Skip to content
Branch: master
Find file History
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
..
Failed to load latest commit information.
src/main
README.md
experimental_settings.py
pom.xml
qa-data-only-idf.py

README.md

IDF scorer

Implements IDF baselines for QA datasets.

Getting the data

Assuming you followed instructions in the main README instructions to clone Castor-data.

Follow instructions in TrecQA/README.txt and WikiQA/README.txt to process the data into a standard format.

After running the respective scripts, you should have the following directories structure in castorini/Castor-data/TrecQA

├── raw-dev
├── raw-test
├── train
└── train-all

and, the following directories in castorini/Castor-data/WikiQA.

├── dev
├── test
├── train

Each directory will have the following files: ├── a.toks: question[i] ├── b.toks: answer[i] ├── id.txt: question_id[i] └── sim.txt: label[i] where 1 <= i <= (number of QA pairs in respective splits of the data)

Creating indexes for source corpora

We need to index the source corpus from which the question-answer pairs are derived in order to get the IDF weights of the terms.

1. Clone and compileAnserini

git clone https://github.com/castorini/Anserini.git
cd Anserini
mvn clean package appassembler:assemble

2. Indexing WikiQA collection

First, download the Wikipedia dump by running the following command:

mkdir WikiQACollection
for line in $(cat idf_baseline/src/main/resources/WikiQA/wikidump-list.txt); do wget $line -P WikiQACollection; done

To index the collection:

cd Anserini
nohup sh target/appassembler/bin/IndexCollection -collection WikipediaCollection -input ../WikiQACollection
-generator JsoupGenerator -index lucene.index.wikipedia.pos.docvectors -threads 32 -storePositions 
-storeDocvectors -optimize > log.wikipedia.pos.docvectors & 

3. Indexing TrecQA collection

Create a new directories called TrecQACollection

mkdir TrecQACollection

Copy the contents of disk1, disk2, disk3, disk4, and AQUAINT to TrecQACollection

To index the collection:

cd Anserini
nohup sh target/appassembler/bin/IndexCollection -collection TrecCollection -input [path of TrecQACollection]
-generator JsoupGenerator -index lucene.index.trecQA.pos.docvectors -threads 32 -storePositions 
-storeDocvectors -optimize > log.trecQA.pos.docvectors & 

Computing the IDF sum similarity baseline

1. IDF sum similarity using the entire source corpus to compute IDF of terms

Build the IDF scorer

cd castorini/Castor/idf_baseline
mvn clean package appassembler:assemble

Run the following command to score each answer with an IDF value:

sh target/appassembler/bin/GetIDFSumSimilarity -index ~/large-local-work/indices/index.wikipedia.pos.docvectors -config ../../data/WikiQA/test -output WikiQA.test.idfsim

The above command will create a run file in the trec_eval format and a qrel file at a location specified by -output.

Possible parameters are:

-index (required)

Path of the index

-config (required)

Configuration of this experiment i.e., dev, train, train-all, test etc.

-output (required)

Path of the run file to be created

-analyze 

If specified, the scorer uses EnglishAnalyzer for removing stopwords and performing stemming. In addition to the default list, the analyzer uses NLTK's stopword list obtained fromhere

2. Evaluating the system:

To calculate MAP/MRR for the above run file:

  • Download and install trec_eval fromhere
eval/trec_eval.9.0/trec_eval -m map -m recip_rank <qrel-file> <run-file>

For the WikiQA dataset

../../Anserini/eval/trec_eval.9.0/trec_eval -m map ../../Castor-data/WikiQA/WikiQACorpus/WikiQA-$set.ref WikiQA.$set.idfsim

For the TrecQA dataset

../../Anserini/eval/trec_eval.9.0/trec_eval -m map ../../Castor-data/TrecQA/$set.qrel TrecQA.$set.idfsim

3. IDF sum similarity using only the QA dataset to compute IDF of terms

python qa-data-idf-only.py ../../Castor-data/TrecQA TrecQA
python qa-data-only-idf.py ../../Castor-data/WikiQA WikiQA

Evaluate these using step 2.

The same script can now also be used to compute idf sum similarity based on corpus idf statistics

python qa-data-only-idf.py ../../Castor-data/TrecQA TrecQA --index-for-corpusIDF ../../Castor-data/indices/index.qadata.pos.docvectors.keepstopwords/

Baseline results

Baseline results are saved in Castor/baseline_results.tsv

You can’t perform that action at this time.