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1 Summary

We summarise the mathematical foundation of the holographic method of measuring the
reflector profile of an antenna or radio telescope. In particular, we treat the case, where
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the signal source is located at a finite distance of the antenna under test, necessitating
the inclusion of the so-called Fresnel field terms in the radiation integrals. We assume a
“full phase” system with reference receiver to provide the reference phase. Thus so-called
phase-recovery schemes are not discussed here. These have been extensively described by
Morris (1985).

Then we describe in some detail the hardware and software implementation of the
system used for the holographic measurement of the ALMA prototype antennas at the
VLA site. We include a description of the practicalities of a measurement and surface
setting. Finally, we present the holographic measurement results for both the VertexRSI
and AEC (Alcatel-EIE-Consortium) prototype ALMA antennas.

2 Introduction

Large reflector antennas, as those used in radio astronomy and deep-space communication,
generally are composed of a set of surface panels, supported on three or more points by a
support structure, often called the backup structure. After assembly of the reflector it is
necessary to accurately locate the panels onto the prescribed paraboloidal surface in order
to obtain the maximum antenna gain. The fact that some antennas have a ”shaped”contour
is irrelevant for the purpose of our discussion. We are concerned with describing a method
which allows us to derive the position of the individual panels in space and compute the
necessary adjustments of their support points to obtain a continuous surface of a certain
prescribed shape.

The analysis by Ruze (1966) of the influence of random errors in the reflector contour
on the antenna gain indicates that the rms error should be less than about one-sixteenth
of the wavelength for acceptable performance. Under the assumption that the errors are
randomly distributed with rms value ε and have a correlation length c which is much
larger than the wavelength λ and much smaller than the reflector diameter D, the relative
decrease in aperture efficiency (or gain) can be expressed by the simple formula

ηA

ηA0

= exp

{
−
(

4πε

λ

)2
}

, (1)

where ηA0 is the aperture efficiency of the perfect reflector. An error of λ/40 is required to
limit the gain loss to 10 percent.

The first large reflectors for radio astronomy, here also called radio telescope, had a
diameter of about 25 m and operated at wavelengths longer than 10 cm. Thus a surface
precision of several millimeters would have provided excellent performance. A measurement
accuracy of this order-of-magnitude is readily achievable with a classic “theodolite and
tape” method. Using the best theodolites (T3), accuracies of the order of 100 micrometers
have been achieved on reflectors of a size up to 30 m (Greve , 1986). However, the
development of the technology of large and simultaneously highly accurate antennas has
been a very active field over the last 30 years, whereby the application of the design
principle of homology (von Hoerner , 1967) has enabled the construction of, for instance, a
100 m diameter radio telescope with a surface accuracy of about 0.5 mm (Hachenberg et al .
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, 1973; Godwin et al . , 1986), a 30 m millimeter telescope with 75 µm accuracy (Baars
et al . , 1987, 1994) and 10-12 m diameter submillimeter telescopes with an rms surface
error of less than 20 µm (e.g. Baars et al . , 1999). The setting of the reflector panels at such
high accuracy has required the development of measuring methods of hitherto unsurpassed
accuracy. It should be noted that these measurements need to be done “in the field”, which
in the case of millimeter radio telescopes often means the hostile environment of a high
mountain site.

A number of special measuring methods and devices have been developed (for a review,
see Baars , 1983). The most versatile, and by now widely used method is normally called
“radio holography”. The method makes use of a well-known relationship in antenna theory:
the far-field radiation pattern of a reflector antenna is the Fourier Transformation of the
field distribution in the aperture of the antenna. Note that this relationship applies to
the amplitude and phase distributions, not to the power pattern. Thus, if we can measure
the radiation pattern, in amplitude and phase, over a sufficiently large angular area, we
can derive by Fourier Transformation the amplitude and phase distribution in the antenna
aperture plane with an acceptable spatial resolution. The latter is determined by the
angular size of the measured radiation pattern. This method was suggested, but not
worked out in any detail, in the appendix of Jennison’s pocket book ”Radio Astronomy”
(Jennison , 1966). The paper by Bennett et al . (1976) presented a sufficiently detailed
analysis to draw the attention of radio astronomers. Thus, Scott & Ryle (1977) used the
new Cambridge 5 km array to measure the shape of four of the eight antennas, using a
celestial radio point source and the remaining antennas to provide the reference signal.

The use of a natural, celestial signal source is very attractive for two reasons. First the
source is definitely in the far-field of the antenna. The far-field region of the antenna is
defined to start at

Rf =
2D2

λ
, (2)

and can easily reach values of several hundreds of kilometers. Thus no earth-bound trans-
mitter will ever be in the far-field for these applications. Secondly, the celestial radio
source traces a daily path across the sky, providing a range of elevation angles over which
the data can be collected. This is of great interest for the study of elevation dependent
deformations of the antenna, caused by gravity. However, normally the intensity of the
cosmic source is not sufficient to achieve the required signal-to-noise ratio for an accurate
measurement. Only a few strong sources are available. The situation is more favourable
if there are several large antennas, as in interferometric arrays, where the extra antennas
can be used to provide a strong reference signal.

For the IRAM 30 m millimeter telescope on Pico Veleta (Baars et al . , 1987) it was
decided to use a holographic system at 22 GHz, using the giant water vapour maser in the
Orion Nebula, which flared to an intensity of several million jansky during the design phase
of the telescope. The reference signal was provided by a 1.5m diameter reflector located in
the back of the prime-focus cage of the telescope. A compact double receiver in the prime
focus served both reference and main reflector. Although by the time of the measurement
the maser source had weakened, it was sufficiently strong to enable a measurement of the
surface with an accuracy of about 30 µm rms and a setting of the surface to better than
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100 µm rms (Morris , 1988).
Artificial satellites, radiating a beacon signal at a fixed frequency can also be used as far-

field signal source. Extensive use has been made of synchronous communication satellites in
the 11 GHz band (e.g. Godwin et al . , 1986). These transmitters of course do not provide
the range of elevation angles accessible with cosmic sources. Some satellites, notably
the LES (Lincoln Experimental Satellite) 8 and 9, have been used for radio holography
of millimeter telescopes (e.g. Baars et al . , 1999). They provided a signal at the high
frequency of 37 GHz and with their geo-synchronous orbit moved over some 60 degrees in
elevation angle. Unfortunately, both satellites are no longer available. Radio astronomers
would be greatly helped if a satellite would become available with a reliable transmitter
at a high frequency of about 40, or preferably 95 GHz.

Lacking a sufficiently strong source in the far-field, we have to take recourse to using an
earth-bound transmitter. In practice these will be located at a distance of several hundreds
of meters to a few kilometers and be at an elevation angle of less than 10 degrees. Clearly,
these are in the near-field of the antenna, requiring significant corrections to the received
signals. The detailed treatment of this case is presented in this report.

Successful measurements on short ranges have been reported for the JCMT (Hills et al .
, 2002) and the ASTE antenna of NAOJ. The ALMA prototype antennas (12 m diameter,
surface accuracy 20-25µm) have been measured and set with the aid of a transmitter at
a distance of 315 m, elevation angle 9 degrees, radiating at a wavelength near 3 mm. We
will discuss the results of these measurements in this report.

3 The Mathematics of Radio Holography

The reciprocity theorem describes the equivalency between the characteristics of a trans-
mitting and receiving antenna. Thus both concepts will be used in the following treatment
depending on the specific aspect under description. We shall not repeat here the fundamen-
tal analysis which leads from Maxwell’s equations to the “physical optics” representation
of the characteristics of the reflector antenna (see e.g. Silver (1949) and Rusch & Potter
(1970)). The basic expression, linking the radiation function f(x, y, z) at a point P in

space with the field distribution F (ξ, η) over the aperture plane of the antenna, is written
as (see Figure 1 for the geometry)

f(x, y, z) =
1

4π

∫
F (ξ, η)

e−ikr

r

[(
ik +

1

r

)
iz · r1 + ikiz · s

]
dξdη, (3)

where the integration is extended over the aperture area, k = 2π/λ and the unit vectors
are as indicated in Figure 1 (with s the propagation vector of the wave field in the aper-
ture). This relation assumes that the aperture is large in units of the wavelength. This
general expression can be simplified depending on the distance of the field point P from the
aperture plane. We discern the so-called far-field region (Fraunhofer diffraction), nearfield
region (Fresnel diffraction) and the evanescent wave zone up to a few wavelengths from the
reflector. In the last case, which does not concern us here, no approximations are allowed.
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Figure 1: Geometry of the aperture integration method for finite distance to the field point
P.

4 The Nearfield Approximation (Fresnel Region)

In the nearfield region, which corresponds to the Fresnel region in optical diffraction
(see e.g. Born & Wolf , 1970) some simplifications can be introduced in the evaluation of
Equation 3:

1. r is large enough to ignore its inverse with respect to k in the bracketed term

2. the term 1/r outside the brackets is replaced by the reciprocal distance 1/R from the
aperture center to the field point P.

3. the term iz · r1 can be approximated by iz · R1 = cos θ with R1 the unit vector from
the origin to the field point.

4. the term iz · s represents a deviation from uniform phase over the aperture. If these
are small, this term can be assumed to be equal to one over the aperture.

Note that the variation in r over the aperture must be maintained in the exponent (phase)
term. This gives rise to the well-known Fresnel integrals.Thus the nearfield (Fresnel region)
expression can be written as

f(x, y, z) =
i

2λR

∫
F (ξ, η) [cos θ + 1] eikrdξdη. (4)

We have (see Figure 1)

r =
{
(x− ξ)2 + (y − η)2 + z2

}0.5
. (5)
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Writing the coordinates of the field point P(x,y,z) in spherical coordinates, we obtain

x = R sin θ cos φ ≡ Ru,

y = R sin θ sin φ ≡ Rv,

z = R cos θ = R
√

(1− u2 − v2),

where we have also introduced the direction cosines of the field point

P (u, v = sin θ cos φ, sin θ, sin φ).

Thus, Equation 5 can be written as

r = {(Ru− ξ)2 + (Rv − η)2 + R2(1− u2 − v2)}0.5
(6)

= R

{
1− 2

uξ + vη

R
+

ξ2 + η2

R2

}0.5

. (7)

The series expansion of Equation 7 yields

r ≈ R− (uξ + vη) +
ξ2 + η2

2R
− (ξ2 + η2)

2

8R3
− (uξ + vη)2

2R
+

(ξ2 + η2)(uξ + vη)

2R2
− . . . (8)

Normally, for the Fresnel region analysis, the series is stopped after the quadratic term,
which preserves the first three terms of the series in Equation 8. This leads from Equation
4 to the following radiation integral

f(u, v) =
i

λ

eikR

R

∫
F (ξ, η) exp

{
ik

[
−(uξ + vη) +

ξ2 + η2

2R

]}
dξdη. (9)

The integral of Equation 9 is the well known Fresnel diffraction integral in two coordinates.
Considering that for a high gain antenna, the angular region of interest is confined to small
values of θ, we can write in Equation 4 cos θ = 1, which is valid to 0.1 % for angles up
to 3 degrees off axis. If we introduce into Equation 9 the spherical coordinates, defined
above, and define the aperture as a circular plane with radius a, radial coordinate ρ and
azimuthal angle χ, the integral takes the form (ignoring the terms before the integral sign)

f(θ, φ) =

∫ a

0

∫ 2π

0

F (ρ, χ) exp

[
ik

{
−ρ sin θ cos(χ− φ) +

ρ2

2R

}]
ρdρdχ. (10)

For a rotationally symmetric aperture distribution F (ρ), independent of χ, the integration
over χ results in

f(θ) = 2π

∫ a

0

F (ρ)J0(kρ sin θ) exp

(
ik

ρ2

2R

)
ρdρ. (11)

These integrals have been studied by Lommel in his treatment of Fresnel diffraction at a
circular aperture and the solution can be written in terms of Lommel functions (for details
cf. Baars (1970) or Born & Wolf (1970)).
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Figure 2: The near-field calculation. Red and blue curves are the sine and cosine-
component, respectively, while the green curve is the “powerpattern”, i.e. the sum of the
squares of the two former (multiplied by a factor 4 for purpose of illustration). This calcu-
lation assumes a distance to the aperture of 300 m, wavelength 3 mm and uniform aperture
illumination; maximum value of u=75 corresponds with an angle of about 2 degrees off
boresight. This numerical example is thus applicable to the holography measurement of
the ALMA antennas at the ATF/VLA site.

In the following we illustrate the near-field by numerically integrating Equation 111 We
assume the aperture function to be of the form F (ρ) = 1− (1− τ)ρ2, the “quadratic on a
pedestal τ” illumination function with taper τ (uniform illumination for τ=1). We choose
a normalised aperture radius a=1, introduce the variable u=k sin θ and ignore the factor
2π in front of the integration sign. In the integration we must separate the exponent in its
cosine and sine part. For uniform illumination, we obtain the result shown in Figure 2.

4.1 The Far-Field Approximation (Fraunhofer Region)

In the far-field situation, the field point P is so far away (in principle at infinity) that the
vectors R1and r1are parallel and moreover the variation of r in the exponent of Equation
4 can be reduced to the linear form

r = R− (uξ + vη) = R− sin θ(ξ cos φ + η sin φ). (12)

1The calculations and resulting plots of Figures 2 through 6 have been made with the aid of the
Mathematica package. The Mathematica expressions are assembled in §B.
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Figure 3: The field pattern for the uniform (red) and fully tapered (blue) illumination
function. The tapered case (blue) exhibits a broader beam and lower sidelobes.

Now, the far-field radiation integral, Equation 4 with cos θ = 1 can be written as

fP (θ, φ) =
i

λ

e−ikR

R

∫
F (ξ, η) exp {ik sin θ(ξ cos φ + η sin φ)} dξdη, (13)

where the integration is performed over the aperture A. Again applying this equation to a
circular, plane aperture with radius a and azimuthal angle χ, the integral is transformed
into

f(θ, φ) =

∫ a

0

∫ 2π

0

F (ρ, χ) exp [ik {−ρ sin θ cos(φ− χ)}] ρdρdχ, (14)

which for a rotationally symmetric aperture function F (ρ) takes the form of a Hankel
Transform

f(θ, φ) = 2π

∫ a

0

F (ρ)J0(kρ sin θ)ρdρ → 2π
J1(ka sin θ)

ka sin θ
= πΛ1(ka sin θ), (15)

where J0 and J1 are the Bessel function of the first kind and order zero and one, respectively
and Λ1 is theso-called Lambda function of first order. The expression after the arrow
assumes a uniform amplitude distribution F (ρ) ≡ 1. Figure 3 presents an illustration of
Equation 14 for uniform and tapered illumination.
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4.1.1 The Fourier Transformation Relationship

Using the direction cosines (u,v), introduced above after Equation 5, Equation 13 can also
be written as

fP (u, v) =
i

λ

e−ikR

R

∫
F (ξ, η) exp{ik(ξu + ηv)}dξdη (16)

and we see that there is a fourier transformation relationship between f(u, v) and F (ξ, η).
Ignoring the term in front of the integral sign, the inverse Fourier transformation

can now be written as

F (ξ, η) =

∫
f(u, v) exp{−ik(uξ + vη)}dudv, (17)

where the integration in principle has to be performed over a closed surface, surrounding
the aperture. Thus a knowledge of the entire far-field pattern both in amplitude and
in phase provides a description of the complex field distribution over the aperture of the
antenna, also in amplitude and phase.

It is interesting to note that Silver devotes a lengthy discussion to this relationship
(Ch. 6.3, 1949), but concludes that the practical application is limited by the fact that
the far-field pattern is only prescribed in power. Thus the phase function of f(θ, φ) would
be arbitrary and the aperture distribution cannot be uniquely determined. It was, as
noted in the introduction, Jennison who mentioned the same relation and its practical
usefulness, pointing out that the amplitude and phase can both be measured with an
interferometer. When Silver wrote his text in the mid forties, radio interferometry had not
yet been developed.

In most cases it will be impossible, or in any case impractical, to measure the far-field
pattern over the entire sphere. It can be shown however that a measurement of the pattern
out to an angle Θ = n ΘA from the beam axis yields the aperture distribution with a spatial
resolution of δ = D

n
, where ΘA ≈ λ

D
is the half-power beam width and D is the aperture

diameter, λ the wavelength.

5 Mathematical Details of Near-Field Holography

We now continue with the treatment of holography in the nearfield. Because we want to
derive the complex aperture distribution form the measured near-field pattern, the inverse
Fourier Transformation of Equation 4 will be our point of departure, where Equation 5,
but now written with direction cosines(u,v), is the expression for the finite distance from
a point in the aperture to the field point P. Thus we have the inverse of Equation 4

F (ξ, η) =
i

λR

∫
f(u, v) exp(−ikr)dudv. (18)

Note that we have assumed that the angle θ is small enough to allow cos θ to be set
to unity (<0.1 percent error for θ up to 3 degrees). R is the distance from the antenna
aperture center to the holography signal source.
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From the discussion in the foregoing section we repeat here the series expansion for the
distance r (Equation 8):

r ≈ R− (uξ + vη) +
ξ2 + η2

2R
− (ξ2 + η2)

2

8R3
− (uξ + vη)2

2R
+

(ξ2 + η2)(uξ + vη)

2R2
. (19)

As noted above, normally for the Fresnel region analysis, the series is stopped after the
quadratic term, which preserves the first three terms in Equation 19. Here, we shall
maintain the next terms too in order to make an estimate of the error in the approximation.
Substitution of Equation 19 into Equation 18 yields

F (ξ, η) =
i

λ

e−ikR

R
exp{−ikδp1(ξ, η)}

∫
f(u, v) exp{ik(uξ + vη)}e−ikεdudv. (20)

The terms in Equation 19, which are independent of the integration variables, have been
brought outside the integral under the variable δp1. The other terms in higher powers of
(u,v) are collected under the variable ε. They “modify” the direct Fourier Transformation
of Equation 20. The first pathlength term

δp1(ξ, η) =
ξ2 + η2

2R
− (ξ2 + η2)

2

8R3
(21)

causes a rapidly varying phase variation over the aperture, which can be compensated to
a large degree by an axial displacement of the feed. A focus adjustment δf away from the
reflector causes a path length variation of

δp2(ξ, η) =

{
ξ2 + η2 +

(
f − ξ2 + η2

4f
+ δf

)2
}0.5

−
{

f +
ξ2 + η2

4f
+ δf

}
. (22)

In Figure 4 we illustrate the behaviour of these terms as function of the radial aperture
coordinate. The “cosine component” of the phase function of Equation 21 for 3mm wave-
length and a distance R = 300 m is shown in red, while the phase function of Equation
22 for a certain choice of δf is superposed in blue. The difference between both terms is
shown in the lower plot. Clearly, the phase error increases its spatial frequency for increas-
ing radial aperture coordinate. The difference plot shows that the residuals are significant
for the outer half of the aperture. By varying the value of δf, one can obtain an impression
of its influence on structure and magnitude of the difference function (Figure 5).

We want to minimise the sum of the two terms (Equations 21 and 22) by choosing the
appropriate value of δf. Because of the (ξ,η)-dependence (as shown above), there will be a
residual path length error, which we must apply to the result of the Fourier Transformation.
A value of 102 mm seems the most useful for R = 300 m. The remaining error must be
introduced in the mathematical analysis of the data according to the curve. This is a
correction to the aperture phase distribution, obtained after the Fourier Transformation
of the measured beam pattern.
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Figure 4: Residual aperture phase for finite distance and axial defocus. Top: Eq.(20), red,
and Eq.(21), blue. The lower curve shows the differenceof the two.
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Figure 5: The residual pathlength error in mm for a distance R = 300 m to the holography
transmitter and the ALMA 12-m diameter antenna with f

D
= 0.4. The parameter is the

axial defocus δf = 96, step 2, 106 mm, from top to bottom.

The higher order terms in Equation 19, containing the integration variables (u,v), must
be discussed separately. They constitute a small pathlength error

ε =

(
ξ2 + η2

)
(uξ + vη)

2R2
− (uξ + vη)2

2R
, (23)

which adds a phase term to the integral of Equation 18 of the following form

exp(−ikε) ≈ 1− ikε = 1− ik

{
u
ξ(ξ2 + η2)

2R2
+ v

η(ξ2 + η2)

2R2
− u2 ξ2

2R
− v2 η2

2R
− uv

ξη

R

}
.

(24)
It is seen that this correction involves the calculation of five additional integrals, which
look like Fourier Transformations, but aren’t really bona fide FTs.

The magnitude of the remaining term ε (Equation 23) is illustrated in Figure 6.
At the edge of the measured beam the largest path length error is about −0.4 mm at

one edge of the aperture. Let us look at some other numerical values for the case of the
ALMA antennas. Here the distance R = 300 - 315 m; the reflector diameter is 12 m, so
maximum value of (ξ , η) = 6 m. For a beam map with 180 points across a scan, we obtain
a resolution in the aperture of about 15 cm, which is fully suitable for the interpolation
of the adjuster settings. The scan angle in this case is about plus and minus 1.5 degrees.
This means the maximum value of the direction cosines (u,v) ≈ 0.03.

Thus the maximum value of the components of Equation 21 become
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Figure 6: A three-dimensional illustration of the second order path error corrections (Equa-
tion 23).

δp1 =
72

600
− (72)2

(8 ∗ (300)3)

= 0.12− 0.24× 10−4.

The last term is 5000 times smaller than the first and normally fully negligible. The
maximum magnitude of ε is

ε =
72 ∗ 0.36

(2 ∗ (300)2)
− (0.36)2

600

= 14× 10−5 − 21.6× 10−5

= −8× 10−5.

Compare this term with the main term in the Fourier transform (uξ+vη) (Equation
18), which attains a maximum value of 0.36, i.e. 4500 times larger.

Nevertheless, because these terms influence the phase over the aperture, they must be
dealt with carefully. When all the integrals of Equation 23 are evaluated, it turns out that
the contribution of ε to the phase amounts to 2 µm pathlength over most of the aperture,
reaching a value of 5µm at the edge2. In a high accuracy measurement, where the aim is

2This is shown in Figure 7.
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Figure 7: Non-Fresnel correction terms.

to achieve a measuring accuracy of better than 10 µm, one might indeed correct for this
term.

As stated above, the near-field path length error of Equation 21 is compensated as well
as possible by an axial defocus of the feed (Equation 22). The remaining path error, as
depicted, attains values of several millimeters and a correction over the aperture must be
applied in all cases. As mentioned earlier, this is easily done by direct addition to the
derived aperture distribution after the Fourier Transformation.

It is possible that during the measurement the receiver feed is not located in the op-
timum refocused position. The pathlength error caused by an axial defocus of δz follows
from Equation 22 as

δpz = δz

1−
1− ξ2+η2

4f2 + δf
f√

ξ2+η2

4f2 +
(
1− ξ2+η2

4f2 + δf
f

)2
 , (25)

14



while a transverse (lateral) offset by an amount δx will cause a pathlength variation of

δpx = δx
ξ

f


1

1 + δf
f

− 1√
ξ2+η2

f2 +
(
1− ξ2+η2

4f2 + δf
f

)2

 . (26)

In the reduction process of the holography data, these terms are found by a fit of the
measured beam map. The final map of surface deviations is then referred to a position of
the feed in the fitted “out-of-focus” location.

6 Practical Realisation of the Holography Measure-

ments

6.1 Task

In this chapter we describe the way in which a holography measurement has been executed
on the ALMA prototype antennas at the VLA site. The specification requires the antennas
to have a surface accuracy of 25µm RMS for the AEC antenna (with a goal of 20µm) and
20µm for the VertexRSI antenna. ALMA assumed the task to demonstrate this with
the aid of a holography system at 3 mm wavelength after delivery of the antennas by the
contractors with a surface accuracy of not worse than 100µm RMS. This initial setting was
performed by VertexRSI with digital photogrammetry and by AEC with the aid of a Leica
“total station” laser-tracker (basically a theodolite with integrated distance measurement
instrument and all-electronic readout).

The holography system was designed to provide a measurement repeatability of 10µm,
which would suffice to demonstrate the realism in the obtained overall surface accuracy. It
should be noted that in the current setup the holography system provides a surface map at
one elevation only. No information on the gravitational deformation of the antenna with
varying elevation angle can be obtained.

6.2 Equipment and Execution of the Measurement Program

• The signal source for the holography measurements is a monochromatic transmitter
at a frequency of 78.92 or 104.02 GHz, located on a 50 m high tower at a distance
of 315 and 302 m from the Vertex and AEC antenna, respectively.

• The elevation angle is approximately 8 degrees. The receiver is a full-phase double-
receiver, located in the apex region behind the primary focus of the main antenna.
The reference signal is received by a wide beam horn pointing along the boresight
towards the transmitter.

• Amplitude and phase maps of the antenna beam were obtained by raster scanning.
After Fourier Transformation a map of the aperture amplitude and phase distribution
was obtained with a spatial resolution over the aperture of about 0.15 m. A typical
measurement takes about one hour of time.
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• From the phase distribution, which is a representation of the misalignment of the
264 (VertexRSI) or 120 (AEC) panels constituting the reflector, the necessary ad-
justments of the 5 support points per panel were derived. These were then applied
by hand with a simple tool to improve the accuracy of the reflector surface.

The algorithms and software used for the data analysis and derivation of the panel
adjustments have been applied successfully at the telescopes of IRAM. The necessary
corrections for the finite distance to the transmitter (the “near field” corrections) in our
case were derived and checked against similar corrections applied by others, e.g. for the
JCMT.

The equipment has been designed to provide sufficient signal–to–noise ratio to render
the error due to noise insignificant. The greatest risk in this type of measurements lies in
undetected or poorly corrected systematic errors.

• An accurate knowledge of the amplitude and phase function of the feedhorn, illumi-
nating the reflector, is essential, because errors in these are fully transferred to the
aperture phase map and hence to the surface profile.

• Multiple reflections from the ground or structures form a possible source of errors in
this type of work. We carefully covered all areas of potentially harmful reflections
with absorbing material. In some controlled experiments we could not demonstrate
the existence of reflections.

• The dynamic range of the receiver must be sufficient to accommodate the strong
signal on the peak of the beam and the very weak signals towards the edge of the
scan. There might have been some saturation on some of the measurements. We
discuss this in more detail below.

• The effect of the finite distance of the transmitter can be removed to a large extent
(but not completely) by an axial shift in the position of the feed. An error in
the distance to the transmitter thus can be corrected in the data analysis by a
small adjustment of the feed position. The remaining phase error can be accurately
calculated and applied to the data.

6.3 Holography System Hardware

The hardware specifications and requirements are summarised in Tables 1 and 2. In
the following we briefly describe the hardware components that comprise the holographic
measurement system.

6.3.1 Frontend

The frontend (see Figure 8) is enclosed in a small, temperature controlled box with a
diameter of about 30 cm and a length of 50 cm. It fits inside the “apex structure” behind
the primary focus of the VertexRSI antenna. The AEC antenna does not provide such a
wide space and the receiver is bolted to the outside flange of the apex structure with a long
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Table 1: Holography Hardware Requirements

Measurement Error < 10µm

Phase Accuracy < 0.3◦ (2.5µm @ 3mm) RMS

Amplitude Accuracy < 1%

Dynamic Range ≥ 43dB

Signal-to-Noise Ratio (SNR) ≥ 40dB

Channel-to-Channel Isolation > 100dB

Date Rate ∼ 80 samples/second (12 msec sampling)

Table 2: Holography Hardware Specifications

Frequencies 78.92 and 104.02 GHz

Frequency Stability ≤ ±5 Hz/day

Receiver Bandwidth 10 kHz

Receiver Tunability 130 MHz

Transmitter Antenna Gain 33dB

Transmitter EIRP > 20µW

Transmitter Power to Antenna > 10nW

Transmitter Antenna Beam Width @ −3dB 4.6◦ (twice antenna angle at xmtr)

Reference Antenna Beam Width @ −3dB 4.6◦ (twice scan range)

Main Feed Beam Width @ −3dB 128◦ (−3dB edge taper)

System Temperature 3200 K

Reference Feed Power Received (Pr) 1.736× 10−9P

On-Boresight Signal (M0) 4.167× 10−7P

On-Boresight Noise (σ0) (1.23× 10−22W (P ))
1
2

Off-Boresight Noise (Pr Term) (2.13× 10−27W (P ))
1
2

Average map noise for complex correlator (σav) (2.23× 10−25W (P ))
1
2

17



piece of waveguide bringing the signal feed in focus. Both the signal– and reference–receiver
are housed “back-to-back” in this box. This provides a compact system in which the LO
signals can easily be made equal in length, greatly contributing to the phase stability of the
system. Broadband mixers at ambient temperature convert the received signal frequency to
a baseband of 10 kHz width. The system is laid out for two frequencies at 78.9 and 104.02
GHz. Making the measurement at two different frequencies can be helpful in discerning
systematic effects in the resulting maps, for instance caused by multiple reflections. The
receiver is also tunable around each of these frequencies by 130 MHz for similar reasons.
The signal horn is a conical, grooved cylindrical waveguide horn, while the reference horn
is of similar design and equipped with a lens to provide a reference beam with a beam
width of 4.6 degrees at the half-power points.

As is clear from the theoretical treatment above, it is imperative that we know the
amplitude and phase function of both the reference and the signal feed as accurately
as possible. The phase function must be subtracted from the measured aperture phase
before connecting its phase variations to errors in the reflector profile. The feedhorns
have been measured with great care on the indoor range at IRAM in Grenoble (IRAM
Internal Report, June 2002, by Lazareff, Carter, Halleguen and Degoud). The results were
compared with model calculations using an advanced electro-magnetic simulation package
and excellent agreement was found. The phase pattern of the feeds have an estimated error
of less than one degree, while the amplitude taper at the edge of the reflector aperture is
−6 dB. This is more than we would like (a free–space taper of 2.5 dB has to be added
to the measured level) for a high signal to noise ratio in the outer part of the reflector;
an actual level of −6 dB is preferred. For the measurement of the 64 ALMA production
antennas this feed should be replaced by one which provides such a taper.

6.3.2 Backend

The backend of the receiver is essentially a digital signal processor (DSP) where the narrow-
band signals are digitized and correlated. Both the “sine” and “cosine” part of the complex
correlation function are obtained, which are then transformed to the amplitude and phase
functions.

6.3.3 Transmitter

The transmitter consists of a single photo-diode, directly coupled to a waveguide horn,
which is fed through an optical fiber by two optical signals at different frequencies near
a wavelength of ∼ 1550 nm. The photo-diode provides a mixing signal at the difference
of the two optical signals, tunable roughly from 78.7 to 79.0 GHz (low band) and 103.8
to 104.2 GHz (high band), with an output power of about 10 nW, leading to an EIRP
of about 20 W. The transmitter is placed on top of a 50 m high tower at a distance of
300 to 325 m from the aperture of three antennas at the site, resulting in a measurement
elevation angle of about 9 degrees.
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Figure 8: Holography system hardware. Signal feed side of the frontend (top); reference
feed side of the frontend (middle); and transmitter.
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7 Holographic Data Acquisition

To derive typical values for the various holography map parameters, map parameters, we
set the following boundary conditions:

1. The data rate is the canonical 12 msec per sample, which means about 80 samples
per second.

2. The fine tuning feature of the holography receiver allows for the search for ground
reflection.

3. A goal for the total time for one map is less than one hour.

4. The required aperature plane resolution is ≤ 20 cm. This yields ≥ 25 independent
points per square meter of reflector surface.

5. Oversample by a factor of at least 2 to minimize aliasing.

Based on the equations listed in Appendix A and taking

f1 = 1.13(6 + 2.5 dB taper),

ν = 78.92 and 104.02 GHz,

θb = 74′′ and 56′′,

we obtain the typical holography map parameters of Table 3.

Table 3: Typical Holography Map Parameters

Map Type δd (cm) fosr θext (deg) θsr (′′) θ̇ (′′/sec) Nrow foss tmap (hr)

Standard 20 2.2 1.64/1.24 33/25 300 180 20/15 0.96/0.73

Fine 13 2.2 2.46/1.87 33/25 600 270 40/30 1.08/0.82

Less OS 20 1.4 1.64/1.24 53/40 300 112 20/15 0.61/0.46

Assumes constant f1 = 1.13 (6 + 2.5 dB taper).

Assumes ν = 78.92/104.02 GHz and θb = 74/56 ′′.

Assumes apodization smoothing factor fapo = 1.3.

8 Holographic Data Analysis

8.1 Description

Data analysis uses the CLIC data reduction software of the Plateau de Bure interferometer.
The raw data, written by the on-line software in the ALMATI-FITS data format (Lucas
et al . , 2001), is converted to Plateau de Bure format using CLIC.

The data are then calibrated and imaged using CLIC. The two main operations are:
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1. Calibrate data in amplitude and phase, based on bore-sight measurements at begin-
ning and end of each map row, assuming gradual drift in amplitude and phase with
time. This uses the standard amplitude and phase calibration commands: SOLVE

PHASE, STORE PHASE, SOLVE AMPLITUDE, STORE AMPLITUDE.

2. Compute the aperture map and fit panel displacements and deformations: This is
implemented in command SOLVE HOLOGRAPHY. The mathematics are in §5.

The data processing steps are:

(a) Interpolate data to a regular grid in antenna-based coordinate system. This grid
matches the observed system of rows (same number and separation). This grid
is further extended, by addition of zeroes, to a user-specified size, in order to
get a finer interpolation of the output aperture map: 64x64, 128x128, 256x256
and 512x512 sizes are available.

(b) FFT to aperture plane. This is replaced by a more complex transformation if
one takes into account the first non-Fresnel terms. This is described in §5.

(c) Compute phases in the aperture plane.

(d) Apply the geometrical phase correction: this is

∆p =
ρ2

2R
− ρ4

8R3
+

√
ρ2 + (f + δf − ρ2

4f
)2 − (f +

ρ2

4f
+ δf)

where ρ is the radius in the aperture, f the focal length of the primary, δf
the refocusing used to compensate for the finite transmitter distance R (δf is
the distance between the holographic horn phase center and the antenna prime
focus). See §5.

(e) Correct for measured feed phase diagram.

The measurement is described in the memo by Lazareff et al . (2003).

(f) Mask edges and blockage.

(g) Fit and remove 6 phase terms: constant, 2 linear gradients, 3 focus translations.
They account for a phase offset, an antenna pointing error (constant during the
measurement) and a small displacement of the holography horn relative to the
nominal focus position (f + δf above). One may keep fixed either the X and
Y coordinates or all three X, Y , Z coordinates.

(h) Convert to normal displacement map.

(i) Plot amplitude and phase maps.

(j) Fit panel displacements (optionally deformations) and screw adjustments.

In CLIC we deconvolve for finite resolution effects by an iterative procedure
(subtracting the truncated field of the fitted panels from the measurements, to
get the next order correction, ...). The screw settings are output in a text file
(e.g. 23-jul-1996-Vertex.panels).
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We introduced also a correction to add empirically an offset to the central pixel of the
beam map, in order to partially cancel the ring pattern. The best offset was selected on
the basis of the improvement on the final surface rms. This did not prove very successful
in removing the ringing pattern.

8.2 Using the GUI Interface

• Type clic in a terminal window.

• Type @ ATFdefine. A small menu window should appear on the screen.

• In menu CLIC, select ATF Holography reduction. This causes a graphic window to
appear, as well as a dialogue window.

• Enter the scan number (there is one FITS file per scan; they reside in /users/oper/HOLODATA/

under the names TESTnnnn.FITS, where nnnn is the scan number).

• Press “CREATE”. This will copy the FITS data into a CLIC data file. Its name will
be testnnnn.hpb.

• Press “SELECT”. You should get a plot of angular offsets versus scan number.
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• Press “CALIBRATE”. Amplitude and phase of the boresight measurements will be
displayed together with a red curve fit. Enter continue or press CONTINUE at the
left of the ATF menu window, if the fit looks all right, in order to store it within the
data headers.

It the fit fails, e.g. due to fast variations, or bad points :

– You may change the step of the spline fuction (SET STEP value, with value in
hours), then SOLVE AMPLITUDE PHASE /PLOT, to get a new fit.

– Or you may delete a bad point by finding its observation number:

∗ enter CURSOR, point with the mouse to the bad point and type ‘H’. The first
number listed will be the observation number n .

∗ Then type DROP n to eliminate this observation from the current index.

∗ Then type SOLVE AMPLITUDE PHASE /PLOT, to get a new fit.

– When you are satisfied, do not forget to type C (for CONTINUE), so that the
calibration is stored within the data headers.

• Select the map size in pixels (64 to 512). It should be higher than the actual number
of rows in the observed beam map, (or information will be lost).
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• Press “SOLVE”. The map should appear in the graphic window.

The map header contains, among other parameters:

– the illumination parameters,

– the phase rms (unweighted and weighted by the amplitude),

– the surface rms (also weighted and unweighted),

– aperture efficiencies (calculated using the observed illumination and the geomet-
rical blockage, for the observed frequency and 230GHz), and the corresponding
Jy to Kelvin conversion factors,

– illumination efficiency, spillover efficiency, and phase efficiencies (Ruze factors)

– the surface rms in each ring.

• Additional parameters in the main window:

– Fresnel Approximation: when selected, the additional terms (see §4.

– Do feed Correction: to be unselected for testing only.

– Number of masked panels: the number of panels to be ignored for the fit and
the calculation of RMS surface errors. Their numbers are entered in the box
below. The panel numbering scheme is in Appendix C.
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– Apodize Map: to apodize the observed map in order to reduce/suppress the
‘ringing’ along the quadrupod legs and map edges. The weighting function is a
cosine reaching zero at the map edges.

• Additional input windows (to call them press on e.g. “More input for focus”, and
the similar boxes below):

– Focus offsets: Enter here the focus offsets in mm. The corresponding correc-
tions are applied to the phase map before fitting for focus displacements. This
enables overcoming the 2π discontinuities in the phase map. One may also fix
either the X and Y focus coordinates, or all X, Y and Z to these values.

– Tracking, Pointing : The input map can be displaced to compensate for
pointing errors, if they are larger than a fraction of a beam. Naturally it is
preferred to peak up on the transmitter before taking the map. One may also
enter a ‘fudge factor’ to correct for a tracking error which changes sign between
odd and even rows of the map.

– The last row is used to plot a beam map.

• To obtain the list of screw settings: Press “PANELS”. A file such as 23-nov-2001-Vertex.panels
is created (where positive numbers mean that the panels should move towards the
subreflector). It contains the screw motions in micrometers. At the end of the cal-
culation the left part of the screen displays the fitted panel shapes, while the right
one displays the fit residuals.

• Specific options for this last step can be seen and entered by pressing “input for

panels”. Additional input include:

– Modes: the fitted degrees of freedom for panel fitting; the last two actually
deform the panels:
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Piston only 1 translation mode (normal to antenna surface)

+Tilts 3 modes: panel tilts around two perpendicular axes in the tangent plane
to the paraboloid are added

+Torsion 4 modes: a panel torsion is added

+Boss 5 modes: the motion of panel center relative to the edges is added.

– Number of iterations: usually 5 is OK

– Iterative gain: usually 1 works

– Rings avoided for paraboloid fit: One may take out specific rings of the paraboloid
fit (e.g. to adjust one or several ring relative to the others).

– Sectors avoided for paraboloid fit: One may take out specific sectors of the
paraboloid fit (e.g. to adjust one sector relative to the others).

– Substract astigmatism: Take out the astigmatism component before fitting the
panels.
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• Sample screw listing (Positive screw settings mean that the panel has to move closer
to the primary focus, or “up”):

Output from CLIC\SOLVE HOLO 3
CLIC - 07-MAY-2003 22:55:50 - rlucas@tom - Antenna 1
Tower VTX-ALMATI scans 1 to 1 (29-APR-2003)

Panel ring n0. 1:
Sec/Pan Screw settings (1-5), [mum]

1-11 -192( 37) -216( 37) -36( 59) -117( 59) -117( 28)
2-11 -36( 41) 105( 41) -167( 64) 319( 64) -11( 31)
3-11 -230( 30) -174( 30) -79( 48) 115( 47) -100( 22)
4-11 -97( 28) -107( 28) -42( 44) -78( 44) -72( 21)
5-11 -82( 29) -127( 29) -3( 44) -156( 44) -68( 21)
6-11 -174( 33) -165( 33) 30( 52) 59( 52) -47( 25)
7-11 -159( 15) -229( 15) 127( 23) -116( 23) -41( 11)
8-11 -38( 22) -32( 22) 77( 34) 97( 34) 34( 16)
9-11 -499( 61) -469( 61) -197( 96) -92( 96) -298( 46)
10-11 -39( 49) -16( 49) -59( 79) 20( 78) -34( 37)
11-11 5( 29) -81( 29) 115( 45) -181( 45) 8( 21)
12-11 -161( 23) -267( 23) 113( 37) -251( 37) -76( 18)
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Panel ring n0. 2:
Sec/Pan Screw settings (1-5), [mum]

1-21 9( 19) 86( 19) -100( 19) 7( 19) -11( 9)
2-21 -67( 32) 18( 32) -182( 31) -65( 31) -87( 16)
3-21 -2( 12) -70( 12) -21( 12) -115( 12) -44( 6)
4-21 -20( 23) -11( 23) -48( 23) -35( 23) -30( 11)
5-21 -30( 18) -77( 18) 52( 17) -13( 17) -10( 9)
6-21 -3( 9) -35( 9) 66( 9) 21( 9) 18( 4)
7-21 59( 18) -31( 18) 80( 18) -44( 18) 27( 9)
8-21 -30( 13) 50( 13) -45( 13) 66( 13) 0( 7)
9-21 57( 38) 58( 38) 175( 39) 176( 38) 119( 19)
10-21 -39( 15) -19( 15) 27( 15) 55( 15) 5( 8)
11-21 -42( 11) -101( 11) 0( 11) -82( 11) -48( 6)
12-21 -60( 13) -72( 13) -16( 13) -32( 13) -43( 6)

Panel ring n0. 3:
Sec/Pan Screw settings (1-5), [mum]

1-31 -33( 13) -13( 13) 13( 14) 44( 13) 4( 6)
1-32 35( 13) -6( 13) 98( 14) 37( 14) 43( 6)
2-31 30( 11) -42( 11) 41( 11) -65( 11) -9( 5)
2-32 -130( 24) -100( 24) 81( 26) 125( 25) 0( 10)
3-31 -90( 12) -19( 12) 104( 12) 209( 12) 57( 5)
3-32 -66( 20) -126( 20) 192( 22) 103( 21) 33( 9)
4-31 113( 13) -34( 13) 108( 14) -110( 14) 18( 6)
4-32 90( 19) 111( 19) 12( 20) 43( 19) 62( 8)
5-31 -121( 27) -152( 27) 26( 29) -21( 29) -63( 12)
5-32 26( 23) 46( 23) -84( 24) -55( 24) -20( 11)
6-31 141( 16) 72( 16) 154( 16) 52( 16) 104( 7)
6-32 24( 16) 45( 16) -5( 17) 25( 17) 22( 7)
7-31 -47( 11) -110( 11) -9( 12) -101( 12) -66( 5)
7-32 12( 14) -2( 14) 126( 15) 105( 15) 63( 6)
8-31 89( 11) 58( 11) 98( 11) 52( 11) 74( 5)
8-32 13( 6) 7( 6) 50( 7) 41( 7) 29( 3)
9-31 31( 20) 16( 20) 68( 21) 47( 21) 42( 9)
9-32 -49( 22) -38( 22) -70( 24) -54( 23) -53( 10)
10-31 -120( 20) -48( 20) 1( 21) 107( 21) -11( 9)
10-32 26( 14) 7( 14) 72( 15) 44( 15) 38( 6)
11-31 21( 10) 9( 10) 154( 10) 136( 10) 84( 5)
11-32 -40( 16) -41( 16) 30( 17) 29( 17) -3( 7)
12-31 38( 8) 24( 8) 23( 8) 3( 8) 21( 4)
12-32 -126( 19) -40( 19) -53( 20) 73( 20) -34( 9)

Panel ring n0. 4:
Sec/Pan Screw settings (1-5), [mum]

1-41 86( 11) 10( 11) 152( 11) 58( 11) 70( 5)
1-42 33( 12) 7( 12) 16( 13) -16( 12) 12( 6)

28



2-41 -21( 15) -76( 15) 12( 16) -56( 16) -38( 8)
2-42 113( 14) 48( 14) 114( 15) 34( 15) 78( 7)
3-41 156( 9) 135( 9) 111( 9) 85( 9) 127( 4)
3-42 34( 18) 121( 18) 41( 19) 148( 18) 84( 9)
4-41 114( 29) 142( 29) 81( 30) 115( 30) 116( 14)
4-42 7( 20) 55( 20) -13( 21) 47( 21) 25( 10)
5-41 -35( 21) 89( 21) -29( 22) 124( 22) 35( 10)
5-42 94( 10) 88( 10) 77( 10) 70( 10) 84( 5)
6-41 73( 17) 109( 17) -58( 18) -13( 18) 41( 9)
6-42 83( 14) 16( 14) 105( 15) 23( 14) 55( 7)
7-41 -23( 19) -2( 19) -36( 20) -9( 20) -17( 9)

... and so on until:

12-84 -231( 46) -31( 45) -262( 47) -41( 46) -141( 21)

9 Holography Measurement Results for the VertexRSI

Antenna

The antenna was delivered with a nominal surface error of ≈ 80µm RMS, as determined
from the photogrammetric measurement. However, the location of the focal point of the
paraboloidal reflector was not determined by this measurement; in other words, the position
of the best fit focus was left free.

Our first holography map showed an RMS of ≈ 85µm. However, the focal point was
displaced sideways from the axis by more than 5 mm. We decided to bring the focus
on-axis; the resulting rms increased to ≈ 150µm. A first setting of the surface resulted in
an RMS of 64µm. In four more steps of adjustment the surface error decreased to 19µm
RMS.

The sequence of surface error maps, along with the RMS and the error distribution is
shown in Figure 9. As allowed in the specification, we have applied a weighting over the
aperture proportional to the illumination pattern of the feed. This essentially diminishes
the influence of the surface errors in the outer areas of the reflector. To illustrate the
difference this makes, both the weighted and unweighted RMS values are plotted in the
graphs of Figures 13 and 13. The white areas in the surface error maps are bad panels,
which could not be set accurately. They were left out of the calculation of the final overall
rms value.

With increasing accuracy the presence of an artefact in the outer area of the aperture
became apparent. There is a “wavy” structure in the outer section with a “period” too
large to be inherent in the panel. The structure is clearly visible in Figure 9 and its period
is not related to the size of the panels. Thus it is unlikely to be caused by systematic effects
in the panels or their adjustment on the backup structure. Experiments with absorbing
material showed that it was not caused by multiple reflections. The effect can be described
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Figure 9: Sequence of surface error maps with intermediate panel setting. The surface
contours are shown on the left side; the error distribution on the right. The white cross
and the small white areas represent the quadripod and a few faulty panels and were not
considered in the calculation of the rms error.
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Figure 10: The map on the left is the result of the measurement, showing the “waviness”
in the contours in the outer part of the reflector. In the right hand map the data have
been manipulated to decrease the effect of the waviness. Some improvement is visible. On
the whole the effect appears to have only a small influence on the derived rms error.

by a DC-offset in the central point of the measured antenna map, i.e. some saturation
on the point with the highest intensity. By adjusting this offset in the software, most
of the artefact could be removed. This is shown in Figure 10, where this procedure has
been applied to the data of the left panel and the result is shown on the right. Some
improvement in the outer area of the map is visible, although the improvement in the
overall RMS error is not large. We have applied such a correction to the data of the final
maps. We return to this point in the concluding discussion.

The adjustments were done with a simple tool. Two people on a man-lift approached
the surface from the front, where the adjustment screws are located (see Figure 11). The
time needed for an adjustment of the total of 1320 adjusters was 8 hours. The specification
requires a full adjustment in 8 hours. In the series production, with the use of a more
automated tool, this should be readily achievable.

The best surface maps were obtained at night. They consistently show an RMS of about
20µm. To estimate the accuracy and repeatability of the measurements, we produced
difference maps between successive measurements throughout the measurement period.
The rms difference between consecutive maps is normally less than 10µm, typically 8µm.
An example of a difference map is shown in Figure 12. The map of measurement number
307 is shown on the left, while the right hand side shows the difference between map 307
and 308, made about one hour later. Daytime maps tend to be somewhat worse, typical
values of the RMS lie between 20 and 25µm. Part of this is certainly due to the atmosphere,
even over the short path length of 315 m.
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Figure 11: Panel adjustment of the VertexRSI prototype antenna.
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Figure 12: Example of the repeatability of the measurements. The map on the right is
the difference between the one at left and a map made one hour afterwards. The RMS of
the difference maps is about 8µm, which is commensurate with the expected value due to
noise and atmospheric fluctuations.

We have made series of maps while changing the orientation of the antenna with respect
to the Sun. Also maps were made under quite different wind conditions. The resulting rms
values are all very close. In Figure 13 we show the derived RMS of 11 maps, made on 13-14
May 2003, along with the variation of environmental conditions during the measurements.
Obviously these effects have at worse only a small influence on the surface error. A similar
behaviour was found in a series of 32 maps, made in five consecutive days, 13-18 June 2003,
as shown in Figure 14. The increase in the average rms from 20 to 22µm between early
May and mid June is almost certainly caused by the deteriorating atmospheric conditions
during the Summer at the site, where the humidity has significantly increased.

Note that to increase the RMS from 20 to 22µm, the “additional” component has a
magnitude of 9µm RMS! It can be stated that the measured small differences are fully
consistent with the expected contributions from temperature changes and wind forces, as
allowed by the specification (panel: 4µm each for wind and temperature, BUS: 5µm for
wind and 7µm for temperature). Actually, the measured differences can also be explained
on the basis of the accuracy of the holography measurement alone.

Barring undetected systematic errors (see the discussion in §6), we estimate the overall
error in the final averaged surface maps to be about 5µm RMS.

From the holographic measurement of the VertexRSI antenna we reach the following
conclusions:

1. The holography system has functioned according to specification and has enabled us
to measure the surface of the antenna reflector with a repeatability of better than
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Figure 13: Time series of the holography of the VertexRSI antenna over a period of two days
in May 2003. The weighted (applying the illumination function, taper) and unweighted
RMS values are given along with temperature, wind speed and solar flux. There is no
discernible influence of the varying environmental parameters on the RMS values.

Figure 14: Similar time series as in Figure 13 for the period 13 - 18 June 2003. The
slightly poorer surface accuracy measured in June is a reflection of the deteriorating weather
conditions (i.e. high humidity).
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10µm.

2. On the VertexRSI antenna we have achieved a surface accuracy of 19µm RMS after
five full and two partial panel settings.

3. With a somewhat more advanced tool than the one used by us, the setting of all 1320
adjusters of the Vertex antenna surface can be accomplished within the specified 8
hours by a team of two people.

4. The small differences in the surface maps obtained over several days of measurement
are consistent with the measurement repeatability and at best marginally significant.
If taken at face value, they indicate that the deformations of the reflector under
varying wind and temperature influence are fully consistent with, and probably well
within, the specification.

5. The VertexRSI reflector contains a small number of faulty panels. Two appear me-
chanically “warped” and could not be brought within specification by adjustment.
A few others appear to have a “loose” adjuster(s); no change in shape could be mea-
sured despite a significant change in adjustment position. They have been identified
and reported to the NRAO antenna group.

6. We have not fully accounted for the cause of the artefact in the outer region of the
derived surface maps. We are confident that they do not represent real deformations
of the panels in the two outer rings. To fully test the validity of our current ideas as
to the reason for this effect, we would need to run an extensive dedicated experiment
of an estimated duration of several weeks with participation of the receiver engineers.
The available time for the antenna evaluation has not allowed us to do this.

10 Holography Measurement Results for the AEC An-

tenna

The apex structure of the AEC antenna does not enable us to mount the holography
receiver inside the cylinder, as in the case of the VertexRSI antenna. Thus in this case the
receiver was bolted to the flange on the “outside” of the apex-structure. Consequently, the
feedhorn was brought to the required position by a piece of waveguide of about 500 mm
length. This caused significant attenuation in the received signal from the reflector to the
mixer. Considering the available transmitter power, we concluded that this would not
jeopardise our measurement accuracy significantly. Indeed, as we shall show below, there
was no evidence of any negative impact by this receiver and feed arrangement.

The AEC antenna surface was set by the contractor with the aid of a Leica laser-
tracker. The RMS of the surface was reported by the contractor to be 38µm. After this
measurement an incident caused the elevation structure to run onto the hard stops at high
speed. The contractor decided to repeat the surface measurement and obtained an rms of
50µm with some visible “astigmatism” in the surface.
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Our first holography map indicated an rms of 55µm with a clearly visible astigmatism.
We could identify the high and low regions with those on the final AEC measurement.
With two complete adjustments we surpassed the goal of 20µm. A third partial adjustment
improved the surface rms to about 14µm . There is no indication of the “artefact” seen
in the VertexRSI antenna. We mention the probable reason for this in the conclusion.
There is one panel with a large deviation over part of the area. This is believed to have
been caused during the measurement and setting procedure by the contractor. We have
not included this panel in the computation of the final RMS value. The results of the
consecutive adjustments are summarised in Figure 15.

The adjustments were done with a tool provided by the contractor. It was similar
to the one used by us on the Vertex antenna, but it was calibrated in “turns” rather
than in micrometres. This should be corrected in a possible series production. Again two
people on a manlift approached the surface from the front, where the adjustment screws
are located. The time needed for an adjustment of the total of 600 adjusters was 7 and
6.25 hours, respectively. The specification requires a full adjustment in 8 hours. Thus this
specification is easily met.

From the difference maps we derive a repeatability of about 5µm. An example of a
difference map is shown in Figure 16. The differences between maps made under different
circumstances are again consistent with the allowed errors due to temperature changes and
wind forces and actually of the same order as the estimated measurement accuracy.

Also in this case we made a long series of maps towards the end of the session covering
all daily occurring environmental changes. The time series of these measurements are
summarised in Figure 17, together with the environmental parameters. The variation in
the rms is very small and obviously the influence of the varying temperature and wind
effects is small.

On close inspection of the left panel in Figure 16 we see a small “saddle-like” deforma-
tion feature in most of the individual panels of the third ring in the form of the reddish
islands in Figure 16, left side, middle ring. This has also been seen in other maps. We
suggest the following possible reasons for this phenomenon without being able to decide
in favour of any of them.

1. If the panels would be slightly warped upon release from the mold, the forces applied
to the panel at the five adjusters to ”bend” the panel in a best-fitting shape could lead
to the observed deformation. Presumably, this effect could be studied by detailed
calculations of the stiffness of the panel.

2. A phase error of similar shape can be created by a panel with a focal length different
form the specified one. This could be checked by careful measurement of the molds
used for the fabrication of the panels. We could radiometrically determine the true
focal length of the reflector, and compare that with the theoretical design value,
assuming there are no other effects influencing the focal length, like for instance
temperature changes.

3. The effect could also be caused by local deficiencies in the mold, which would be
”copied” into the individual panels. We consider this unlikely, because the effect is
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Figure 15: Sequence of surface error maps with intermediate panel setting. The surface
contours are shown on the left side; the error distribution on the right. The white cross and
the small white area represent the quadripod and a faulty panel and were not considered
in the calculation of the rms error.

37



Figure 16: Example of the repeatability of the measurements. The map on the right is the
difference between the one at left and a map made one hour afterwards. The rms of the
difference maps is about 5µm.

Figure 17: Time series of the holography of the AEC antenna over a period of three days in
February 2004. The weighted (applying the illumination function, taper) and unweighted
RMS values are given along with temperature, wind speed and solar flux. There is no
discernible influence of the varying environmental parameters on the RMS values.
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mainly seen in one ring and not all panels in the final map show the effect at equal
intensity.

In any case, the effect is small and has not been a hindrance to achieve a very good
overall surface accuracy.

From the holographic measurement of the AEC antenna we reach the following conclu-
sions:

1. The holography system has functioned according to specification and has enabled us
to measure the surface of the antenna reflector with a repeatability of better than
10µm.

2. On the AEC antenna we have achieved a surface accuracy of 14µm RMS after two
full and one partial panel settings.

3. The setting of all 600 adjusters of the AEC antenna surface can be accomplished by
a team of two people in less than 7 hours, which is well within the specified 8 hours.

4. The small differences in the surface maps obtained over several days of measurement
are consistent with the measurement repeatability and at best marginally significant.
If taken at face value, they indicate that the deformations of the reflector under
varying wind and temperature influence are fully consistent with, and probably well
within, the specification.

5. The AEC reflector contains one faulty panel, strongly deformed in one corner area.

6. We note a small but systematic deformation in the panels of the third ring. We
have given some hints as to the possible causes of this effect. Although it does not
noticeably deteriorate the overall rms surface error, we suggest that this aspect be
studied by the contractor in order to avoid such an effect in possible later deliveries.

11 Concluding Remarks on the Holographic Measure-

ment Activities

We have successfully performed a holographic measurement and consecutive panel setting
of the reflectors of the two ALMA prototype antennas to an accuracy of better than
20µm with an estimated measurement accuracy of better than 10µm. The receiver and
transmitter system have worked satisfactorily. The data collection and analysis software
packages are easy to use and provide quick results of the measurements, directly useable
for a panel correction setting. We consider this system suitable for the routine setting
of the ALMA production antennas to the goal of 20µm accuracy in an acceptable time
span. Modern survey equipment will enable the contractor to deliver the reflector with
an accuracy of 50-60 m without undue effort and cost. Although the holography system
can easily start with a much larger error, in the former case it is feasible to reach the
specification with only one panel setting based on holography.
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The longer series of measurements and settings on the Vertex antenna, compared to
those on the AEC antenna, are due to the need for us to gain experience with the holog-
raphy system and analysis and the extra time used for the study of the “ringing” artefact
mentioned above. It took us some time to realise that these errors could not be due fully
to panel setting deviations. As mentioned earlier, a simple explanation of the observed
effect is saturation of the receiver in the central high intensity point of the map. By iter-
atively adjusting this central intensity level, the ringing effect could be suppressed quite
effectively. The fact that the ringing has not been observed with the AEC antenna, where
the signal to the receiver is significantly weakened by the long waveguide hints indeed at
saturation as the cause for the ringing on the Vertex antenna measurements. A careful
determination of the admissible power levels in the receiver would be useful before the
system is employed for the setting of the production antennas. We reiterate that through
a series of experiments we believe to have shown that the ringing is not due to multiple
reflections in the signal path.

In conclusion we can state that the reflectors of both antennas behave equally well.
The specification and goal have been met. The variations in surface RMS, measured over
time and under changing environmental conditions, are small for both antennas. They are
well within the range allowed by the specification and consistent with our measurement
accuracy. This excellent behaviour over time is more important than the actually achieved
surface setting. We stopped iteration of the settings after having achieved the goal of less
than 20mum.

We repeat that these measurements, being performed at one elevation angle only, do
not provide information on the gravitationally induced deformation as function of elevation
angle. Measurements of these have been performed with the aid of optical instruments and
are reported elsewhere in this compendium.
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A Some Useful Equations and Calculations

A.1 Definitions

c ≡ speed of light

λ ≡ observing wavelength

f1 ≡ taper factor for signal feed

fapo ≡ apodization smoothing factor

fosr ≡ map oversampling factor between rows

foss ≡ map oversampling factor along a row

D ≡ main antenna diameter

d ≡ reference feed diameter

θext ≡ angular extent of map (assumed square, in radians)

θb ≡ primary beam size (radians)

θsr ≡ sampling interval between rows (radians)

θss ≡ sampling interval along a scan (radians)

Nrow ≡ number of rows in map

δd ≡ spatial resolution on dish

θ̇ ≡ map row scanning rate

Lm ≡ linear size of map

P ≡ Transmitter EIRP

Pr ≡ Reference feed power received

Ps ≡ Main antenna power received on boresight

B ≡ Detector bandwidth

tint ≡ Integration time

α ≡ Scan angle, which ranges from − θext

2
to + θext

2

R ≡ Distance between holography transmitter and receiver

∆z ≡ Reflector surface displacement accuracy
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A.2 Map Resolution and Sampling

θb =
f1c

νD

=
61836.6f1

ν(GHz)D(m)
arcsec (27)

θsr =
θb

fosr

=
f1c

fosrνD

=
61836.6f1

fosrν(GHz)D(m)
arcsec (28)

θss =
θb

foss

= θ̇tsamp

= 0.012θ̇ arcsec (29)

δd =
D

Nrow

=
f1fapoc

νθext

=
1717.7f1fapo

ν(GHz)θext(deg)
cm (30)

tmap = Nrowtrow

=
fosrθ

2
ext

θ̇θb

=
1717.7× 102fosrf1D(m)

θ̇(′′/sec)ν(GHz)δ2
d(cm)

hours (31)

A.3 Power, Noise, and Sensitivity

Pr =
πd2

4

P

4πR2

=
1

16

(
d

R

)2

P (32)
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Ps =
πD2

4

P

4πR2

=
1

16

(
D

R

)2

P (33)

Ps (α) = Ps (0)

[
J1

(
παD

λ

)(
παD
2λ

) ]2

(34)

σ2 =
[kTsysB + Pr + Ps (α)] kTsys

tint

(35)

δz =
λ

16
√

2

√
NsxNsy

f 2
os

σav

M0

= 0.044λ

√
NsxNsy

f 2
os

σav

M0

(36)

For our holography system:

1. tint = 36 msec,

2. M0 =
√

Ps(0)Pr = 4.167× 10−7P,

3. σ0 = (1.23× 10−22W (P ))
1
2 ,

4. Pr Term = (2.13× 10−27W (P ))
1
2

5. Average map noise for complex correlator (σav) = (2.23× 10−25W (P ))
1
2 ,

6. δz = 1.35×10−2
√

P

Thus, if we want an error in the measurement of the surface shape of δz = 5 µm, we
need a transmitter with an EIRP of P = 7.3 µW. The expected radiated power is in excess
of 10µW, so there is a good margin. Noise will not be the limiting factor in the accuracy
of the measurement.

B The Mathematica Expressions Used to Produce

Figures 2 Through 6

Here we present the equations from the main text which have been used to produce the
illustrations (Figures 2 through 6) in the Input format for the package Mathematica.
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1. Figure 2 represents Equation 13, which has Mathematica form:

λ = 0.003; k =
2π

λ
; R = 300;

fc = NIntegrate

[
r BesselJ[0, ur]Cos

[
kr2

2R

]
, {r, 0, 1}

]
;

fs = NIntegrate

[
r BesselJ[0, ur]Sin

[
kr2

2R

]
, {r, 0, 1}

]
;

Plot[Evaluate[{fc, fs, 4(fc2 + fs2)}, {u, 0, 75}, PlotStyle →
{{RGBColor[0,0,1]}, {RGBColor[1,0,0]}, {RGBColor[0,1,0]}}, PlotRange → All]]

2. Figure 3 follows from Equation 16 for two different illumination functions (uniform
and parabolic):

ff = Integrate
[
r(1− (1− t)r2)BesselJ[0, ur], {r, 0, 1}

]
;

Plot[Evaluate[Table[(4− 2t)ff, {t, 0, 1}], {u,−10, 10},
PlotRange → All, PlotStyle → {{RGBColor[0,0,1]}, {RGBColor[1,0,0]}}]]

3. Figure 4 is derived from Equations 23 and 24 and their difference:

R = 300; λ = 0.003; f = 4.8; δf = 0.083;

pc = Cos

[
2π

λ

(
c2

2R
− c4

8R3

)]
;

fc = Cos

2π

λ

(c2 +

(
f + δf − c2

4f

)2
)0.5

−
(

f + δf +
c2

4f

) ;

Plot[{pc, fc}, {c, 0, 6}, PlotStyle → {{RGBColor[1, 0, 0]}, {RGBColor[0, 0, 1]}}]]
Plot[pc− fc, {c, 0, 6}]

4. Figure 5 is also derived from Equations 23 and 24:
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Clear[δf ]; R = 300; f = 4.8;

p1 =
c2

2R
− c4

8R3
;

p2 =

(
c2 +

(
f − c2

4f
+ δf

)2
)0.5

−
(

f +
c2

4f
+ δf

)
;

Plot[Evaluate[Table[1000(p1 + p2), {δf, 0.096, 0.106, 0.002}],
{c, 0, 6}, PlotRange → All, Frame → True, GridLines → Automatic,

FrameLabel → {Radius in m, Pathlength in mm},
PlotStyle → {{RGBColor[1, 0, 0]}, {RGBColor[0, 1, 0]}, {RGBColor[0, 0, 1]},

{RGBColor[1, 1, 0]}, {RGBColor[1, 0, 1]}, {RGBColor[0, 1, 1]}}]]

5. Figure 6 shows the remaining pathlength correction over the aperture from Equation
25. Here the “horizontal” coordinates are the radial coordinates of the aperture
and the calculation is made for (u,v)-values at the edge of the beam, as used in the
holography measurement (u,v)=(0.03,0.03):

R = 300; u = −0.03; v = −0.03;

ε =
(uζ + vη)(ξ2 + η2)

2R2
− (uξ + vη)2

2R
;

Plot3D[1000ε, {ξ,−6, 6}, {η,−6, 6}, PlotRange → All]

C Panel and Screw Numbering System

The same system for numbering the panels and screws were used for both the VertexRSI
and AEC antennas. Panels are referenced as ss-rp, where:

• ss = Sector number, There are as many sectors as panels in inner ring (12).

They are numbered 01 to 12 starting from right, anti-clockwise, when looking at the
primary reflecting surface from the primary focus.

• r = ring number, from 1 (inner) to 8 (VertexRSI outer) or 5 (AEC outer).

• p = panel position – 1 to 4, anti-clockwise from the same viewpoint, in sector ss

along ring r.

• On each panel, there are five adjusting screws, numbered 1 to 5:

– 1 and 2 are on the inner side (closest to the center of the dish).

– 3 and 4 are on the outer side (closest to the edge of the dish).
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– 1 and 3 are on the panel left edge when looking from the primary focus, 2 and
4 on the right side.

– 5 is at or near the center of the panel.

Positive screw settings mean that the panel has to move closer to the primary focus
(“up”).

Figure 18 shows the panel numbering system for the VertexRSI antenna, while Figure
19 shows the panel numbering system for the AEC antenna. Figure 20 shows the screw
numbering system for an individual panel on both antennas.

Figure 18: Panel numbering layout for the VertexRSI antenna. The green circle marks the
position of the access hole for the optical pointing telescope.
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Figure 19: Panel numbering layout for the AEC antenna. The green circle marks the
position of the access hole for the optical pointing telescope.
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Figure 20: Screw numbering system used for each panel on both the VertexRSI and AEC
antennas.
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