Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
A monad for interfacing with external SAT solvers
branch: master

This branch is 123 commits behind ekmett:master

Fetching latest commit…

Cannot retrieve the latest commit at this time

Failed to load latest commit information.
data/dimacs
src
tests
travis
.ghci
.gitignore
.travis.yml
.vim.custom
AUTHORS.md
CHANGELOG.md
LICENSE
README.md
Setup.lhs
ersatz.cabal

README.md

Ersatz

Build Status

Ersatz is a library for generating QSAT (CNF/QBF) problems using a monad. It takes care of generating the normal form, encoding your problem, marshaling the data to an external solver, and parsing and interpreting the result into Haskell types.

What differentiates Ersatz is the use of observable sharing in the API.

For instance to define a full adder:

full_adder :: Bit -> Bit -> Bit -> (Bit, Bit)
full_adder a b cin = (s2, c1 || c2)
  where (s1,c1) = half_adder a b
        (s2,c2) = half_adder s1 cin

half_adder :: Bit -> Bit -> (Bit, Bit)
half_adder a b = (a `xor` b, a && b)

as opposed to the following code in satchmo:

full_adder :: Boolean -> Boolean -> Boolean
           -> SAT ( Boolean, Boolean )
full_adder a b c = do
  let s x y z = sum $ map fromEnum [x,y,z]
  r <- fun3 ( \ x y z -> odd $ s x y z ) a b c
  d <- fun3 ( \ x y z -> 1   < s x y z ) a b c
  return ( r, d )

half_adder :: Boolean -> Boolean
           -> SAT ( Boolean, Boolean )
half_adder a b = do
  let s x y = sum $ map fromEnum [x,y]
  r <- fun2 ( \ x y -> odd $ s x y ) a b
  d <- fun2 ( \ x y -> 1   < s x y ) a b
  return ( r, d )

This enables you to use the a much richer subset of Haskell than the purely monadic meta-language, and it becomes much easier to see that the resulting encoding is correct.

To allocate fresh existentially or universally quantified variables or to assert that a Bit is true and add the attendant circuit with sharing to the current problem you use the SAT monad.

verify_currying :: (MonadState s m, HasQSAT s) => m ()
verify_currying = do
  (x::Bit, y::Bit, z::Bit) <- forall
  assert $ ((x && y) ==> z) === (x ==> y ==> z)

We can then hand that off to a SAT solver, and get back an answer:

main = solveWith depqbf verify_currying >>= print

Support is offered for decoding various Haskell datatypes from the solution provided by the SAT solver.

Contact Information

Contributions and bug reports are welcome!

Please feel free to contact me through github or on the #haskell IRC channel on irc.freenode.net.

-Edward Kmett

Something went wrong with that request. Please try again.