factorization (NMF) and Local Non-negative Matrix Factorisation (LNMF). Addition-
ally, a dimensionality reduction algorithm based on the K-Means clustering method, often
referred to as Concept Decomposition [Dhillon and Modha, 01], will be used as the baseline
for comparisons. A separate version of Lingo should therefore be designed and implemented
for each of these techniques.

Evaluation of the above variants of Lingo will be carried out using the merge-then-cluster
approach, in which documents related to various topics are mixed together and the algorithm
is expected to reconstruct the original groups. In this project the Open Directory Project5

(ODP) web catalogue will serve as a source of pre-clustered document snippets.

5 http://dmoz.org

2Chapter 1. Introduction

http://dmoz.org

Thesis structure1.3
The structure of this thesis is the following. Chapter 2 deals with background information
related to recent approaches to search results clustering and the dimensionality reduction
techniques investigated in this project. It also provides a more detailed description of Lingo,
along with an illustrative example.

Chapter 3 gives details about the software components developed during the course of this
project and the framework within which they operate. Selected implementation issues are
also discussed.

In Chapter 4 we describe the problem of evaluation of search results clustering algorithms,
and explain in detail the assessment methodology we have decided to use in this project.

Chapter 5 contains results and analyses of the experiments we have carried out. Comparisons
involve several variants of Lingo based on different dimensionality reduction methods, but
also Suffix Tree Clustering and Tollerance Rough Set Clustering which do not employ dimen-
sionality reduction at all.

Chapter 6 concludes this thesis and gives directions for future work.

Typographic conventions1.4
A number of typographic conventions are used throughout this thesis to make the reading
of the text easier. Words or phrases in italics are particularly important for proper understand-
ing of the surrounding context and should be paid special attention to. Italics are also used
to place emphasis on a word. First occurrences of terms or definitions will be denoted by
bold face.

Margin notes
and references

Margin notes are used to mark important concepts being discussed in the paragraphs next
to them. They are also to help the Reader scan the text. Reference numbers of all figures in
the text are composed of the number of the chapter they appear in and the consecutive
number of the figure within the chapter. Thus, the fifth figure in the fourth chapter would
be referenced as Figure 4.5. Square brackets denote citations and references to other articles,
books and Internet resources listed at the back of this thesis.

3Chapter 1. Introduction

Background2
This section provides background information related to our project. We start with explaining
the principles of search results clustering, its benefits and the general requirements a successful
method solving this problem is expected to meet. Then, we introduce the general structure
of a search results clustering algorithm emphasising the text processing techniques employed
there. We also describe and analyse a number of search results clustering methods proposed
so far, giving special attention to the description-comes-first approach. Finally, we present
an overview of the dimensionality reduction techniques investigated in this project.

Search results clustering2.1
Clustering is a process of forming groups (clusters) of similar objects from a given set of inputs.
Good clusters have this characteristic that objects belonging to the same cluster are "similar"
to each other, while objects from two different clusters are "dissimilar". The idea of clustering
originates from statistics where it was applied to numerical data. However, computer science
and data mining in particular, have extended this notion to other types of data such as text
or multimedia.

Search results clustering is an attempt to apply the idea of clustering to document references
(snippets) returned by a search engine in response to a query. Thus, it can be perceived as a
way of organising the snippets into a set of meaningful thematic groups. An example clustered
view of Google's response to the query "data mining" is shown in Figure 2.1. There are several
ways in which end users can benefit from such a clustered view:

a. Fast access to relevant documents — Having documents divided into clearly
described categories, users who look for documents on a particular subject can
navigate directly to the groups whose labels indicate relevant content. Similarly,
most irrelevant documents can be skipped easily, again relying only on cluster
description.

b. Broader view of the search results — Some users issue general queries to learn
about the whole spectrum of available sub-topics. These users will no longer be
made to manually scan hundreds of references, and instead, they will be
presented with a concise summary of all subjects dealt with in the results.

c. Relevance feedback functionality — With the ability to divide the results into
sub-categories, search results clustering can also provide the functionality of
relevance feedback, enabling the users to refine the initial query based on the
labels of clusters generated for that query.

It is important to emphasise here that search results clustering is performed after the documents
matching the query have been identified by the search engine. Thus, this type of clustering
can be regarded as a form of post-processing and presentation of search results.

4Chapter 2. Background

Figure 2.1
Clustered view of

an example web
query

Search results clustering involves a fairly new class of algorithms called post-retrieval docu-
ment clustering algorithms. In [Zamir and Etzioni, 98] a list of requirements is given that
such algorithms must meet:

a.Post-retrieval
document
clustering
algorithm

requirements
[Zamir and
Etzioni, 98]

Relevance — The algorithm ought to produce clusters that group documents
relevant to the user's query separately from irrelevant ones.

b. Browsable Summaries — The user needs to determine at a glance whether a
cluster's contents is of interest. We do not want to replace sifting through ranked
lists with sifting through clusters. Therefore the algorithm has to provide concise
and accurate descriptions of the clusters.

c. Overlapping clusters — Since documents have multiple topics, it is important
to avoid confining each document to only one cluster [Hearst, 98].

d. Snippet tolerance — The algorithm ought to produce high quality clusters even
when it only has access to the snippets returned by the search engines, as most
users are unwilling to wait while the system downloads the original documents
off the Web.

e. Speed — As the algorithm will be used as part of an on-line system, it is crucial
that it does not introduce noticeable delay to the query processing. Clustering
aims at allowing the user to browse through at least an order of magnitude more
documents compared to a ranked list.

f. Incremental processing — To save time, the algorithm should start to process
each snippet as soon as it is received over the Web.

Stages of search results clustering2.1.1
Figure 2.2 shows the main stages of the search results clustering process. Below we describe
each stage in more detail emphasising particular text processing techniques involved in them.

5Chapter 2. Background

Figure 2.2
Stages of a search
results clustering

process

Snippet acquisition
The aim of this phase is to collect document snippets that have been returned by a search
engine in response to the user's query. For web search results clustering the snippets can be
obtained directly from a web search engine using an appropriate API, such as Google API6,
or by parsing the engine's HTML output and extracting all necessary data.

Preprocessing
The aim of the preprocessing phase is to transform the raw text of snippets to the form suitable
for the clustering algorithm. This phase usually involves the following text processing tech-
niques:

a. Filtering — During filtering sequences of characters that could introduce noise
and thus affect the quality of clustering are removed from the input snippets.
Typically special characters, e.g. '%', '$' or '#', is the content to be filtered out.

b. Tokenization — Tokenization is a process of identifying word and sentence
boundaries in a text. The simplest tokenizer could use white space characters7

as word delimiters and selected punctuation marks such as '.', '?' and '!' as sen-
tence delimiters. In practical applications, however, this simplistic approach is
usually not robust enough to handle "difficult" content such as document snip-
pets. More elaborate tokenization techniques take into account such additional
features of text as hyphens or HTML markup. In [Riboni, 02] evidence is provided
that special treatment of e.g. document titles, indicated by the <title> HTML
tag, can increase the accuracy of clustering.

c. Stemming — During stemming all words in a text are replaced with their re-
spective stems. A stem is a portion of a word that is left after removing its affixes
(i.e. suffixes and prefixes). Thus, with the use of a stemmer (short for a stemming
algorithm) different grammatical forms of a word can be reduced to one base
form. For example, the words: connected, connecting, interconnection should be
transformed to the word connect.

For the English language a variety of stemmers are available free of charge,
Porter stemmer [Porter, 80] being the most commonly used algorithm. In case
of other languages the choice of algorithms is more limited. Snowball8 is a BSD-
licensed stemming library that apart from English supports French, Spanish,
Portuguese, Italian, German, Dutch, Swedish, Norwegian, Danish, Russian and
Finnish.

d. Stop word removal — Stop word removal is a process of identifying and remov-
ing stop words from a text. Stop words, also referred to as function words, are
words that on their own have no identifiable meaning and hence are of little use
in some text processing tasks. For English, stop words are among others auxiliary

6 http://www.google.com/apis
7 Characters that represent space in the text, such as: line feed, carriage return, tabulation marks and regular space
characters.
8 http://snowball.tartarus.org

6Chapter 2. Background

http://www.google.com/apis
http://snowball.tartarus.org

verbs, such as have, be, pronouns, such as he, it or prepositions, such as to and
for.

In practical implementations stop word removal is based on a so-called stop-
list, which is simply a list of stop words for a given language. While English
stop-lists can be easily obtained from the Internet, stop words for other languages
can be extracted from appropriate corpora.

e. Language recognition — Stop word removal, stemming and spell checking
make an implicit assumption that the language of the processed text is known.
While it may be the case with relatively small collections of documents, in gen-
eral not only does the language remain unknown, but also it is rarely stated ex-
plicitly in the text. Thus, language recognition is an important part of a search
results clustering system.

In [Grefenstette, 95] two statistical methods of automatic language identification
are compared. The trigram technique works on the premise that, for example,
a word ending in -ck is more likely to be an English word than a French word,
and similarly a word ending in -ez is more likely to be French. The intuition be-
hind the small word technique is that stop words appear in almost all texts and
hence are good clues for guessing the language.

Feature selection
The aim of the feature selection phase is to identify words in a text that are non-informative
according to corpus statistics and can be omitted during clustering. The reasons for using
feature selection in search results clustering are twofold. First of all, in most cases limiting
the number of features considerably increases the time efficiency of the clustering algorithm.
Secondly, feature selection can help to remove noise from a text, which may result in higher
accuracy of clustering.

A large number of feature selection methods have been proposed in the literature, ranging
from simple frequency thresholding to complex Information Theoretic algorithms. However,
when reviewing the related work, close attention must be paid to the actual text processing
problem for which particular selection strategies have been developed. A great majority of
them are suitable for the text categorisation problem, and hence make an assumption that
the class information and training data are available. Clearly, these assumptions do not hold
for the document clustering problem, which is an unsupervised learning technique. This
makes the choice of feature selection techniques for our project fairly limited.

Clustering-specific
feature selection

In [Liu et al., 03] a number of feature selection strategies that are suitable for the clustering
problem are reviewed and compared:

a. Document Frequency (DF) — Document Frequency feature selection method
chooses only these words that appear in more than a given number of documents.
This simple yet efficient selection strategy in a natural way scales to large num-
bers of documents.

b. Term Strength (TS) — Term Strength is computed for pairs of documents for
which the similarity measure exceeds a predefined threshold. For a particular
term, Term Strength is the conditional probability that this term occurs in one
document, given that it occurs in the other document. Because the probabilities
may need to be calculated for all possible pairs of documents, TS computational
complexity is quadratic with respect to the number of documents.

c. Term Contribution (TC) — One disadvantage of DF is that it favours terms that
have a high occurrence frequency, not considering the term's distribution among
different classes. The Term Contribution strategy alleviates this problem by ag-
gregating the term's contribution to document similarity.

7Chapter 2. Background

According to the study carried out in [Liu et al., 03], for term reduction exceeding 90% TS
and TC slightly outperform DF, at the cost, however, of higher computational demands.

Clustering
The last component in the process chain is the actual clustering algorithm. Several classes of
algorithms have been used for the search results clustering task, ranging from adaptations
of the classic numerical approaches, such as K-Means in Scatter/Gather [Hearst and Pedersen,
96], to purpose-built methods such as STC [Zamir, 99] and SHOC [Zhang and Dong, 04]. The
majority of these algorithms employ the so-called Vector Space Model (VSM) of text. In the
following sections we provide basic information on VSM as well as describe and analyse
several search results clustering algorithms in more detail.

Vector Space Model2.1.2
In the Vector Space Model (VSM) [Salton, 89], every document in the collection is represented
by a multidimensional vector. Each component of such a vector reflects a particular key word
or term connected with the given document. The value of each component depends on the
degree of relationship between its associated term and the respective document. Many
schemes for measuring this relationship, very often referred to as term weighting, have been
proposed. In the following subsection we review the three most popular.

Term weighting
Term weighting is a process of calculating the degree of relationship (or association) between
a term and a document. As the VSM requires that the relationship be described by a single
numerical value, let aij represent the degree of relationship between term i and document j.

Binary
weighting

In the simplest case the association is binary: aij=1 when key word i occurs in document j,
aij=0 otherwise. The binary weighting informs about the fact that a term is somehow related
to a document but carries no information on the strength of the relationship.

Term frequency
weighting

A more advanced term weighting scheme is the term frequency. In this scheme aij=tfij where
tfij denotes how many times term i occurs in document j. Clearly, the term frequency is more
informative than the simple binary weighting. Nevertheless, its drawback is that it focuses
on local word occurrences only, not considering the global distribution of terms between
documents.

Tf-idf weighting The tf-idf (term frequency inverse document frequency) scheme aims at balancing the local
and the global term occurrences in the documents. In this scheme aij=tfij· log(N/dfi) where
tfij is the term frequency, dfi denotes the number of documents in which term i appears, and
N represents the total number of documents in the collection. The log(N/dfi), which is very
often referred to as the idf (inverse document frequency) factor, accounts for the global
weighting of term i. Indeed, when a term appears in all documents in the collection, dfi=N
and thus the balanced term weight is 0, indicating that the term is useless as a document
discriminator.

Query matching
The

term-document
matrix

In the Vector Space Model, a collection of d documents described by t terms can be represented
as a t×d matrix A, hereafter referred to as the term-document matrix. Each element aij of the
term-document matrix represents the degree of relationship between term i and document
j by means of one of the presented term weighting schemes. The column vectors of A, called
document vectors, model the documents present in the collection, while the row vectors of
A, called term vectors, represent the terms used in the process of indexing the collection.
Thus, the document vectors span the document collection, which means they contain the
whole semantic content of the collection.

In the Vector Space Model, a user query is represented by a vector in the column space of
the term-document matrix. This means that the query can be treated as a pseudo-document
that is built solely of the query terms. Therefore, in the process of query matching, documents
must be selected whose vectors are geometrically closest to the query vector. A common

8Chapter 2. Background

measure of similarity between two vectors is the cosine of the angle between them. In a t×d
term-document matrix A, the cosine between document vector aj and the query vector q can
be computed according to the following formula:

Figure 2.3
The cosine

distance formula

where aj is the jth document vector, t is the number of terms and ||a|| denotes the Euclidean
length of vector a. Values of the cosine similarity range from 0.0 in case of no similarity
between q and a to 1.0 in case of strict equality between them. Documents whose similarity
to the query exceeds a predefined threshold (e.g. 0.8) are returned as the search result.

Numerical clustering algorithms2.1.3
Historically, the earliest search results clustering algorithms were adaptations of the well-
known methods such as K-Means or Agglomerative Hierarchical Clustering (AHC) to the
new task. These algorithms require that some similarity measure be defined between objects
being grouped. In [Hearst and Pedersen, 96] the standard Vector Space Model and the cosine
distance are used for this purpose.

K-Means K-Means is an iterative approach whereby clusters are built around k central points9 called
centroids. The process starts with k random centroids, and based on the similarity measure,
each object is assigned to its nearest centroid. Then, iteratively, based on the content of each
group, the respective centroids are updated and objects re-assigned to their now closest
centroids. The algorithm stops when there have been no object assignment changes in the
last iteration or when a certain number of iterations has been reached.

Agglomerative
Hierarchical

Clustering

The idea of the Agglomerative Hierarchical Clustering (AHC) is to merge two objects, an
object and a cluster or two clusters that are most similar into a new group. In this way, the
relationships between all objects will be captured in a tree-like structure called dendrogram.
Based on the dendrogram, a hierarchical groupings of objects can be derived. In [Wroblewski,
03] several strategies of pruning the dendrogram are proposed that increase the effectiveness
of AHC in the search results clustering task.

Strong and
weak points of

numerical
algorithms

Among the advantages of the classic clustering algorithms is that they are thoroughly re-
searched and fairly easy to implement. The main drawback of these algorithms, however, is
that they lack mechanisms of explaining the meaning of particular clusters to the end users.
Moreover, due to the fact that the property making particular snippets belong to the same
cluster is synthetic by its very nature, these algorithms will often create groups that have
excellent mathematical parameters but are at the same time completely meaningless from a
human user's point of view.

Suffix Tree Clustering2.1.4
The Suffix Tree Clustering (STC) is a purpose-built search results clustering algorithm, which
groups the input texts according to the identical phrases10 these texts share [Zamir, 99]. The
rationale behind such approach is that phrases, compared to sets of single keywords, have
greater descriptive power. The main reason for that is that phrases retain the relationships
of proximity and order between words.

The Suffix Tree Clustering algorithm works in two main phases: base cluster discovery phase
and base cluster merging phase. In the first phase a generalised suffix tree of all texts' sen-
tences is built using words as basic elements. After all sentences have been processed, nodes
of the tree contain information about the documents containing particular phrases. Using

9 k is a parameter of the algorithm and must be determined before clustering starts
10 For the purposes of this project, we will refer to any sequence of words, no matter its grammatical correctness or
function, as a phrase

9Chapter 2. Background

that information documents that share the same phrase are grouped into base clusters of
which only those are retained whose score exceeds a predefined threshold. In the second
phase of the algorithm, a graph representing relationships between the discovered base
clusters is built using information on their similarity. Base clusters belonging to coherent
subgraphs of that graph are merged into final clusters.

Strong and
weak points of

STC

A clear advantage of Suffix Tree Clustering is that it uses phrases to provide concise and
meaningful descriptions of groups. However, as noted in [Stefanowski and Weiss, 03], STC's
thresholds play a significant role in the process of cluster formation, and they turn out par-
ticularly difficult to tune. Also, STC's phrase pruning heuristic tends to remove longer high-
quality phrases, leaving only the shorter and less informative ones. Finally, as pointed out
in [Zhang and Dong, 04], if a document does not include any of the extracted phrases or just
some parts of them, it will not be included in the results although it may still be relevant.

Semantic Hierarchical Online Clustering2.1.5
The Semantic Online Hierarchical Clustering (SHOC) [Zhang and Dong, 04] is a web search
results clustering algorithm that was originally designed to process queries in Chinese. Al-
though it is based on a variation of the Vector Space Model called Latent Semantic Indexing
(LSI) and uses phrases in the process of clustering, it is much different from the its prede-
cessors.

To overcome the STC's low quality phrases problem, in SHOC Zhang and Dong introduce
two novel concepts: complete phrases and a continuous cluster definition. Informally, the
complete phrases technique tries to maximise the length of the discovered sequences of
words, and thus avoids extracting short ones that may turn out difficult to understand11. In
[Zhang and Dong, 04] an algorithm is proposed that uses a data structure called suffix array
to identify complete phrases and their frequencies in O(n) time, n being the total length of
all processed documents. The continuous cluster definition allows documents to belong to
different clusters with different intensity. In a natural way, such a definition addresses the
requirement of overlapping clusters. Additionally, it provides a method of ordering documents
within clusters.

The SHOC algorithm works in three main phases: complete phrase discovery phase, base
cluster discovery phase and cluster merging phase. In the first phase, suffix arrays are used
to discover complete phrases and their frequencies in the input collection. In the second
phase, using Singular Value Decomposition a set of orthogonal base clusters is obtained. Fi-
nally, in the last phase, base clusters are merged into a hierarchical structure.

Weak points of
SHOC

One of the drawbacks of SHOC is that Zhang and Dong provide only vague comments on
the values of thresholds of their algorithm and the method which is used to label the resulting
clusters. Additionally, a test implementation of SHOC, which we prepared during the course
of our previous research, shows that in many cases the Singular Value Decomposition pro-
duces unintuitive, sometimes even close to "random", continuous clusters. The reason for
this lies probably the fact that the SVD is performed on document snippets rather than the
full texts as it was in its original applications.

SHOC was a source of inspiration for our recent research [Osinski and Weiss, 04] where we
showed that Singular Value Decomposition can indeed provide a base for a successful search
results clustering algorithm. The novelty of our approach is that we use the SVD to discover
a number of short and concise cluster labels, to which we then assign content in order to create
the actual groups. We call this method a description-comes-first approach and devote to it
the next section.

11 compare: "Senator Hillary" and "Senator Hillary Rodham Clinton"

10Chapter 2. Background

The description-comes-first approach2.2
This section describes the search results clustering method on which we will be concentrating
during the course of this project. The main idea behind the description-comes-first approach
[Osinski and Weiss, 04] is that the process of clustering is reversed: we first find meaningful
cluster labels and only then assign snippets to them to create proper groups.

Cluster label
quality

The main goal of Lingo is to ensure good quality of cluster labels. It is the labels that provide
the users with an overview of the topics covered in the results and help them to identify the
specific group of documents they were looking for. Therefore, the quality of the search results
clustering process as a whole crucially depends on the readability of group descriptions. In
our opinion, to help the user to efficiently handle search results, group labels should have
the following five characteristics:

a. Accurate — A label must accurately describe the contents of its cluster. This
property is extremely important as some users will choose to examine more
closely only those groups whose labels suggest relevant content. In this way,
groups that contain relevant documents but lack accurate description are likely
to be disregarded.

b. Concise — Search results clustering aims to speed up the process of finding
relevant search results. Therefore, group labels must be concise and grammatic-
ally well-formed, so that the users can identify groups they are interested in at
first glance.

c. Unambiguous — In order to be useful for the users, cluster labels must be nar-
rowly focused. In some contexts, groups labelled, for example, "Home Page" or
"Latest News" might turn out too general.

d. Diverse — Ideally, the set of group labels as a whole would cover all subjects
present in the input collection of snippets. This means that not only major topics
should have their respective labels, but also the ones that by some users may be
considered as outliers.

e. Distinct — Among the whole set, cluster labels must differ significantly from
each other. This will ensure a high level of dissimilarity between respective
clusters.

Differences
between Lingo

and other
algorithms

The main difference between Lingo and other search results clustering algorithms is in the
way they try to explain the property that makes snippets in one cluster similar to each other.
In previous approaches documents were assigned to groups according to some abstract
mathematical properties12, which would sometimes lead these algorithms down a blind alley
of knowing that certain documents should be clustered together and at the same time being
unable to explain the relationship between them in a human-readable fashion. In the descrip-
tion-comes-first approach this problem is avoided by first finding readable descriptions and
only then trying to create appropriate clusters.

Lingo performs clustering in two major phases: cluster label induction phase and cluster
content assignment phase. In the following sections we describe how dimensionality reduction
techniques can be used in the former and the Vector Space Model in the latter phase. We also
formulate the description-comes-first approach in pseudo-code and provide an illustrative
example.

12 such as minimised cosine distance from the cluster's centroid

11Chapter 2. Background

Cluster label induction2.2.1
During the cluster label induction phase, the term-document matrix A of all input snippets,
and the snippets' frequent phrases13 are used to discover labels for not yet existing clusters.
The key component in this phase is a dimensionality reduction algorithm, which is used to
produce a low-dimensional basis for the column space of A. Each vector of that basis gives
rise to a single cluster label.

Why
dimensionality
reduction helps

to find labels

In linear algebra, basis vectors of a linear space can be perceived as building blocks that create
vectors over that space. For example, in [Lee and Seung, 99] a dimensionality reduction
technique called Non-negative Matrix Factorisation was shown to be able to produce a part-
based representation of human face images. Following this intuition, we believe that in the
search results clustering setting each of the building blocks should carry some broader idea
referred to in the input collection of snippets. Linear bases produced by particular dimension-
ality reduction methods can have specific properties, discussed in Section 2.3, that can addi-
tionally increase the readability or diversity of cluster labels

For obvious reasons, however, base vectors in their original numerical form are useless as
human-readable cluster descriptors. To deal with this problem let us notice that basis vectors
are vectors in the original term space of the A matrix. Moreover, frequent phrases or even
single words appearing in the input snippets can also be expressed exactly in the same way.
Thus, the well-known similarity measures, such as the cosine similarity, can be used to de-
termine which frequent phrase or single word best approximates the verbal meaning of a
base vector. The value of the similarity measure can then be taken as the score of the cluster
label, which in turn can be used during the process of score calculation for the group as a
whole.

Cluster content assignment2.2.2
In the cluster content assignment phase, snippets are allocated to previously discovered labels
in order to create the actual groups. The simplest method here will adopt the Vector Space
Model and use cluster labels as queries against the input snippets. In other words, each group
will be assigned snippets that the Vector Space Model returned in response to a "query" being
its label. In a natural way, this assignment scheme has the ability to create overlapping
clusters. Additionally, within clusters snippets can be ordered according to their similarity
score obtained from the VSM.

One drawback of the above approach is that the Vector Space Model disregards information
about word order and proximity. On the other hand, replacing VSM with exact phrase
matching would result in the content assignment being too restrictive and creating very small
clusters. An appropriate solution might be using proximity search algorithms, such as these
presented in [Sadakane and Imai, 01].

The final stage of the cluster content assignment is calculating cluster score, which would
usually take into account its size and the score of its label. Optionally, cluster merging step
can also be performed.

Pseudo-code and illustrative example2.2.3
To summarise our discussion of the description-comes-first approach, in Figure 2.4 we present
our algorithm in a form of pseudo-code. Please note that the initial preprocessing phase has
also been included.

Figure 2.4
Lingo pseudo-code

/** Phase 1: Preprocessing */
for each document
{
 do text filtering;

13 sequences of words that appear in the input snippets more than once

12Chapter 2. Background

 identify the document's language;
 apply stemming;
 mark stop words;
}

/** Phase 2: Cluster label induction */
use suffix arrays to discover frequent terms and phrases;
build a term-document matrix A for all snippets;
find a low-dimensional base for the column space of A;
for each base vector
{
 find best-matching frequent phrase;
 add the phrase to the set of cluster labels;
}
prune similar cluster labels;

/** Phase 3: Cluster content assignment */
for each cluster label
{
 use the label to query the input snippets;
 put returned snippets to a cluster described by the label;
}

/** Phase 4: Final cluster formation */
calculate cluster scores;

The following example of the description-comes-first approach is based on an implementation
[Osinski and Weiss, 04] in which Singular Value Decomposition is used as a dimensionality
reduction technique and the cluster content assignment is based on the Vector Space Model.

In Figure 2.5 a collection of d=7 document titles is presented, in which t=5 terms and p=2
phrases appear more than once. In the term-document matrix A each snippet is represented
as a column vector and row vectors denote documents' words. Thus, in our example the first
row represents the word "Information", second — "Singular", and so on. Similarly, column
one represents "Large Scale Singular Value Computations", column two — "Software for the
Sparse Singular Value Decomposition" etc.

Figure 2.5
Lingo example:

input data

The SVD decomposition of A gives five base vectors, which are column vectors of the U
matrix in figure Figure 2.6. It can be easily observed that column one corresponds to the
topic of "Singular Value Computations" and column two to "Information Retrieval". Let us
further assume that k=2 has been chosen as the number of desired clusters. Thus, in further
processing Uk — a truncated version of U denoted by a vertical line in the figure — will be
used.

13Chapter 2. Background

Figure 2.6
Lingo example:

basis vectors

Bearing in mind our earlier observation that base vectors, frequent phrases and single words
can all be expressed as vectors in the original term space of A, let us create the t×(p+t) matrix
P, whose columns will represent frequent phrases and frequent single words appearing in
the input snippets. In our example matrix P, shown in Figure 2.7, column one corresponds
to the phrase "Singular Value", column two — to "Information Retrieval", column three —
to the word "Information" etc. As with the term-document matrix A, P has been created using
the tf-idf weighting and has Euclidean length-normalised columns.

Figure 2.7
Lingo example:

phrase and single
word matrix

Assuming that column vectors of both U and P are length-normalized, which is the case in
our example, the problem of calculating the cosine distance between every base-vec-
tor—phrase-or-term pair comes down to a simple matrix multiplication M=UkTP. Rows of
the M matrix represent base vectors, its columns—phrases and single words, and individual
values are the cosine similarities in question. Thus, in a single row, the maximum component
will indicate the phrase or single word that best approximates the corresponding base vector.
In our example, see Figure 2.8, the first base vector is related to "Singular Value", while the
other one to "Information Retrieval", and these phrases will be taken as candidate cluster label
E1 and E2, respectively.

Figure 2.8
Lingo example:

phrase matching
matrix

To allocate snippets to the two candidate labels, let us define matrix Q in which each label
is represented as a column vector exactly in the same way as in the P matrix. Further, let
C=QTA, where A is the original term-document matrix. In this way, element cij of the C
matrix indicates the strength of membership of the jth document in the ith group.

A snippet will be added to a cluster if the corresponding element of the C matrix exceeds the
Assignment Threshold. From our observations, values of the threshold falling between 0.15
and 0.30 yield clusters of best quality. Finally, as it is possible that some snippets may match
neither of the cluster labels, a special group labelled e.g. "Other topics" can be created in
which such snippets should be placed.

The Q and C matrices for our example collection of snippets as well as the final clusters are
shown in Figure 2.9. Cluster scores have been calculated as a product of cluster label score
and the number of documents contained in the cluster, and then normalised.

14Chapter 2. Background

Figure 2.9
Lingo example:
cluster content

assignment

Dimensionality reduction techniques2.3
In this section we review the three matrix factorisation techniques, Singular Value Decom-
position (SVD), Non-negative Matrix Factorisation (NMF) and Local Non-negative Matrix
Factorisation (LNMF), which can be used as dimensionality reduction methods in the descrip-
tion-comes-first clustering and therefore are the main focus of this project. Matrix factorisations
have proved efficient in various computing tasks, such as information retrieval or image
processing, for two main reasons. First of all, by reducing the number of dimensions in which
image or text data is represented, frequently by two or three orders of magnitude, substantial
savings can be achieved in disk storage cost. More importantly, many algorithms cannot deal
with high-dimensional "raw" data either due to an intolerable performance loss or simply
due to prohibitive computational costs.

Applications of
matrix

factorisation

Different dimensionality reduction techniques have been used in various areas of computing.
In [Turk and Pentland, 91] Principal Component Analysis (PCA) was used as a base of a face
recognition algorithm. Further work in this area resulted in methods using NMF [Lee and
Seung, 99] and—very recently—LNMF [Feng et al., 02]. Singular Value Decomposition is the
key mathematical concept underlying the Latent Semantic Indexing [Berry et al., 95], which
proved fairly efficient in document retrieval tasks. Text clustering algorithms using SVD
[Zhang and Dong, 04] or NMF [Xu et al, 03] have also been proposed.

To introduce the general concept of dimensionality reduction and its relation to matrix fac-
torisation, let us denote a set of d t-dimensional14 data vectors15 as columns of a t×d matrix
A. It is usually the case that the rank rA of such a matrix, which is equal to the size of the basis
of the linear space it spans, is equal or near to min(t, d). The aim of a dimensionality reduction
technique is to find A', which is a good approximation of A and has rank k, where k is signi-
ficantly smaller than rA. For this reason, the A' matrix is often referred to as the k-rank ap-
proximation of A.

The task of factorisation, or decomposition, of matrix A is to break it into a product of two16

matrices U and V so that A≈UVT=A', the sizes of the U and V matrices being t×k and d×k,
respectively. Figure 2.10 illustrates this situation for t=5, d=4 and k=2. Intuitively, columns
of the U matrix can be thought of as base vectors of the new low-dimensionality linear space,

14 In the related literature the numbers of rows and columns are usually denoted by m and n, respectively. In this
thesis, however, we have decided to adopt a convention that directly relates to a term-document-matrix having t
rows and d columns.
15 In image processing these vectors can represent e.g. bitmaps, and in text processing, they will correspond to
documents encoded using the Vector Space Model.
16 In case of the Singular Value Decomposition the number is three

15Chapter 2. Background

and rows of V as corresponding coefficients that enable to approximately reconstruct the
original data.

Figure 2.10
Matrix

factorisation
results

An important problem of dimensionality reduction is how to measure the quality of low-
rank approximation. A commonly employed approach is to calculate the Frobenius norm of
the difference between the A and A' matrices:

The lowest possible value of the above quality measure is zero and it indicates that a strict
equality A=UVT has been achieved.

Singular Value Decomposition2.3.1
Mathematical

background
Singular Value Decomposition breaks a t×d matrix A into three matrices U, Σ and V such that
A=UΣVT. In figure Figure 2.11 the relative sizes of the three matrices are shown when t>d.

Figure 2.11
Singular Value
Decomposition

results

U is a t×t orthogonal matrix whose column vectors are called the left singular vectors of A,
V is a d×d orthogonal matrix whose column vectors are termed the right singular vectors of
A, and Σ is a t×d diagonal matrix having the singular values of A ordered decreasingly (σ1 ≥
σ2 ≥ ... ≥ σmin(t,d)) along its diagonal. The rank rA of matrix A is equal to the number of its non-
zero singular values. The first rA columns of U form an orthogonal basis for the column space
of A.

A k-rank approximation of A can be obtained by multiplying the first k columns of the U
matrix by the first k singular values from the Σ matrix and the first k rows of the VT matrix
as shown in Figure 2.11. Noteworthy is the fact that for given k, SVD produces the optimal
k-rank approximation with respect to the Frobenius norm.

Algorithms A wide variety of implementations of SVD are available on the Internet free of charge. Lapack17

provides a broad range of linear algebra algorithms including SVD written in Fortran77.
There also exist implementations of SVD in the Java language, Colt Open Source Libraries
for High Performance Scientific and Technical Computing in Java18 being the best bench-
marked and most up-to-date package. References to other Java libraries are available on the
Java Numerics homepage19.

17 http://www.netlib.org/lapack/
18 http://hoschek.home.cern.ch/hoschek/colt/
19 http://math.nist.gov/javanumerics/

16Chapter 2. Background

http://www.netlib.org/lapack/
http://hoschek.home.cern.ch/hoschek/colt/
http://math.nist.gov/javanumerics/

Applicability to
search results

clustering

During our previous research we prepared an implementation of the description-comes-first
clustering algorithm in which SVD was used as the dimensionality reduction technique. Below
we summarise features of SVD that we found advantageous to our approach.

a. Orthogonal basis — SVD produces an orthogonal basis for the low-dimensional
linear space. Intuitively, orthogonal vectors can be perceived as perpendicular20

or having nothing in common. For this reason the orthogonality of base vectors
should lead to a high level of diversity among the candidate cluster labels.

b. Ordered base vectors — SVD orders the base vectors in the U matrix according
to their significance to the process of reconstruction of the original matrix A.
This information can be used during the evaluation of candidate cluster labels.

c. Seeding not required — In contrast to NMF and LNMF, the SVD algorithm
does not require prior initialisation of the resulting matrices. In this way, with
no random seeding, for the same set of input snippets always the same set of
candidate cluster labels will be generated, which may not be the case with ran-
domly-initialised NMF or LNMF.

d. Support for calculating k — Apart from the base vector matrix U and the coef-
ficient matrix V, in the Σ matrix SVD provides a set of decreasingly ordered
singular values of A. As shown in [Zhang and Dong, 04] these values can be
used to estimate the optimal number of candidate cluster labels.

As pointed out in the introduction, Singular Value Decomposition proved fairly efficient as
a basis for the description-comes-first approach. However, we muse be aware of some other
characteristics of SVD described below that have a negative impact on the quality of candidate
cluster labels.

a. Negative values in base vectors — To achieve the orthogonality and optimality
of the k-rank approximation some components of the SVD-derived base vectors
may have to be negative. This makes such components hard to interpret in terms
of their verbal meaning. Moreover, although in practice the cosine distance
measure seems to work well in the SVD-based cluster label induction phase (see
Section 2.2.1), interpretation of the similarity between phrases and base vectors
would be more straightforward if the latter contained only non-negative values.

b. Not a real part-based decomposition — The fact that the U matrix contains a
number of negative values makes it difficult to think of the base vectors as purely
additive parts that can be combined together to re-create the original data. It is
more natural for a non-negative input matrix A to be represented by a set of
non-negative parts, even if they are not strictly orthogonal.

Non-negative Matrix Factorisation2.3.2
Mathematical

background
The Non-negative Matrix Factorisation (NMF) was introduced in [Lee and Seung, 99] as
means of finding part-based representation of human face images. More formally, given k
as the desired size of the basis, NMF decomposes a t×d non-negative matrix A into two non-
negative matrices U and V such that A≈UVT, the sizes of U and V being t×k and d×k, respect-
ively. As described in the introductory part of this section, the U matrix can be regarded as
a set of k base vectors and V as a coefficient matrix. An important property of NMF is that
by imposing the non-negativity constraints it allows only additive, and not subtractive,
combinations of base vectors.

Algorithms In [Lee and Seung, 99] an approach to computing NMF has been suggested that is similar to
the Expectation Maximisation (EM) algorithms. The basic idea behind this approach is to
randomly initialise the U and V matrices and then iteratively update their content based on

20 orthogonal vectors are indeed perpendicular in a two-dimensional space

17Chapter 2. Background

some objective function. In [Lee and Seung, 01] updating rules for two different objective
functions — Euclidean Distance and Kullback-Leibler Divergence — have been proposed
and proved to monotonically decrease the value of these functions. Below we present the
two functions along with their corresponding updating formulae.

The Euclidean Distance algorithm aims to calculate the NMF by minimising the Euclidean
distance between each column of A and its approximation A=UVT:

Figure 2.12
Euclidean

Distance objective
function

In [Lee and Seung, 01] the following21 two-step updating rules have been proposed and
proved correct:

Figure 2.13
Euclidean
Distance

updating rules

In the above figure the [•]ij notation indicates that the corresponding multiplications and
divisions are performed element by element.

In the Divergence Algorithm the divergence, or entropy, measure is used as the objective
function:

Figure 2.14
Divergence

objective function

The following three-step updating rules have been proved to monotonically decrease the
values of the above criterion:

Figure 2.15
Divergence

updating rules

As empirically established by the authors in [Wild, 03], the Euclidean Distance algorithm
tends to produce slightly better approximations, while the Divergence algorithm converges
faster. They also claim that one update in the Euclidean Distance algorithm involves a smaller
number of floating point operations than a corresponding update in the Divergence algorithm.
The implementation of these two algorithms we have prepared, however, shows that it is
not the case. The performance of the Euclidean Distance crucially depends on the matrix
multiplication strategy employed to compute the denominators of the updating rules22 shown
in Figure 2.13. With the right strategy chosen, the Euclidean Distance algorithm significantly
outperforms the Divergence algorithm.

Applicability to
search results

clustering

Being able to generate a low-dimensional basis for the original term-document matrix of
snippets, NMF can potentially be used as part of the description-comes-first algorithm. Below
we summarise possible advantages of NMF in this setting.

21 We have adjusted the notation of the original formulae to match our conventions
22 More precisely, the VUTU expression in Figure 2.13 can be computed in two ways: (VUT)U or V(UTU). As it can
be easily shown, the former requires 2kdt multiplications, whereas the latter only k2(d+t). In view of k being much
smaller than min(d, t), the latter matrix multiplication order is significantly faster. Exactly the same reasoning applies
to the UVTV expression.

18Chapter 2. Background

a. Non-negative base vectors — The non-negativity constraint the NMF imposes
on the base vectors leads to a truly part-based representation of the input snip-
pets. This enables us to interpret the verbal meaning of such base vectors in an
intuitive way, i.e. the greater value of a component in the vector, the more signi-
ficant the corresponding term is in explaining its meaning. This also makes the
interpretation of the cosine similarity between phrases and base vectors less
ambiguous.

b. Iterative algorithm — Both NMF algorithms we presented have iterative nature,
which enables the practical implementations to balance the quality of the results
and the computation time. This is especially important in on-line search results
clustering systems, which can choose to lower the number of iterations per query
to serve more users during a high-load period.

Before NMF is used as part of a fully-fledged search results clustering system, several issues
must be addressed, which are highlighted below.

a. The choice of k — In contrast to SVD, for Non-negative Matrix Factorisation
the desired size of the low-dimensionality space must be known in advance –
NMF does not provide any explicit clues as to it. Therefore, the clustering al-
gorithm must estimate k based on other criteria e.g. the number of snippets.

b. No ordering among base vectors — Unlike SVD, NMF does not order base
vectors according to their significance. Thus, only the level of similarity between
frequent phrases and these vectors can be used in the label scoring formula.

c. Initialisation — Both NMF algorithms presented above use random initialisation
of the U and V matrices. This will cause a clustering algorithm based on NMF
to produce different set of groups every time it is run, which may be undesirable
in certain applications or for evaluation purposes. In [Wild, 03] alternative
methods of seeding NMF are discussed.

d. Lack of orthogonality — The non-negativity of NMF-derived basis is achieved
at the cost of the base vectors not being orthogonal, which may cause some of
the NMF-induced cluster labels to be more similar to each other than desired.
To alleviate this problem pruning of candidate cluster labels may be needed.

Local Non-negative Matrix Factorisation2.3.3
Mathematical

background
Local Non-negative Matrix Factorisation is a variation of NMF introduced in [Feng et al., 02].
Similarly to NMF it seeks to decompose a t×d non-negative matrix A into two non-negative
matrices U and V such that A≈UVT, where k is the desired size of the low-dimensionality
space and the sizes of U and V are t×k and d×k, respectively. Unlike NMF, this technique
imposes three additional constraints on the U and V matrices, which aim to expose the local
features of the examples defined in the A matrix:

a. Maximum Sparsity in V — The coefficient matrix V should contain as many
zero components as possible. This ensures that the number of base vectors re-
quired to represent the original matrix A is minimised.

b. Maximum Expressiveness of U — Retain only those components of B that carry
most information about the original matrix A.

c. Maximum Orthogonality of U — Base vectors should be as orthogonal to each
other as possible. This will reduce the redundancy in the basis as a whole.

Algorithms Similarly to NMF, the algorithm for calculating LNMF also uses the iterative updating tech-
nique, the difference between them being only in the forms of objective function and updating

19Chapter 2. Background

formulae. In [Feng et al., 02] the following divergence function has been proposed that incor-
porates the LNMF's three additional constraints:

Figure 2.16
LNMF objective

function

In the above formula α, β > 0 are some constants, which will be eliminated during derivation
of the updating rules, and W=UTU and H=VTV. The following updating rules have been
proposed that lead to a monotonic decrease of the above objective function:

Figure 2.17
LNMF updating

rules

As shown in [Wild, 03], compared to NMF the basis computed by LNMF is much more sparse
(i.e. contains more zero elements) and much more orthogonal. This, however, is achieved at
the cost of higher approximation error and much slower convergence.

Applicability to
search results

clustering

With the additional constraints it imposes on the base vectors, LNMF can have the following
advantages as part of the description-comes-first clustering algorithm:

a. Non-negative base vectors and iterative algorithm — Being a variation of NMF,
Local Non-negative Matrix Factorisation inherits all its advantages, including
the non-negativity of base vectors and the iterative nature of the NMF algorithm.

b. Highlighting local features — The fact that LNMF promotes sparseness of the
base vectors should result in less ambiguous matching between these vectors
and frequent phrases.

c. Better orthogonality of base vectors — Orthogonality among base vectors is
desirable as it guarantees high diversity of candidate cluster labels. This in turn
is the key to generating well-separated clusters in the description-comes-first
approach.

Below we summarise the key problems that must be resolved in order for the LNMF to be
efficient in the description-comes-first clustering algorithm.

a. Choice of k, initialisation and base vectors ordering — As LNMF is only a
slight variation of NMF, it does not remove its three major deficiencies, see
Section 2.3.2 for more details.

b. Slower convergence — As shown in [Wild, 03] LNMF converges much slower
than NMF. This means that more time will be needed for the cluster induction
phase to complete.

c. Lower approximation quality — Special properties of LNMF's base vectors are
achieved at the cost of lowered overall quality of approximation. We believe,
however, that for the description-comes-first approach more important is the
localised character of base vectors than perfect accuracy of approximation.

20Chapter 2. Background

Concept Decomposition2.3.4
Concept Decomposition [Dhillon and Modha, 01] is a dimensionality reduction technique
based on the Spherical K-Means clustering algorithm. For a t×d matrix A and given k Concept
Decomposition generates a t×k matrix U and a d×k matrix V such that A≈UVT.

The K-Means
algorithm

K-Means is an iterative clustering algorithm in which clusters are built around k central points
called centroids. The algorithm starts with a set of centroids corresponding to randomly se-
lected columns of A and to each centroid assigns columns of A that are closest to that centroid
with respect to the cosine similarity measure. Then, repeatedly, for each group of columns,
a new centroid is calculated as a mean of all column vectors in that group and column assign-
ments to their now closest centroids are changed accordingly. The algorithm stops when no
column reassignments are needed or when certain number of iteration has been completed.
Spherical K-Means is a variation of the base K-Means algorithm in which all centroids are
normalised to have unit Euclidean length.

In Concept Decomposition each column of the U matrix directly corresponds to one centroid
obtained from the K-Means algorithm. Various methods have been proposed to derive the
coefficient matrix V. In the simplest case, row d of matrix V contains a non-zero element in
column c only if the K-Means algorithm assigned column vector d of matrix A to centroid c.
Clearly, in this scheme, columns of A are represented by their closest centroids, which may
have negative impact on approximation accuracy. In [Dhillon and Modha, 01] and [Wild, 03]
more advanced techniques of calculating the V matrix are proposed.

Applicability to
search results

clustering

In our experiments Concept Decomposition will be used only as a base line for comparisons
with other dimensionality reductions presented in this section. Intuitively, because K-Means
is based around averaged centroids of groups of documents, it should be able to successfully
detect major themes in the input snippets. However, it may prove less efficient in identifying
topics represented by relatively small groups of documents.

21Chapter 2. Background

Implementation3
In this chapter we provide details on the software components developed during the course
of this project. We start with remarks on our implementation of matrix factorisations in Java.
Then we proceed to a brief description of the Carrot2 framework, within which our clustering
algorithms operate. We conclude this chapter with a list of text processing components and
applications this project contributes to the Carrot2 framework.

Matrix factorisation in Java3.1
One of the major tasks of our project was implementation of three matrix factorisation al-
gorithms, two variants of Non-negative Matrix Factorisation and Local Non-negative Matrix
Factorisation, in Java. We have decided to first develop working prototypes in MatLab, which
would then be used to verify the correctness of the corresponding Java programs. We also
looked into how the computation time of the initial versions of the routines could be further
improved.

MatLab prototypes3.1.1
The implementations we prepared were based on multiplicative updating rules presented
in Section 2.3. Figure 3.1 presents the MatLab code that computes NMF with Euclidean Dis-
tance minimisation23.

Figure 3.1
Euclidean

Distance NMF
algorithm MatLab

code

%
% Non-negative Matrix Factorisation
% Euclidean Distance Algorithm
%
% A - input matrix
% U - base vectors matrix
% V - coefficient matrix
% C - approximation quality for subsequent iterations
%
function [U, V, C] = nmf_ed(A)
 [t, d] = size(A);
 k = 2; % the desired number of base vectors
 maxiter = 50; % the number of iterations
 eps = 1e-9; % machine epsilon

 U = rand(t, k); % initialise U randomly
 V = rand(d, k); % initialise V randomly

 for iter = 1:maxiter
 U = U.*((A*V+eps)./(U*V'*V+eps)); % update U
 V = V.*((A'*U+eps)./(V*U'*U+eps)); % update V
 C(1, iter) = norm((A-U*V'), 'fro'); % approximation quality
 end

If matrix A is very sparse (i.e. contains many zero elements), it may happen that the 0/0 op-
eration will be attempted during the element-by-element division while updating U or V. In
[Wild, 03] this problem is solved by adding machine epsilon both to the numerator and the

23 MatLab codes for all factorisation algorithms are included in the electronic submission of this dissertation.

22Chapter 3. Implementation

denominator of the expression. As the machine epsilon is very small, it only matters when
a 0/0 division would occur, making the expression equal to 1 in that case.

Java implementations3.1.2
Our Java translation of the above code relies on the matrix computaion API provided as part
of the Colt framework24. In Figure 3.2 we present a fragment25 of the NonnegativeMatrix-
FactorizationED class, which corresponds to the MatLab code from Figure 3.1.

Figure 3.2
Euclidean

Distance NMF
algorithm Java

code

// Machine epsilon
double eps = 1e-9;

// Seed U and V with initial values
U = doubleFactory2D.make(A.rows(), k);
V = doubleFactory2D.make(A.columns(), k);
seedingStrategy.seed(A, U, V);

// Temporary matrices
DoubleMatrix2D T = doubleFactory2D.make(k, k);
DoubleMatrix2D UT1 = doubleFactory2D.make(A.rows(), k);
DoubleMatrix2D UT2 = doubleFactory2D.make(A.rows(), k);
DoubleMatrix2D VT1 = doubleFactory2D.make(A.columns(), k);
DoubleMatrix2D VT2 = doubleFactory2D.make(A.columns(), k);

for (int i = 0; i < maxIterations; i++)
{
 // Update V
 U.zMult(U, T, 1, 0, true, false); // T <- U'U
 A.zMult(U, VT1, 1, 0, true, false); // VT1 <- A'U
 V.zMult(T, VT2); // VT2 <- VT
 VT1.assign(plusEps);
 VT2.assign(plusEps);
 VT1.assign(VT2, Functions.div); // VT1 <- VT1 ./ VT2
 V.assign(VT1, Functions.mult); // V <- V .* VT1

 // Update U
 V.zMult(V, T, 1, 0, true, false); // T <- V'V
 A.zMult(V, UT1); // UT1 <- AV
 U.zMult(T, UT2); // UT2 <- UT
 UT1.assign(plusEps);
 UT2.assign(plusEps);
 UT1.assign(UT2, Functions.div); // UT1 <- UT1 ./ UT2
 U.assign(UT1, Functions.mult); // U <- U .* UT1

 iterationsCompleted++;
}

The temporary matrices T, UT1, UT2, VT1 and VT2 have been introduced to avoid continuous
allocation/freeing of memory during the updating process.

Performance improvements3.1.3
Due to their iterative nature, matrix factorisation algorithms are fairly costly in terms of
computation time. As shown in Table 3.1, this problem is especially acute in Java implement-
ations. For this reason we have decided to seek for ways of improving the performance of
the Java factorisation routines.

Architecture-specific matrix routines
ATLAS ATLAS26 (Automatically Tuned Linear Algebra Software) is a freely available architecture-

specific implementation of the BLAS27 (Basic Linear Algebra Subprograms) package. It
provides highly-optimised versions of vector-vector, matrix-vector and matrix-matrix multi-

24 http://hoschek.home.cern.ch/hoschek/colt/
25 Full source code of all factorisation algorithms is included in the electronic submission of this dissertation.
26 http://math-atlas.sourceforge.net/
27 http://www.netlib.org/blas/

23Chapter 3. Implementation

http://hoschek.home.cern.ch/hoschek/colt/
http://math-atlas.sourceforge.net/
http://www.netlib.org/blas/

plication routines, which use various CPU-specific extensions such as SSE and SSE2 on Intel
or AltiVec on PowerPC.

In order to be able to use these optimised matrix routines in our Java programs we needed
to create a bridge between the architecture-independent Java code and the machine-dependent
ATLAS. To this end, using the Native Numerical Interface28 (NNI), we extended the Colt
framework with an implementation of its DenseDoubleMatrix2D class that is backed by the
much faster machine-specific ATLAS routines. According to our simple experiment29, as
shown in Table 3.1, this can result in almost five-fold improvement in execution time.

Table 3.1
Java vs. native

matrix routines
(NMF-ED)

Speedup
Time [ms]

IterationsKMatrix size
NativePure Java

2.261413201025280×100
3.0234110311037420×150
3.1880225531050560×200
3.82213381611075840×300
4.16450718777101001120×400
4.56821237464101251400×500

One potential disadvantage of this solution is the loss of portability: ATLAS libraries must
be compiled separately for each target platform. To address this problem, our Java interface
to ATLAS falls back to pure Java platform-independent code when ATLAS is unavailable
on the particular machine.

Stop criterion
A common problem in construction of iterative numerical algorithms is the decision as to
when the algorithm has converged and can stop the computations. A popular approach here
is to monitor the value of some approximation quality measure that the algorithm aims to
minimise/maximise and stop the computations when no substantial improvement has been
made with respect to that measure in the last iteration.

For the the problem of matrix factorisation, a commonly used approximation quality metric
is the Frobenius norm of the difference between the original matrix A and its approximation
A'=UVT, described in Section 2.3. As constructing the A' matrix involves a fairly expensive
matrix multiplication, evaluation of the stop criterion may significantly increase to the total
computational expense of one iteration of the algorithm. Eliminating that costly step is
therefore another way of speeding up the factorisation algorithm as a whole.

To avoid continuous recalculation of the approximation quality measure, we have decided
that the total number of iterations required for a factorisation algorithm to converge will be
estimated in advance using a simple linear model:

number-of-iterations = a×d + b×k + c

where d is the number of rows of the A matrix and k is the desired number of base vectors.
For each factorisation algorithm, we estimated the parameters of the model, a, b and c, under
a number of assumptions correct for the search results clustering application, e.g. that the
number of non-zero elements in the A matrix is not larger than 2%.

One possible problem with this approach is that for some particular input matrices the estim-
ated number of iterations may be not enough for the algorithm to converge, which would
result in a less accurate approximation. However, we feel that for an on-line search results
clustering algorithm, more important is the speed of processing than the perfect accuracy of
the underlying matrix factorisation.

28 http://www.math.uib.no/~bjornoh/mtj/nni/
29 The experiment was performed on a Pentium M (Centrino) 1.3GHz, 512MB RAM running Sun JDK 1.4.2_04.

24Chapter 3. Implementation

http://www.math.uib.no/~bjornoh/mtj/nni/

Search results clustering in Carrot23.2
All software components developed during the course of our project, are designed to operate
within a text processing framework called Carrot2. This section we devote to the framework
itself as well as to the text processing components our project contributed to it.

The framework3.2.1
Carrot2 is a freely available30 Open Source framework for experiments with processing and
visualisation of search results. Being a 100% pure Java application, Carrot's architecture is
based upon on a set of components that can cooperate with each other either in a distributed
fashion by exchanging XML data or locally within a single Java application.

Components
available in

Carrot2

Three general types of components are available in Carrot2: input, filter and output compon-
ents. The task of an input component is to deliver data for further processing. An example
input component could, for example, fetch the results generated by some web search engine
in response to the Carrot's user query. Filter components transform their input data in some
way. An example transformation could be tokenization or stemming of the input data. Clearly,
in Carrot2, our search results clustering algorithms act as filter components. Finally, the role
of an output component is to present its input data to the end user. Carrot2 applications can
flexibly arrange individual components into processing chains beginning with an input
component, followed by any number of filter components and terminated with an output
component.

Why use
Carrot2?

The main advantage of using Carrot2 in our project is that having ready-to-use tokenization
and stemming components, we will not be distracted from the main focus of this project,
which is developing and evaluating different variants of a search results clustering algorithm.
Additionally, Carrot2 already contains two31 clustering algorithms similar to Lingo, Suffix
Tree Clustering (see Section 2.1.4) and Tollerance Rough Set Clustering (TRC) [Lang, 04].
Thus, not only will we be able to compare different variants of the description-comes-first
approach with each other, but also we will have the opportunity to compete against STC and
TRC

New components3.2.2
During the course of our project we contributed the following components to the Carrot2

framework:

a. Lingo Clustering Filter Component — This component implements the descrip-
tion-comes-first clustering method described in Section 2.2. One of the parameters
the Lingo component can take is the algorithm that is to be used to perform di-
mensionality reduction. In this way we were able to easily compare variants of
the description-comes-first approach using different matrix factorisation al-
gorithms. Refer to Section 5.2 for the detailed results.

Another parameter of the Lingo filter component is the clustering quality level,
which can assume three values: low (1), medium (2) and high (3). The higher
the quality level, the more iterations the factorisation algorithms perform and
the more terms are selected to be included in the term-document matrix. For
the influence of this parameter on the clustering results refer to Section 5.3.

b. ODP Data Input Component — The task of this component is to fetch all snip-
pets belonging to the ODP categories specified in the query and pass them down

30 http://carrot.cs.put.poznan.pl
31 In fact, there are two more search results clustering algorithms in Carrot2. These, however, generate hierarchical
groups and hence are difficult to directly compare with Lingo.

25Chapter 3. Implementation

http://carrot.cs.put.poznan.pl

the processing chain. As the ODP data is provided as one extremely large XML
file (nearly 2GB of text), we had to implement a simple indexing engine that
would split the file into manageable pieces and thus allow quick access to indi-
vidual ODP categories.

c. Cluster Metrics Output Component — The purpose of the cluster metrics output
component is to calculate the cluster quality metrics described in Section 4.4.

d. Matrix Computation Library — This independent Carrot2 component provides
a number of matrix factorisation algorithms as well as some utility routines. If
machine-specific ATLAS libraries are present, they will be used to speed up the
computation. Otherwise, the slower machine-independent Java code is used.

Clustering
benchmark

application

To perform the experiments described in Chapter 5 we implemented a simple command-line
Carrot2 application for benchmarking search results clustering algorithms. For given set of
ODP input component queries the application performs clustering using selected algorithms
available in the framework and saves the individual and aggregated results as XML files.
XSLT stylesheets for transforming the results into HTML and Excel files are also provided.
In Figure 3.3 we show the application's HTML output for an example ODP data set.

Figure 3.3
Example HTML
output from the

clustering
benchmark
application

Source code
availability

Complete source code of the Carrot2 framework including components developed as part of
this project can be downloaded from SourceForge.net CVS repository at http://www.source-
forge.net/projects/carrot2. Please refer to the readme.txt file in the main checkout directory
for building instructions.

26Chapter 3. Implementation

http://www.sourceforge.net/projects/carrot2
http://www.sourceforge.net/projects/carrot2

Evaluation4
In this chapter we give details on the evaluation methodology we have decided to use for
the purposes of this project. We start with outlining some general problems involved in as-
sessment of clustering results. Then, we explain how data gathered within the Open Directory
Project (ODP) can be used to implement the merge-then-cluster assessment scheme. Finally,
we define three cluster quality measures, Topic Coverage, Snippet Coverage and Cluster
Contamination to be calculated in that scheme.

Problems4.1
The main goal of search results clustering is to help human users to better understand search
results and to perform their searches more effectively. Therefore, algorithms should aim to
maximise the usefulness of clusters they produce. Unfortunately, the term usefulness for human
users involves very subjective judgments resulting from different preferences different people
may have. This makes it particularly difficult, if at all possible, to automatically evaluate the
real-world performance of search results clustering. Below we list a number problems arising
in this area.

a. Subjective judgements — The ultimate performance test for a search results
clustering algorithm would be to verify whether it can help human users to
perform their searching tasks more efficiently. However, as shown in [Macskassy
et al., 98], humans themselves have problems with creating consistent document
clusters. Therefore, it will be extremely difficult to construct an automatic eval-
uation procedure that takes into account the subjective nature of perception of
clustered search results.

b. Many "correct" solutions — As clustering is an example of an unsupervised
learning technique, in a natural way there will be more than one "correct" solution
for one data set. For example, for an input collection containing documents about
two films, "The Lord of the Rings" and "Blade Runner", the most obvious groups
would correspond to the two titles. However, clusters such as "Film Review" or
"Soundtracks" that present different aspects of the same information are equally
justified.

c. Evaluation of cluster labels — In search results clustering, group labels play a
very important role. Unfortunately, the assessment of correspondence between
the content of a cluster and its label is difficult to express in terms of a formal
procedure.

d. No standard collections for search results clustering — To the best of our
knowledge, there are no standard test collections for the problem of search results
clustering. Such a collection would be based around small groups (5-100) of
document excerpts (snippets), possibly containing some noise resulting from
the process of snippet extraction, and accompanied by a reference cluster
structure.

27Chapter 4. Evaluation

Methods4.2
Several methods of evaluation of clustering results have been proposed, three of which we
summarise below.

Standard IR metrics4.2.1
In the standard IR approach, the quality of clustering is evaluated in terms of the two
standard Information Retrieval metrics: precision and recall. One variant of such a method
is where the contents of the top-scoring cluster is assumed to be the set of retrieved documents
for some query [Zamir, 99]. Provided that the set of relevant documents is known a priori or
had been identified in advance, the precision and recall can be easily calculated.

One drawback of this method is that no standard document collections for the problem of
search results clustering have been defined so far. Also, the results in this approach can be
strongly influenced by the ambiguity of human relevance judgments.

User evaluation4.2.2
This evaluation method relies on the real users' opinions about the quality of clustering. All
the necessary data can be collected from specially prepared questionnaires or from web
server logs.

While this approach is potentially capable of verifying whether the clustering algorithm
satisfies its users' needs, it still has some drawbacks. First of all, the results may be influenced
by the level of the users' experience with search engines. Secondly, this type of evaluation
cannot be performed automatically or on-demand, which makes it unsuitable for experiments
with large amounts of data, e.g. for tuning of algorithms' parameters.

Merge-then-cluster approach4.2.3
The merge-then-cluster method relies on a special collection of texts created by merging
smaller document groups each of which relates to some well-defined topic. Given such a
mixture of documents an effective clustering algorithm should be able to identify all the
original topics.

Reliability of this approach largely depends on the way the correspondence between the
automatically generated clusters and the original topics is measured. The similarity between
two sets of clusters can be expressed as a single numerical value using e.g. mutual-information
measures [Dom, 01]. One drawback of such measures is that the smallest difference between
the automatically generated clusters and the reference groups will be treated as the algorithm's
mistake, even if the algorithm made a different but equally justified choice (e.g. splitting a
large original group into sub-groups). The alternative cluster quality measures we propose
in this chapter aim to alleviate this problem.

What should be emphasised about the merge-then-cluster approach is that it can be performed
on-demand and fully automatically, which enables large-scale experiments. It is mainly for
this reason that we have decided to use the merge-then-cluster based on the Open Directory
Project data to evaluate our work.

28Chapter 4. Evaluation

Open Directory Project4.3
Open Directory Project32 is a large and fast-growing human-edited hierarchical directory of
the Web. At the time of writing, ODP contained web page references arranged in over 630,000
thematic categories. For several reasons ODP is a good source of data for the purposes of
search results clustering evaluation:

a. Document summaries — Each web page reference stored in ODP is accompanied
by a short summary written by a human. The summaries are usually between
10 and 50 words in length, which perfectly corresponds with the characteristics
of document snippets returned by search engines.

b. Varied topics — ODP contains a vast variety of topics ranging from arts and
sciences to computers, health and recreation. This makes it possible to construct
mixtures of well-separated document references, such as Relational Databases
+ The Lord of the Rings Movies + Fishing.

c. Varied topic sizes — In addition to the large spectrum of themes, ODP provides
topics which contain from as little as 1 up to as many as 1000 references. This
enables creating mixtures of different characteristics, e.g. containing outlier
topics, for example MySQL Database + Postgres Database + Orthopedic Equip-
ment.

d. Deep topic hierarchies — ODP contains topic hierarchies with nesting level as
deep as 13, which can be used to generate mixtures of very closely related topics.

e. Multilingual content — Although the majority of ODP's references are in Eng-
lish, it also contains a substantial amount of data written in other languages,
such as German, Spanish, Polish or Japanese. This enables us to test how cluster-
ing algorithms would deal with multilingual input.

f. Free availability — All data catalogued in ODP can be downloaded free of
charge from the ODP web site as an XML file.

Using document references drawn from ODP the following properties of clustering algorithms
can be tested:

a. Topic separation — Tests the algorithm's ability to separate document references
belonging to different topics. The following parameters determine the properties
of a particular snippet mixture:

i. Affinity level — The extent to which topics in the test set relate to
each other — the higher the affinity level, the more related topics.
Affinity level can be expressed numerically as the nesting level of
the most specific ODP topic that is the parent of all snippets in the
mixture. Affinity level equal to 1 means that the test set contains
snippets from different ODP top categories, e.g. Computers, Health,
Science and Recreation. Affinity level of e.g. 4, on the other hand,
means that mixed are documents belonging to some subcategories
of e.g. the Computers/Software/Databases/MySQL topic.

ii. Topic count — The number of topics from which the snippets will
be drawn.

iii. Topic size balance — Numbers of documents in the topics included
in the test set can be either balanced (i.e. equal or almost equal) or

32 http://www.dmoz.org

29Chapter 4. Evaluation

unbalanced. Unbalanced mixtures of snippets may turn out more
difficult to handle for some clustering algorithms.

b. Outlier detection — Tests whether the algorithm can highlight a topic that is
clearly different from the rest of the test set. Two parameters can be defined for
this type of snippet mixture:

i. Outlier size — The number of snippets in the outlier topic expressed
as a percentage of the average size of other topics.

ii. Outlier count — The number of outlier categories present in the
test set.

c. Performance — Tests the clustering speed for different numbers of input snip-
pets, e.g. 50, 100, …, 500.

Evaluation methodology4.4
To evaluate our work we have decided to adopt the merge-then-cluster method based on
the Open Directory Project data. To this end, we will define three cluster measures: Cluster
Contamination, Topic Coverage and Snippet Coverage.

Cluster Contamination measure4.4.1
According to the Cluster Contamination measure a cluster is pure if it contains documents
belonging to only one original partition. Noteworthy is the fact that a cluster that consists of
only a subset of some original partition is still pure. The contamination measure of pure
clusters is 0. If a cluster contains documents from more than one original partition, its con-
tamination measure falls within the 0..1 range. Finally, in the worst case, a cluster consisting
of an equally distributed mixture of snippets representing different partitions will be called
contaminated and have the measure equal to 1.

More formally, we define Cluster Contamination (CC) in the following way [Osinski and
Weiss, 04]. Let C be the original partitioning of documents (e.g. taken from ODP), and let K
denote the set of automatically generated clusters. Further, let H≡[h(c, k)] denote a two-di-
mensional contingency matrix, where h(c, k) is the number of documents from the original
partition c assigned to cluster k. For a perfect clustering where C≡K, H is a square matrix with
exactly one non-zero element in each row and column.

We can now define the number of pairs of objects found in the same cluster k but not in the
same partition:

We also need to calculate amax, which represents the worst-case scenario of document distri-
bution in a cluster, whereby the same number of documents is taken from each partition and
combined into a single cluster:

where for i=0...|C|—1:

30Chapter 4. Evaluation

Finally, the contamination measure of cluster k containing more than m>1 documents is
defined as the ratio between a10 and amax:

It can be easily verified that the above formula has the desired properties, i.e. it is equal to 0
for clusters containing documents originating from one partition, and is equal to 1 for an
equally distributed mixture of documents from different partitions.

Compared to other methods the advantage of the Cluster Contamination measure is that it
does not penalise algorithms unnecessarily, e.g. for splitting big topics into a number of
smaller clusters. However, this measure is designed to be calculated for individual groups,
and therefore it must be accompanied by other measures which take into account the set of
clusters as a whole.

Topic Coverage4.4.2
A simple example of a situation where the Cluster Contamination measure alone fails is when
for a large number of original partitions the clustering algorithm generates only one cluster
containing documents from only one original partition. Clearly, from the point of view of
the Cluster Contamination measure, such clustering is perfect because the generated group
is pure. However, the algorithm is not penalised for omitting all other documents from the
original partitioning. For this reason we have decided to introduce the Topic Coverage
measure.

The Topic Coverage (TC) measure aims to show the algorithm's ability to cover all topics
present in the input documents:

where |C| denotes the number of partitions in the original data, s is the number of partitions
from C represented in K, and p is the position on the list of clusters at which the full partition
coverage is achieved (i.e. every partition represented in K has at least one corresponding
cluster). If there are partitions in C that have no representation in K, p is equal to |K|.

Topic Coverage equal to 1 means that all original partitions from C have at least one corres-
ponding cluster in K and that the first |C| top positions on the cluster list correspond to
different partitions in |C|. Topic Coverage equal to 0 means that none of the clusters corres-
ponds to any of the original partitions.

Clearly, Topic Coverage promotes algorithms that can find balance between different topics
in the input documents, and can put exactly one cluster representing each topic in one of the
top positions on the cluster list. In our opinion, such behaviour is perfectly reasonable, as it
helps the users to find the documents of interest more quickly, even if they come from a small
outlier topic.

31Chapter 4. Evaluation

Snippet Coverage4.4.3
As clustering algorithms may omit some input snippets or put them in a group of "Other
topics", it is important to define the Snippet Coverage (SC) measure, which is the percentage
of snippets that have been assigned to at least one cluster:

where a is the number of snippets assigned to clusters in K, and t is the total number of
snippets in C. Snippet Coverage values can range from 0, when no snippets are assigned to
meaningful clusters, up to 1, when all input snippets are assigned to clusters in K.

Additional measures4.4.4
The following measures will be used in our project to complement the three base metrics:

a. Time efficiency — As search results clustering is meant to be performed on-
line, the overall running time of algorithms as a function of the number of input
snippets needs to be measured.

b. Cluster label quality — Evaluating the quality of cluster labels in an automatic
way is very difficult (it should involve e.g. an analysis of their grammatical
correctness), and therefore we have decided that this step will be based on
manual investigation of good and bad cluster labels for selected data sets.

32Chapter 4. Evaluation

Results and discussion5
This chapter reports on the results of our experimental evaluation of the description-comes-
first approach to search results clustering. We start with a comparison of a number of variants
of Lingo based on different dimensionality reduction techniques. Then we investigate the
influence of the clustering quality parameter and matrix factorisation seeding strategy on
the clusters produced by Lingo. Finally, we compare Lingo with two other search results
clustering algorithms which do not employ dimensionality reduction techniques at all.

During the experiments we tested several properties of our algorithms, described in Section 4.3,
such as the ability to separate different topics or to highlight outliers. For each of these tests
we calculate cluster metrics introduced in Section 4.4. We also "manually" analyse the quality
of cluster labels and compare the computational efficiency of all the algorithms.

Experimental setup5.1
Topic separation tests were performed using 63 ODP topic mixtures with affinity level
varying from 1 to 6, the number of topics varying from 2 to 8, balanced and unbalanced
topic sizes. In Table 5.1 we present an example topic separation data set consisting of 6 size-
balanced ODP topics with affinity level equal to 2.

Table 5.1
Example data set:

topic separation

Document
count

Topic pathODP CatId

22Top/Recreation/Autos/Makes_and_Models/Porsche/9448421
22Top/Recreation/Boating/Power_Boating/Hovercraft40632
22Top/Recreation/Food/Drink/Cider178528
22Top/Recreation/Outdoors/Landsailing140175
22Top/Recreation/Pets/Reptiles_and_Amphibians/Snakes59800
22Top/Recreation/Travel/Specialty_Travel/Spas/Europe350389

Outlier detection tests were performed using 14 topic mixtures containing one and two outliers
of size ranging from 10% to 100% of the average topic size in the data set. In Table 5.2 we
present an example outlier detection data set containing one outlier of size 40%.

Table 5.2
Example data set:

outlier detection

Document
count

Topic pathODP CatId

28Top/Computers/Internet/Abuse/Spam/Tracking429194
28Top/Computers/Internet/Protocols/SNMP/RFCs397702
28Top/Computers/Internet/Searching/Search_En-

gines/Google/Web_APIs
791675

29Top/Computers/Internet/Chat/IRC/Channels/DALnet5347
11Top/Science/Chemistry/Elements/Zinc783404

33Chapter 5. Results and discussion

Computational efficiency comparisons were carried out using 50 data sets consisting of 50
to 500 ODP snippets each. To eliminate the influence of the execution environment (JVM's
just-in-time compilation, garbage collection, etc.), each batch was processed by each algorithm
ten times.

Table 5.3 summarises the assumptions and conditions for our experiments, including values
of the algorithms' parameters and characteristics of the execution environment. Unless noted,
values presented in Table 5.3 hold for all experiments described in this chapter.

Table 5.3
Experimental

setup

Lingo parameters

Language Identific-
ation, Stemming,
Letter Case Norm-
alisation

Preprocessing — text preprocessing steps performed before the actual
clustering takes place

15k — The number of base vectors generated by the matrix factorisation
algorithm.

RandomSeeding Strategy — initialisation method of the factorization's U and
V matrices

3 (highest)Clustering Quality — sets the balance between clustering quality and
computation time.

0.2Assignment Threshold — snippets whose cosine similarity to a cluster's
label exceeds the Assignment Threshold will be placed in that cluster.

Suffix Tree Clustering parameters

StemmingPreprocessing — text preprocessing steps performed before the actual
clustering takes place

2Min Base Cluster Score — minimum allowed score of a base cluster
0.6Merge Threshold
15Maximum Clusters — the maximum number of clusters the algorithm

is allowed to generate
Tolerance Rough Set Clustering parameters

StemmingPreprocessing — text preprocessing steps performed before the actual
clustering takes place

15Maximum Clusters — the maximum number of clusters the algorithm
is allowed to generate

0.3Membership Threshold
5Co-occurrence Threshold

Execution environment

Windows XP HomeOperating System
Sun JDK 1.4.2_04Java Virtual Machine

Pentium M (Centrino) 1.3GHz, 512MB RAMHardware configuration

Dimensionality reduction techniques5.2
In this section we compare the performance of four dimensionality reduction techniques,
Non-negative Matrix Factorisation with Euclidean Distance algorithm (NMF–ED), Non-
negative Matrix Factorisation with Divergence algorithm (NMF–KL), Local Non-negative
Matrix Factorisation (LNMF) and Singular Value Decomposition (SVD), as the main compon-
ent of the description-comes-first clustering algorithm. Concept Decomposition (CD), a di-
mensionality reduction technique based on the K-Means clustering algorithm, is used as a

34Chapter 5. Results and discussion

baseline. In the following subsections we report on the algorithms' performance with respect
to topic separation, outlier detection, cluster label quality and computational efficiency.

Topic separation5.2.1
Figure 5.1 presents average topic coverage, snippet coverage and cluster contamination for
variants of Lingo employing different matrix factorisation algorithms.

Figure 5.1
Dimensionality

reductions:
aggregated cluster
measures for topic

separation

Analysis Clearly, the NMF-like dimensionality reduction techniques provide significantly33 better
average topic and snippet coverage, the difference between the NMF-like algorithms them-
selves being statistically insignificant. Interesting is the much higher value of cluster contam-
ination in case of the LNMF algorithm compared to the other NMF-like factorisations. We
explain this phenomenon in Section 5.2.3 where we analyse cluster labels generated by all
the algorithms.

In Figure 5.2 we present cluster contamination as a function of different input data affinity
levels across the five matrix factorisation techniques.

Figure 5.2
Dimensionality

reductions:
contamination as

a function of
affinity level

Analysis As expected, the more similar topics in the mixture, the higher cluster contamination. Again,
LNMF produced least pure clusters, while the K-Means method provided least contaminated
groups. The latter, however, was achieved at the cost of much lower topic coverage (compare
Figure 5.1).

33 Due to the fact that our data does not follow Gaussian distribution, differences marked hereafter as statistically
significant have been tested using the Mann-Whitney non-parametric two-group comparison test ([PAST, 04]) at
the significance level of 0.001.

35Chapter 5. Results and discussion

Figure 5.3 shows the dependency between input data affinity level and topic coverage across
different variants of the description-comes-first clustering algorithm.

Figure 5.3
Dimensionality

reductions: topic
coverage as a

function of
affinity level

Analysis Again, thematically close snippet mixtures proved more difficult to cluster — for affinity
levels 5 and 6 the algorithms did not manage to include all input topics in the results.

In Figure 5.4 and Figure 5.5 we show cluster contamination and topic coverage across different
algorithms for balanced and unbalanced topic sizes.

Figure 5.4
Dimensionality

reductions:
contamination as
a function of topic

size balance

Figure 5.5
Dimensionality

reductions: topic
coverage as a

function of topic
size balance

36Chapter 5. Results and discussion

Analysis Size-balanced input data sets turned out to be slightly easier to cluster compared to the un-
balanced ones. Figure 5.4 confirms that LNMF produces significantly more contaminated
clusters in comparison to the other NMF-like methods.

Outlier detection5.2.2
Table 5.4 summarises the number of outliers detected by different algorithms for different
outlier sizes and counts.

Table 5.4
Dimensionality

reductions:
detected outliers

Detected outliers

K-MeansSVDLNMFNMF-KLNMF-EDOutlier size

2121212121

0011212121100
001111112150
000021212140
001011111130
001121212120
002110101115
001101010110

Analysis Interestingly, the base line K-Means-based factorisation did not manage to reveal any of the
outliers, neither in the one-outlier data set nor in the two-outlier one. This may be because
K-Means tends to locate its centroids in most dense areas of the input snippet space, which
is usually not where the outliers lie. All NMF-like methods performed equally well, slightly
better than SVD. However, SVD was the only algorithm do discover one of the two smallest
10% outliers.

Figure 5.6 shows average topic coverage across different algorithms for outlier detection
queries containing one and two outliers.

Analysis Figure 5.6 confirms the intuition that data sets containing two outliers should be more difficult
to cluster than snippet mixtures with only one outlier topic. Additionally, the figure clearly
shows that the K-Means-based dimensionality reduction is inferior to the rest of the algorithms
in outlier detection tasks.

Figure 5.6
Dimensionality

reductions:
aggregated topic

coverage for
outlier detection

37Chapter 5. Results and discussion

Cluster label quality5.2.3
In Figure 5.7 we provide the labels of clusters produced by our algorithms for a data set
containing four size-balanced ODP topics: Assembler Programming, Oncology, Collecting
Stamps and Earthquakes.

Figure 5.7
Dimensionality

reductions:
cluster labels

NMF-ED

Earthquake Prediction (21)
Oncology Conference (19)
Stamp Collecting (23)
Cancer Care (16)
Web Sites (11)
Assembly (11)
Assembler Programming (8)
University (10)
New York (9)
Geological Survey (3)
Technology (2)
(Other Topics) (23)

NMF-KL

Earthquake Prediction (21)
Stamp News (22)
Oncology Conference (19)
Cancer Care (16)
Assembly (11)
University (10)
Resource Site (8)
s Philatelic (5)
Stamps (3)
Exhibiting (2)
(Singletons) (1)
(Other Topics) (29)

LNMF

Stamp Collecting (23)
Earthquake Prediction (21)
Oncology Conference (19)
Cancer Care (16)
Assembly (11)
Resource Site (8)
New Approach (9)
University (10)
Assembly Language Programming (6)
Assembler (7)
s Philatelic (5)
Engineering (5)
World (4)
Geological Survey (3)
Network (3)
(Other Topics) (20)

K-Means

Earthquake Prediction (21)
Programming Site (10)
Stamp Collecting (23)
Assembly (11)
(Other Topics) (61)

SVD

Web Sites (11)
Stamp Collecting (23)
Cancer Care (16)
Assembler (7)
Seismic Cataloges (5)
Oncology Conference (19)
Collecting (7)
Information (6)
Stamps (3)
(Other Topics) (45)

Analysis The general observation here is that the majority of cluster labels, especially those placed in
top positions on the cluster lists, are well-formed readable noun phrases (e.g. "Earthquake
Prediction", "Oncology Conference", "Stamp Collecting", "Assembly Language Programming").
One interesting phenomenon is that two very similar labels appeared in the NMF–ED results:
"Assembly" and "Assembler Programming". The reason for this is that the English stemmer
we used did not recognise the words assembly and assembler as having the same stem. Another
interesting observation is the "s Philatelic" cluster label generated by the NMF–KL and LNMF
algorithms. This clearly indicates a problem with the tokenization algorithm that split the
possessive form of a noun (e.g. "collector's") into two tokens (e.g. "collector" and "'s").

A more careful analysis of the cluster labels created by the LNMF version of Lingo can reveal
why this algorithm produces significantly more contaminated clusters (compare Figure 5.1).
The key observation here is that LNMF aims to generate highly sparse and localised base
vectors, i.e. having as few non-zero elements as possible (see Section 2.3.3). This results in a
high number of one-word general candidate labels, such as "University", "Engineering",
"World" or "Network", which in turn contribute to the high cluster contamination.

Computational efficiency5.2.4
Figure 5.8 shows clustering time as a function of the number of input snippets for variants
of Lingo employing different dimensionality reduction techniques.

Figure 5.8
Dimensionality

reductions:
computational

efficiency

Analysis The most apparent observation here is that the SVD-based variant of Lingo is the least scalable.
The reason for this is that in the present implementation we compute the full SVD of the
term-document matrix (i.e. all min(t, d) singular vectors) and only k base vectors in case of

38Chapter 5. Results and discussion

NMFs, which makes the latter scale much better. Thus, one of the future improvements of
the former algorithm could be replacing the current SVD with its truncated variant (TSVD),
which computes only the first k singular vectors.

Of the three NMF-like variants of Lingo the NMF–ED is most computationally efficient. The
reason for this is that the Euclidean Distance does not need to recreate the k-rank approxim-
ation of the A matrix in every iteration, which is a fairly costly operation.

Quality level settings5.3
In this section we show the influence of the clustering quality level setting on the results
produced by the variant of Lingo which uses the NMF–ED algorithm.

Topic separation5.3.1
Figure 5.9 presents average cluster contamination, topic and snippet coverage, for different
quality level settings.

Figure 5.9
Quality level

settings:
aggregated cluster
measures for topic

separation

Analysis Interestingly, there is no statistically significant difference between topic coverage achieved
at quality levels 1, 2 and 3. A closer analysis of cluster labels, see Section 5.3.3, reveals the
reason for this: at quality level 1 Lingo generates worse-quality more general labels, but the
correspondence between the clusters and the original topics is still maintained. It is for the
same reason that for quality level 3 the average snippet coverage is significantly smaller. In
this case more precise cluster labels cause more snippets to end up in the Other Topics group.

Outlier detection5.3.2
In Table 5.5 we present the numbers of detected outliers for different quality level settings
and different outlier counts.

Table 5.5
Quality level

settings: detected
outliers

Detected outliers

Quality level 3Quality level 2Quality level 1Outlier size

212121

212111100
21211150
21212140
11212130

39Chapter 5. Results and discussion

Detected outliers

Quality level 3Quality level 2Quality level 1Outlier size

212121

21210120
11111115
01100010

Analysis In the outlier detection task Lingo at quality level 1 performs slightly worse than at quality
levels 2 and 3. The reason for this is that due to a higher term frequency cut-off at quality
level 1, some of the words needed to detect the smallest outliers may not be present in the
term-document matrix.

Cluster label quality5.3.3
In Figure 5.10 we provide cluster labels generated by Lingo NMF–ED at quality levels 1, 2
and 3 for a data set containing three topics: Java Networking Class Libraries, Java GUI Class
Libraries and Java Charts Class Libraries.

Figure 5.10
Quality level

settings: cluster
labels

Quality level 1

Pure Java (25)
Open Source (22)
Class Library (19)
3D Chart (19)
Commercial w (17)
FTP Client (9)
Applet or Application (13)
Framework (9)
Implementation (10)
SNMP Management (5)
Gantt (3)
Toolkit (4)
JXTA (2)
Factory (2)
(Other Topics) (9)

Quality level 2

3D Chart (19)
GUI Components (18)
Open Source (20)
Class Library (17)
Pure Java (23)
FTP Client (9)
Framework (9)
Software (6)
SNMP Management (4)
Toolkit (4)
Bean (5)
SOAP (3)
Gantt (3)
(Other Topics) (11)

Quality level 3

3D Chart (17)
FTP Client (7)
Open Source (9)
Class Library (10)
GUI Components (8)
Framework (6)
SNMP Management (4)
Toolkit (4)
NFS (3)
Gantt (3)
RPC (2)
JXTA (2)
SOAP (2)
(Other Topics) (29)

Analysis The most noticeable difference between quality levels 1 and 3 is that the former generates
more general labels, such as "Pure Java", "Commercial", "Toolkit" and "Factory", while the
latter more specific ones, e.g. "NFS" or "SOAP". As explained in the previous section, the
reason for this is that at quality level 1 the term frequency cut-off is higher, which may
eliminate some of the more specific terms from the term-document matrix.

Computational efficiency5.3.4
In Figure 5.11 we present clustering time as a function of the number of input snippets for
Lingo with different quality level settings.

Figure 5.11
Quality level

settings:
computational

efficiency

40Chapter 5. Results and discussion

Analysis Figure 5.11 shows the cost to be paid for higher clustering quality: clustering 500 snippets at
quality level 3 takes more than two times as much time as at quality level 1. The latter setting
can be particularly useful in high-load environments where it may be more desirable to serve
more queries per second than to deliver only slightly better results at a much slower speed.

Factorisation seeding strategies5.4
In this section we show the influence of the choice of matrix seeding strategy on the results
produced by the variant of Lingo based on the NMF–ED matrix factorisation algorithm.

Topic separation5.4.1
In Figure 5.12 aggregated cluster metrics are shown for two variants of Lingo using random
and K-Means matrix factorisation seeding.

Figure 5.12
Factorisation

seeding strategies:
cluster measures

for topic
separation

Analysis While there is no statistically significant difference between the two variants of Lingo with
respect to topic coverage, the version with K-Means-based factorisation seeding achieves
significantly lower snippet coverage. We explain this phenomenon in Section 5.4.3, where
we analyse cluster labels produced by the two algorithms.

Outlier detection5.4.2
In Table 5.6 we provide the numbers of outliers the two algorithm variants were able to dis-
cover for input data containing one and two outliers.

Table 5.6
Factorisation

seeding strategies:
detected outliers

Detected outliers

K-MeansRandomOutlier size

2121

0121100
102150
112140
001130
012120
011115
000110

41Chapter 5. Results and discussion

Analysis Clearly, the randomly-initialised NMF performs better at the outlier detection task than its
K-Means-initialised counterpart. To explain this result, let us refer back to Table 5.4, which
shows that the K-Means-based matrix factorisation did not detect any outliers in any of the
14 test data sets. In the present case, where K-Means is used only to initialise the NMF, it still
seems to affect the outlier detection performance to some extent.

Cluster label quality5.4.3
Figure 5.13 shows cluster labels generated by the randomly- and K-Means-initialised variants
of NMF–ED for a data set containing three ODP topics: Drugs and Medications, Pharmacology
and Suicides.

Figure 5.13
Factorisation

seeding strategies:
cluster labels

Random

Suicide Prevention (49)
Product Information on Pharmacia (18)
Mental Health (11)
Department of Pharmacology (12)
Drug (8)
Depression (6)
Sterile Solution (5)
Center (5)
Research Activities (5)
Web (4)
Awareness (4)
Survivor (4)
Helplines (2)
(Other Topics) (21)

K-Means

Suicide Prevention (49)
Product Information on Pharmacia (18)
Department of Pharmacology (12)
Web Site (5)
Support (5)
Medical (3)
(Other Topics) (29)

Analysis Although the K-Means-initialised NMF–ED generates much fewer labels, they still represent
the major topics of the data set fairly well. However, due to the small number of clusers, the
K-Means-initialised variant performs worse in outlier detection and achieves lower snippet
coverage.

Computational efficiency5.4.4
Figure 5.14 shows clustering time as a function of the number of input snippets for Lingo
using different matrix seeding strategies.

Figure 5.14
Factorisation

seeding strategies:
computational

efficiency

Analysis Because of the additional K-Means clustering step at the beginning of the algorithm, the
variant of Lingo based on the K-Means-initialised NMF–ED requires more time to execute
and scales slightly worse.

42Chapter 5. Results and discussion

Lingo vs. STC and TRC5.5

Topic separation5.5.1
Figure 5.15 shows aggregated cluster measures for three different approaches to search results
clustering, Lingo (NMF–ED, Quality level 2), Suffix Tree Clustering and Tolerance Rough
Set Clustering.

Figure 5.15
Lingo vs. STC

and TRC:
aggregated cluster
measures for topic

separation

Analysis Compared to TRC and STC Lingo achieves significantly better topic and snippet coverage.
TRC produces slightly purer clusters, but the difference is not statistically significant. The
above results prove that the description-comes-first approach to search results clustering is
a viable alternative to the existing algorithms.

Outlier detection5.5.2
In Table 5.7 we provide the number of outliers detected by each algorithm for input data
containing one and two outlier topics.

Table 5.7
Lingo vs. STC

and TRC: detected
outliers

Detected outliers

STCTRCLingoOutlier size

212121

011121100
00102150
00202140
00102130
00002120
00001115
00001010

Analysis Clearly, Lingo proves superior to the other two algorithms in the outlier detection tests for
both one- and two-outlier data sets. This demonstrates the NMF's ability to discover not only
the collection's major topics but also the not so well represented themes.

43Chapter 5. Results and discussion

Cluster label quality5.5.3
In Figure 5.16 we show cluster labels generated by Lingo, STC and TRC for a data set contain-
ing six size-balanced topics: Book Previews, Search Engines, Fitness, Do-It-Yourself, Graph
Theory and Independent Filmmaking.

Figure 5.16
Lingo vs STC and

TRC: cluster
labels

Lingo NMF-ED

Search Engines (18)
Regular Graphs (13)
DIY Audio (14)
Independent Film (14)
Book Reviews (11)
Software Sites (19)
Senior Health (11)
Fitness Association (10)
Vacuum Tube (7)
Sample Chapters (5)
Current and Past Projects (6)
Color Theorem (4)
National Institute on Aging (5)
(Other Topics) (57)

Suffix Tree Clustering (STC)

search, software (26)
includes (28)
information (20)
site (18)
book (16)
resource (14)
article (11)
film (11)
projects (10)
offered (10)
free (10)
online (10)
seniors (9)
tube (9)
audio (8)

Tollerance Rough Set (TRC)

Search (30)
Software Search (21)
Tube (17)
Graph (11)
Books (16)
Senior (11)
Downloadable Software Directories (3)
Notes (1)
Film (19)
Other (65)

Analysis Compared to STC and TRC Lingo seems to produce labels that are slightly more specific and
probably easier to interpret, compare: "Search Engines" (Lingo) vs. "Search" (TRC), "Vacuum
Tube" (Lingo) vs. "Tube" (STC and TRC) or "Independent Film" (Lingo) vs. "Film" (STC and
TRC). Also, for this particular data set Lingo managed to avoid generating too general or
meaningless labels such as "free", "online", "site", "includes", "information" (STC) or "Notes"
(TRC).

Computational efficiency5.5.4
Figure 5.17 shows clustering time as a function of the number of input snippets for Lingo
and STC34.

Figure 5.17
Lingo vs. STC:
computational

efficiency

In Figure 5.18 we present the average clustering performance, measured in snippets per
second35, for the three compared algorithms.

34 For the sake of clarity, due to significantly longer clustering times, TRC has been omitted in this chart
35 The snippets per second measure is applicable only to algorithms that scale linearly with input data set size,
which is not the case with TRC; we provide this value for reference only.

44Chapter 5. Results and discussion

Figure 5.18
Lingo vs. STC

and TRC:
aggregated

computational
efficiency

Analysis Figure 5.17 shows that, similarly to STC, NMF-based Lingo scales approximately linearly
with the size of the input data set. This is mainly due to the fact that the desired number of
clusters was constant, irrespective of the number of input snippets. STC could cluster almost
1000 snippets per second, but this was achieved at the cost of much lower quality of the
groups.

Summary5.6
Below we summarise the most important observations we made during the whole evaluation
process:

a. The NMF-like dimensionality reduction algorithms significantly outperform
both SVD and K-Means factorisation with respect to topic and snippet coverage,
while maintaining almost the same level of cluster contamination. The reason
for this may be that, in contrast to SVD, NMF produces non-negative base vectors
which can be better matched with the frequent phrases found in the input
snippets.

b. Due to high sparsity of base vectors Local Non-negative Matrix Factorisation
generates cluster labels that are shorter and more general compared to the other
NMF methods. For this reason, contrary to our initial expectations, LNMF per-
forms much worse with respect to average cluster contamination, and thus in
the present form is not the best choice for the dimensionality reduction algorithm
for Lingo.

c. Of all NMF factorisations NMF with Euclidean Distance algorithm is most
computationally efficient, while still maintaining better or equal performance
in topic separation and outlier detection.

d. The description-comes-first approach to search results clustering significantly
outperforms both STC and TRC in topic separation and outlier detection tests.

The most general conclusion to be drawn from the results we presented in this chapter is
that the best performance of the description-comes-first approach, both in terms of cluster
quality and computation time, can be achieved when NMF Euclidean Distance is used to
perform the dimensionality reduction step of the algorithm.

45Chapter 5. Results and discussion

Conclusions and future work6
In our previous work [Osinski and Weiss, 04] we have shown that it is possible to construct
an efficient search results clustering algorithm based on the description-comes-first principle
and Singular Value Decomposition. The aim of this project was to generalise that approach
to different dimensionality reduction techniques and choose the one that would perform best
in terms of clustering quality and computational efficiency.

To achieve the general goal, we implemented four dimensionality reduction techniques (two
variants of NMF, LNMF and K-Means-based Concept Decomposition) and integrated them
with our description-comes-first search results clustering algorithm called Lingo. Evaluation
of all variants of Lingo was based on documents references drawn from the Open Directory
Project database and a set of cluster quality measures we proposed specifically for the search
results clustering task.

Our experiments have revealed that as part of the description-comes-first search results
clustering algorithm Non-negative Matrix Factorisations perform better than SVD and the
K-Means-based Concept Decomposition. Among the NMFs themselves, best results were
achieved by NMF with Euclidean Distance minimisation. Finally, compared to other search
results clustering algorithms we have tested, which are not based on dimensionality reduction
techniques at all, Lingo performs significantly better.

All software components developed during the course of this project are part of the Open
Source Carrot2 Framework and can be downloaded36 and modified without restrictions. We
hope that this will encourage other researches to reuse and extend our algorithm. The prospect
of Lingo being used as part of a major search engine at some point makes our work particularly
rewarding. Overall, we fell that all aims of this project have been fully achieved.

Scientific contributions6.1
Below we list the major scientific contributions of our project:

a. Matrix factorisation routines in Java — We have implemented a number of
matrix factorisation algorithms in the Java programming language, including
two variants of Non-negative Matrix Factorisation, Local Non-negative Matrix
Factorisation and K-Means-based Concept Decomposition. Additionally, we
developed a bridge between highly tuned machine-specific matrix routines
provided by ATLAS, and our Java code, which can result in more than fourfold
improvement in computational efficiency.

b. ODP-based evaluation of search results clustering — We have developed a
set of Carrot2 components that enable evaluation of search results clustering
based on document references provided by the Open Directory Project. Also,
we have proposed a number of cluster quality measures which, in our opinion,
reasonably approximate human users' expectations about grouped search results.

36 http://sourceforge.net/projects/carrot2

46Chapter 6. Conclusions and future work

http://sourceforge.net/projects/carrot2

c. Search results clustering benchmarking application — To perform comprehens-
ive tests of different variants of Lingo, STC and TRC we implemented a com-
mand-line Java application that automatically exercises each of these algorithms
using data sets drawn from the Open Directory Project and saves detailed and
aggregated results as XML files. We have also prepared simple XSLT stylesheets
for transforming the results into HTML pages and Excel files.

Future work6.2
In this work we have shown that the description-comes-first approach to search results
clustering performs fairly well compared to other existing algorithms. Nonetheless, there are
still problems, both with the algorithm and the evaluation scheme, that we did not manage
to address in this project. Below we provide a list of research directions we feel are worth
following.

a. Factorisation algorithms — All factorisation algorithms we implemented during
the course of this project operate on dense matrices. In the search results cluster-
ing application, however, only about 2% of elements in the term-document
matrix are non-zero. For this reason, developing dimensionality reduction
routines taking advantage of the high sparsity of input matrices may yield sub-
stantial improvements in computation time and memory footprint.

We also feel that new fast-converging algorithms for computing NMF [Liu and
Yi, 02] as well as new dimensionality reduction techniques [Xu and Gong, 04]
are worth experimenting with.

b. Improvements to Lingo — At the present stage the most important component
of Lingo that is missing is a reliable method of estimating the desired number
of clusters which is independent of the underlying dimensionality reduction
technique. As suggested in [Li et al., 04], eigenvalue analysis of the term-docu-
ment matrix may turn out useful in this area.

Due to the limited time allocated to this project, we did not manage to look into
the alternative methods of assigning snippets to clusters. One approach that
may improve Lingo's clusters' purity is proximity search [Sadakane and Imai,
01].

c. ODP-based evaluation — At present, data sets for our ODP-based evaluation
of search clustering results need to be selected manually. However, having
precisely defined selection criteria, such as the desired number of topics, affinity
level and topic sizes, data sets can be created fully automatically. This would
dramatically increase the amount of test data and hence the reliability of the
evaluation process.

47Chapter 6. Conclusions and future work

Bibliography

[Berry et al., 95] Michael W. Berry, Susan T. Dumais, and Gavin W. O'Brien. Using Linear
Algebra for Intelligent Information Retrieval. SIAM Rev., 37, pp. 537-595.

[Dhillon and Modha, 01] Inderjit S. Dhillon and Dharmendra S. Modha. Concept Decompos-
itions for Large Sparse Text Data Using Clustering. Machine Learning, Vol. 42, No. 1, pp.
143-175, 2001..

[Dom, 01] Byron E. Dom. An Information-Theoretic External Cluster-Validity Measure. IBM
Research Report RJ 10219, 2001..

[Feng et al., 02] Tao Feng, Stan Z. Li, Heung-Yeung Shum, and HongJiang Zhang. Local
Non-Negative Matrix Factorization as a Visual Representation. Proceedings of the 2nd Inter-
national Conference on Development and Learning, 2002.

[Grefenstette, 95] Gregory Grefenstette. Comparing two language identification schemes. 3rd
International Conference on Statistical Analysis of Textual Data, Rome, 1995.

[Hearst, 98] M. A. Hearst. The use of categories and clusters in information access interfaces. In
T. Strzalkowski (ed.), Natural Language Information Retrieval, Kluwer Academic
Publishers, 1998.

[Hearst and Pedersen, 96] M. A. Hearst and J. O. Pedersen. Reexamining the Cluster Hypothesis:
Scatter/Gather on Retrieval Results. Proceedings of the Nineteenth Annual International
ACM SIGIR Conference, Zurich, June 1996.

[Jansen et al., 00] Bernard J. Jansen, Amanda Spink, and Tefko Saracevic. Real life, real users,
and real needs: a study and analysis of user queries on the web. Information Processing and
Management, Vol. 36, No. 2, pp. 207-227, 2000.

[Lang, 04] Nao Chi Lang. A tolerance rough set approach to clustering web search results. Master
thesis, Faculty of Mathematics, Informatics and Mechanics, Warsaw University, 2004,
http://www.cs.put.poznan.pl/dweiss/carrot-bin/chi-lang-ngo-2004.pdf.

[Lee and Seung, 99] Daniel D. Seung and H. Sebastian Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, Vol. 401, 1999.

[Lee and Seung, 01] Daniel D. Seung and H. Sebastian Seung. Algorithms for non-negative
matrix factorization. Adv. Neural Info. Proc. Syst. 13, pp. 556-562, 2001.

[Li et al., 04] Tao Li, Sheng Ma, and Mitsunori Ogihara. Document clustering via adaptive
subspace iteration. Proceedings of the 27th annual international ACM SIGIR conference
on Research and development in informaion retrieval, Sheffield, UK, 2004, pp. 218-225.

48

http://www.cs.put.poznan.pl/dweiss/carrot-bin/chi-lang-ngo-2004.pdf

[Liu and Yi, 02] By Wenguo Liu and Jianliang Yi. Existing and New Algorithms for Non-negative
Matrix Factorization. http://cs.utexas.edu/users/liuwg/383CProject/CS_383C_Project.htm.

[Liu et al., 03] Tao Liu, Shengping Liu, Zheng Chen, and Wei-Ying Ma. An Evaluation on
Feature Selection for Text Clustering. Proceedings of the Twentieth International Conference
on Machine Learning (ICML-2003), Washington DC, 2003..

[Macskassy et al., 98] Sofus A. Macskassy, Arunava Banerjee, Brian D. Davison, and Haym
Hirsh. Human performance on clustering Web pages: A preliminary study. In Proceedings of
the 4th International Conference on Knowledge Discovery and Data Mining (KDD’98),
1998.

[Osinski and Weiss, 04] Stanislaw Osinski and Dawid Weiss. Lingo: A Concept-Driven Al-
gorithm for Clustering Search Results. Accepted for IEEE Intelligent Systems, 2004.

[PAST, 04] O. Hammer, D. A. T. Harper, and P. D. Ryan. PAST: Paleontological Statistics
Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1), pp. 9,
http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

[Pedersen et al., 91] Jan Pedersen, Doug Cutting, and John Turkey. Snippet Search: a Single
Phrase Approach to Text Access. In Proceedings of the 1991 Joint Statistical Meetings,
American Statistical Association, 1991, http://citeseer.ist.psu.edu/pedersen91snippet.html .

[Porter, 80] M. F. Porter. An algorithm for suffix stripping. Program, 14 (3), pp. 130-137, 1980.

[Riboni, 02] Daniele Riboni. Feature Selection for Web Page Classification. http://cite-
seer.nj.nec.com/554644.html.

[Salton, 89] Gerald Salton. Automatic Text Processing. Addison-Wesley. 0-201-12227-8.

[Sadakane and Imai, 01] Kunihiko Sadakane and Hiroshi Imai. Fast Algorithms for k-word
Proximity Search. Transactions on Communications/Electronics/Information and Systems,
2001.

[Selberg, 99] Eric W. Selberg. Towards Comprehensive Web Search. Doctoral Dissertation,
University of Washington, 1999.

[Stefanowski and Weiss, 03] Jerzy Stefanowski and Dawid Weiss. Web search results clustering
in Polish: experimental evaluation of Carrot. Advances in Soft Computing, Intelligent In-
formation Processing and Web Mining, Proceedings of the International IIS: IIPWM´03
Conference, Zakopane, Poland, vol. 579 (XIV), 2003, pp. 209-22.

[Turk and Pentland, 91] M Turn and A. Pentland. Eigenfaces for recognition. In Journal of
Cognitive Neuroscience, 3(1), 71–83.

[Wild, 03] Stefan Wild. Seeding Non-Negative Matrix Factorizations with the Spherical K-Means
Clustering. MSc Dissertation, University of Colorado, 2003.

[Wroblewski, 03] Michał Wróblewski. Hierarchical Web documents clustering algorithm based
on the Vector Space Model. Master Thesis, Poznan University of Technology, 2003.

[Xu et al, 03] Wei Xu, Xin Liu, and Yihong Gong. Document Clustering Based On Non-negative
Matrix Factorization. Proceedings of the 26th annual international ACM SIGIR conference
on Research and development in informaion retrieval, Toronto, Canada, 2003, pp. 267-
273.

[Xu and Gong, 04] Wei Xu and Yihong Gong. Document clustering by concept factorization.
Proceedings of the 27th annual international ACM SIGIR conference on Research and
development in informaion retrieval, Sheffield, UK, 2004, pp. 202-209.

49

http://cs.utexas.edu/users/liuwg/383CProject/CS_383C_Project.htm
http://palaeo-electronica.org/2001_1/past/issue1_01.htm
http://citeseer.ist.psu.edu/pedersen91snippet.html
http://citeseer.nj.nec.com/554644.html
http://citeseer.nj.nec.com/554644.html

[Yang and Pedersen, 97] Yiming Yang and Jan O. Pedersen. A Comparative Study on Feature
Selection in Text Categorization. Proceedings of ICML-97, 14th International Conference
on Machine Learning. Morgan Kaufmann Publishers, San Francisco, US, 1997, pp. 412-
420.

[Zamir and Etzioni, 98] Oren Zamir and Oren Etzioni. Document Clustering: A Feasibility
Demonstration. Proceedings of the 19th International ACM SIGIR Conference on Research
and Development of Information Retrieval, 1998, pp. 46-54.

[Zamir, 99] Oren E. Zamir. Clustering Web Documents: A Phrase-Based Method for Grouping
Search Engine Results. Doctoral Dissertation, University of Washington, 1999.

[Zhang and Dong, 04] Dell Zhang and Yisheng Dong. Semantic, Hierarchical, Online Clustering
of Web Search Results. Proceedings of the 6th Asia Pacific Web Conference (APWEB),
Hangzhou, China, April 2004.

[Zhang, 02] Dell Zhang. Towards Web Information Clustering. PhD Dissertation, Southeast
University, Nanjing, China, 2002.

50

	DIMENSIONALITY REDUCTION TECHNIQUES FOR SEARCH RESULTS CLUSTERING
	Table of Contents
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Project goal and scope
	1.3. Thesis structure
	1.4. Typographic conventions

	Chapter 2. Background
	2.1. Search results clustering
	2.1.1. Stages of search results clustering
	2.1.1.1. Snippet acquisition
	2.1.1.2. Preprocessing
	2.1.1.3. Feature selection
	2.1.1.4. Clustering

	2.1.2. Vector Space Model
	2.1.2.1. Term weighting
	2.1.2.2. Query matching

	2.1.3. Numerical clustering algorithms
	2.1.4. Suffix Tree Clustering
	2.1.5. Semantic Hierarchical Online Clustering

	2.2. The description-comes-first approach
	2.2.1. Cluster label induction
	2.2.2. Cluster content assignment
	2.2.3. Pseudo-code and illustrative example

	2.3. Dimensionality reduction techniques
	2.3.1. Singular Value Decomposition
	2.3.2. Non-negative Matrix Factorisation
	2.3.3. Local Non-negative Matrix Factorisation
	2.3.4. Concept Decomposition

	Chapter 3. Implementation
	3.1. Matrix factorisation in Java
	3.1.1. MatLab prototypes
	3.1.2. Java implementations
	3.1.3. Performance improvements
	3.1.3.1. Architecture-specific matrix routines
	3.1.3.2. Stop criterion

	3.2. Search results clustering in Carrot2
	3.2.1. The framework
	3.2.2. New components

	Chapter 4. Evaluation
	4.1. Problems
	4.2. Methods
	4.2.1. Standard IR metrics
	4.2.2. User evaluation
	4.2.3. Merge-then-cluster approach

	4.3. Open Directory Project
	4.4. Evaluation methodology
	4.4.1. Cluster Contamination measure
	4.4.2. Topic Coverage
	4.4.3. Snippet Coverage
	4.4.4. Additional measures

	Chapter 5. Results and discussion
	5.1. Experimental setup
	5.2. Dimensionality reduction techniques
	5.2.1. Topic separation
	5.2.2. Outlier detection
	5.2.3. Cluster label quality
	5.2.4. Computational efficiency

	5.3. Quality level settings
	5.3.1. Topic separation
	5.3.2. Outlier detection
	5.3.3. Cluster label quality
	5.3.4. Computational efficiency

	5.4. Factorisation seeding strategies
	5.4.1. Topic separation
	5.4.2. Outlier detection
	5.4.3. Cluster label quality
	5.4.4. Computational efficiency

	5.5. Lingo vs. STC and TRC
	5.5.1. Topic separation
	5.5.2. Outlier detection
	5.5.3. Cluster label quality
	5.5.4. Computational efficiency

	5.6. Summary

	Chapter 6. Conclusions and future work
	6.1. Scientific contributions
	6.2. Future work

	Bibliography

