-
Notifications
You must be signed in to change notification settings - Fork 402
/
Copy pathdae_reduced_index.py
193 lines (155 loc) · 6.61 KB
/
dae_reduced_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#
# MIT No Attribution
#
# Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this
# software and associated documentation files (the "Software"), to deal in the Software
# without restriction, including without limitation the rights to use, copy, modify,
# merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
# PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
#
# -*- coding: utf-8 -*-
from casadi import *
import pylab as plt
# Pendulum: point mass on massless rod
# x'' = T*x, y'' = T*y-g, x**2+y**2-L**2
#
#
# .
# L /
# /
# /
# o (x,y)
#
x = SX.sym("x") # horizontal position of point
y = SX.sym("y") # vertical position of point
dx = SX.sym("dx")
dy = SX.sym("dy")
u = SX.sym("u") # helper states to bring second order system to first order
v = SX.sym("v")
du = SX.sym("du")
dv = SX.sym("dv")
# Force
T = SX.sym("T")
L = 1
g = 9.81
alg = vertcat(dx-u,dy-v,du-T*x,dv-T*y+g,x**2+y**2-L**2)
# Implicit differential states
x_impl = vertcat(x,y,u,v)
# Derivatives of implict differential states
dx_impl = vertcat(dx,dy,du,dv)
z = T
dae = {"x_impl": x_impl, "dx_impl": dx_impl, "z": z, "alg": alg}
# Perform index reduction
(dae_reduced,stats) = dae_reduce_index(dae)
print("We had an index 3 system (reduced to index 1 now)")
print(stats)
print("Here's the reduced DAE:")
print(dae_reduced)
print("Notice how the algebraic equation now contains a second derivative of x**2+y**2-L**2")
print("Also note how x**2+y**2-L**2 and its first derivate are absent from the algebraic equations.")
print("Both are kept in 'I' though: the resulting DAE invariants.")
# The DAE is not yet in a form that CasADi integrator can handle (semi-explicit).
# Let's convert it, ad obtain some adaptors
[dae_se, state_to_orig, phi] = dae_map_semi_expl(dae, dae_reduced)
grid = list(np.linspace(0,5,1000))
tf = DM(grid).T
intg = integrator("intg","idas",dae_se,0,grid)
# Before we can integrate, we need a consistant initial guess
# Let's say we start at y=-0.5, dx=-0.1;
# consistency equations should automatically identify everything else
# Encode the desire to only enforce y and dx
init_strength = {}
free = 0 # default
force = -1
init_strength["x_impl"] = vertcat(free,force,free,free)
init_strength["dx_impl"] = vertcat(force,free,free,free)
init_strength["z"] = vertcat(free)
# Obtain a generating Function for initial guesses
init_gen = dae_init_gen(dae, dae_reduced, "ipopt", init_strength)
init = {}
blank = 0.0 # Will not be enforced but still used as initial guess
# suggest to initialize with the left-hanging solution by having x=-1 as initial guess
init["x_impl"] = vertcat(-1.0,-0.5,blank,blank)
init["dx_impl"] = vertcat(-0.1,blank,blank,blank)
init["z"] = blank
xz0 = init_gen(**init)
print("We have a consistent initial guess now to feed to the integrator:")
print(xz0)
print("Look, we found that force in the pendulum at t=0 equals:")
print(state_to_orig(xf=xz0['x0'],zf=xz0['z0'])["z"])
print("A consistent initial guess should make the invariants zero (up to solver precision):")
print(phi(x=xz0['x0'],z=xz0['z0']))
# Integrate and get resultant xf,zf on grid
sol = intg(**xz0)
print(sol['xf'].shape)
# Solution projected into original DAE space
sol_orig = state_to_orig(xf=sol["xf"],zf=sol["zf"])
# We can see the large-angle pendulum motion play out well in the u state
plt.plot(tf.T,sol_orig["x_impl"].T)
plt.grid(True)
plt.legend([e.name() for e in vertsplit(x_impl)])
plt.xlabel("Time [s]")
plt.title("Boundary value problem solution trajectory")
# A perfect integrator will perfectly preserve the values of the invariants over time
# Integrator errors make the invariants drift in practice
# This is not a detail; the pendulum length is in fact growing!
error = phi(x=sol["xf"],z=sol["zf"])["I"]
plt.figure()
plt.plot(tf.T,error.T)
plt.grid(True)
plt.xlabel("Time [s]")
plt.title("Evolution trajectory of invariants")
# There are some techniques to avoid the drifting of invariants associated with index reduction
# - Method of Dummy Derviatives (not implemented)
# hard implementation details: may need to switch between different choices online
# -> integration in parts triggered by zero-crossing events
# - Stop the integration every once in a while and project back (not implemented)
# - Baumgarte stabilization (implemented): build into the equations a form of continuous feedback that brings back deviations in invariants back into the origin
# Demonstrate Baumgarte stabilization with a pole of -1.
# Drift is absent now.
(dae_reduced,stats) = dae_reduce_index(dae, {"baumgarte_pole": -1})
[dae_se, state_to_orig, phi] = dae_map_semi_expl(dae, dae_reduced)
intg = integrator("intg","idas",dae_se,0,grid)
init_gen = dae_init_gen(dae, dae_reduced, "ipopt", init_strength)
xz0 = init_gen(**init)
sol = intg(**xz0)
error = phi(x=sol["xf"],z=sol["zf"])["I"]
plt.figure()
plt.plot(tf.T,error.T)
plt.grid(True)
plt.xlabel("Time [s]")
plt.title("Boundary value problem solution trajectory with Baumgarte pole=-1")
# Sweep across different integrator precisions and Baumgarte poles.
# The choice of pole is not really straightforward
plt.figure()
poles = [-0.1,-1,-10]
precisions = [0.1,1,10]
abstol_default = 1e-8
reltol_default = 1e-6
plt.subplot(len(precisions),len(poles),1)
for i,pole in enumerate(poles):
for j,precision in enumerate(precisions):
(dae_reduced,stats) = dae_reduce_index(dae, {"baumgarte_pole": pole})
[dae_se, state_to_orig, phi] = dae_map_semi_expl(dae, dae_reduced)
intg = integrator("intg","idas",dae_se,0,grid,{"abstol":abstol_default*precision,"reltol":reltol_default*precision})
init_gen = dae_init_gen(dae, dae_reduced, "ipopt", init_strength, {"ipopt.print_level":0,"print_time": False})
xz0 = init_gen(**init)
sol = intg(**xz0)
nfevals = intg.stats()["nfevals"]
error = phi(x=sol["xf"],z=sol["zf"])["I"]
plt.subplot(len(precisions),len(poles),j*len(poles)+i+1)
plt.plot(tf.T,error.T)
plt.grid(True)
plt.xlabel("Time [s]")
plt.title("pole=%0.1f, abstol=%0.0e => nfevals=%d" % (pole,abstol_default*precision,nfevals))
plt.show()