Skip to content
Find file
Fetching contributors…
Cannot retrieve contributors at this time
1812 lines (1811 sloc) 54.4 KB
Index: nginx-catap/nginx/src/core/ngx_core.h
===================================================================
--- nginx-catap.orig/nginx/src/core/ngx_core.h
+++ nginx-catap/nginx/src/core/ngx_core.h
@@ -78,6 +78,9 @@ typedef void (*ngx_connection_handler_pt
#include <ngx_open_file_cache.h>
#include <ngx_os.h>
#include <ngx_connection.h>
+#include <ngx_lookup3.h>
+#include <ngx_rbtreehash.h>
+#include <ngx_flathash.h>
#if (NGX_STATUS)
#include <ngx_status.h>
#endif
Index: nginx-catap/nginx/auto/sources
===================================================================
--- nginx-catap.orig/nginx/auto/sources
+++ nginx-catap/nginx/auto/sources
@@ -24,8 +24,11 @@ CORE_DEPS="src/core/nginx.h \
src/core/ngx_crc32.h \
src/core/ngx_murmurhash.h \
src/core/ngx_md5.h \
+ src/core/ngx_lookup3.h \
src/core/ngx_sha1.h \
src/core/ngx_rbtree.h \
+ src/core/ngx_rbtreehash.h \
+ src/core/ngx_flathash.h \
src/core/ngx_radix_tree.h \
src/core/ngx_slab.h \
src/core/ngx_times.h \
@@ -54,7 +57,10 @@ CORE_SRCS="src/core/nginx.c \
src/core/ngx_crc32.c \
src/core/ngx_murmurhash.c \
src/core/ngx_md5.c \
+ src/core/ngx_lookup3.c \
src/core/ngx_rbtree.c \
+ src/core/ngx_rbtreehash.c \
+ src/core/ngx_flathash.c \
src/core/ngx_radix_tree.c \
src/core/ngx_slab.c \
src/core/ngx_times.c \
Index: nginx-catap/nginx/src/core/ngx_flathash.c
===================================================================
--- /dev/null
+++ nginx-catap/nginx/src/core/ngx_flathash.c
@@ -0,0 +1,83 @@
+
+/*
+ * Copyright (C) Kirill A. Korinskiy
+ */
+
+#include <ngx_config.h>
+#include <ngx_core.h>
+
+
+typedef struct {
+ u_char data[1];
+} ngx_flathash_node_t;
+
+
+#define ngx_flathash_hashsize(n) ((uint32_t)1 << (n))
+#define ngx_flathash_hashmask(n) (ngx_flathash_hashsize(n) - 1)
+#define ngx_flathash_hashfunc(a, b) ngx_lookup3_hashlittle(a, b, 0x715517)
+
+
+/*
+ * Really simple index
+ */
+static inline ngx_flathash_node_t *
+ngx_flathash_index(ngx_flathash_t *hashtable, uint32_t hash) {
+ return (ngx_flathash_node_t *)(hashtable->data +
+ ((offsetof(ngx_flathash_node_t, data)
+ + hashtable->value_len)
+ * hash));
+};
+
+
+void *
+ngx_flathash_get(ngx_flathash_t *hashtable, ngx_str_t *key)
+{
+ uint32_t hash;
+ ngx_flathash_node_t *rn;
+
+ hash = ngx_flathash_hashfunc(key->data, key->len)
+ & ngx_flathash_hashmask(hashtable->bits);
+
+ rn = ngx_flathash_index(hashtable, hash);
+
+ return rn->data;
+}
+
+
+size_t
+ngx_flathash_need_memory(size_t length, size_t size)
+{
+ uint32_t bits;
+ size_t i;
+
+ for (bits = 0, i = size; i; i >>= 1, bits++);
+
+ bits += 2;
+
+ return offsetof(ngx_flathash_t, data)
+ + ((offsetof(ngx_flathash_node_t, data)
+ + length)
+ * 1<<bits);
+}
+
+
+ngx_int_t
+ngx_flathash_init(ngx_flathash_t *hashtable, size_t length, size_t size)
+{
+ size_t i;
+
+ hashtable->value_len = length;
+
+ hashtable->bits = 0;
+
+ for (i = size; i; i >>= 1, hashtable->bits++);
+
+ hashtable->bits += 2;
+
+ hashtable->length = 1 << hashtable->bits;
+
+
+ ngx_memzero(hashtable->data, hashtable->length);
+
+ return NGX_OK;
+}
Index: nginx-catap/nginx/src/core/ngx_flathash.h
===================================================================
--- /dev/null
+++ nginx-catap/nginx/src/core/ngx_flathash.h
@@ -0,0 +1,26 @@
+
+/*
+ * Copyright (C) Kirill A. Korinskiy
+ */
+
+#ifndef _NGX_FLATHASH_H_INCLUDED_
+#define _NGX_FLATHASH_H_INCLUDED_
+
+#include <ngx_config.h>
+#include <ngx_core.h>
+
+typedef struct {
+ size_t value_len;
+ size_t length;
+ u_char bits;
+ u_char data[1];
+} ngx_flathash_t;
+
+void *ngx_flathash_get(ngx_flathash_t *hashtable, ngx_str_t *key);
+
+size_t ngx_flathash_need_memory(size_t length, size_t size);
+
+ngx_int_t ngx_flathash_init(ngx_flathash_t *hashtable, size_t length, size_t size);
+
+
+#endif /* _NGX_FLATHASH_H_INCLUDED_ */
Index: nginx-catap/nginx/src/core/ngx_lookup3.c
===================================================================
--- /dev/null
+++ nginx-catap/nginx/src/core/ngx_lookup3.c
@@ -0,0 +1,761 @@
+/*
+ * ngx_lookup3.c, by Kirill A. Korinskiy
+ */
+
+#include <ngx_config.h>
+#include <ngx_core.h>
+
+/*
+-------------------------------------------------------------------------------
+lookup3.c, by Bob Jenkins, May 2006, Public Domain.
+
+These are functions for producing 32-bit hashes for hash table lookup.
+hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
+are externally useful functions. Routines to test the hash are included
+if SELF_TEST is defined. You can use this free for any purpose. It's in
+the public domain. It has no warranty.
+
+You probably want to use hashlittle(). hashlittle() and hashbig()
+hash byte arrays. hashlittle() is is faster than hashbig() on
+little-endian machines. Intel and AMD are little-endian machines.
+On second thought, you probably want hashlittle2(), which is identical to
+hashlittle() except it returns two 32-bit hashes for the price of one.
+You could implement hashbig2() if you wanted but I haven't bothered here.
+
+If you want to find a hash of, say, exactly 7 integers, do
+ a = i1; b = i2; c = i3;
+ mix(a,b,c);
+ a += i4; b += i5; c += i6;
+ mix(a,b,c);
+ a += i7;
+ final(a,b,c);
+then use c as the hash value. If you have a variable length array of
+4-byte integers to hash, use hashword(). If you have a byte array (like
+a character string), use hashlittle(). If you have several byte arrays, or
+a mix of things, see the comments above hashlittle().
+
+Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
+then mix those integers. This is fast (you can do a lot more thorough
+mixing with 12*3 instructions on 3 integers than you can with 3 instructions
+on 1 byte), but shoehorning those bytes into integers efficiently is messy.
+-------------------------------------------------------------------------------
+*/
+
+/*
+ * My best guess at if you are big-endian or little-endian. This may
+ * need adjustment.
+ */
+#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
+ __BYTE_ORDER == __LITTLE_ENDIAN) || \
+ (defined(i386) || defined(__i386__) || defined(__i486__) || \
+ defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
+# define HASH_LITTLE_ENDIAN 1
+# define HASH_BIG_ENDIAN 0
+#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
+ __BYTE_ORDER == __BIG_ENDIAN) || \
+ (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
+# define HASH_LITTLE_ENDIAN 0
+# define HASH_BIG_ENDIAN 1
+#else
+# define HASH_LITTLE_ENDIAN 0
+# define HASH_BIG_ENDIAN 0
+#endif
+
+#define hashsize(n) ((uint32_t)1<<(n))
+#define hashmask(n) (hashsize(n)-1)
+#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
+
+/*
+-------------------------------------------------------------------------------
+mix -- mix 3 32-bit values reversibly.
+
+This is reversible, so any information in (a,b,c) before mix() is
+still in (a,b,c) after mix().
+
+If four pairs of (a,b,c) inputs are run through mix(), or through
+mix() in reverse, there are at least 32 bits of the output that
+are sometimes the same for one pair and different for another pair.
+This was tested for:
+* pairs that differed by one bit, by two bits, in any combination
+ of top bits of (a,b,c), or in any combination of bottom bits of
+ (a,b,c).
+* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
+ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
+ is commonly produced by subtraction) look like a single 1-bit
+ difference.
+* the base values were pseudorandom, all zero but one bit set, or
+ all zero plus a counter that starts at zero.
+
+Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
+satisfy this are
+ 4 6 8 16 19 4
+ 9 15 3 18 27 15
+ 14 9 3 7 17 3
+Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
+for "differ" defined as + with a one-bit base and a two-bit delta. I
+used http://burtleburtle.net/bob/hash/avalanche.html to choose
+the operations, constants, and arrangements of the variables.
+
+This does not achieve avalanche. There are input bits of (a,b,c)
+that fail to affect some output bits of (a,b,c), especially of a. The
+most thoroughly mixed value is c, but it doesn't really even achieve
+avalanche in c.
+
+This allows some parallelism. Read-after-writes are good at doubling
+the number of bits affected, so the goal of mixing pulls in the opposite
+direction as the goal of parallelism. I did what I could. Rotates
+seem to cost as much as shifts on every machine I could lay my hands
+on, and rotates are much kinder to the top and bottom bits, so I used
+rotates.
+-------------------------------------------------------------------------------
+*/
+#define mix(a,b,c) \
+{ \
+ a -= c; a ^= rot(c, 4); c += b; \
+ b -= a; b ^= rot(a, 6); a += c; \
+ c -= b; c ^= rot(b, 8); b += a; \
+ a -= c; a ^= rot(c,16); c += b; \
+ b -= a; b ^= rot(a,19); a += c; \
+ c -= b; c ^= rot(b, 4); b += a; \
+}
+
+/*
+-------------------------------------------------------------------------------
+final -- final mixing of 3 32-bit values (a,b,c) into c
+
+Pairs of (a,b,c) values differing in only a few bits will usually
+produce values of c that look totally different. This was tested for
+* pairs that differed by one bit, by two bits, in any combination
+ of top bits of (a,b,c), or in any combination of bottom bits of
+ (a,b,c).
+* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
+ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
+ is commonly produced by subtraction) look like a single 1-bit
+ difference.
+* the base values were pseudorandom, all zero but one bit set, or
+ all zero plus a counter that starts at zero.
+
+These constants passed:
+ 14 11 25 16 4 14 24
+ 12 14 25 16 4 14 24
+and these came close:
+ 4 8 15 26 3 22 24
+ 10 8 15 26 3 22 24
+ 11 8 15 26 3 22 24
+-------------------------------------------------------------------------------
+*/
+#define final(a,b,c) \
+{ \
+ c ^= b; c -= rot(b,14); \
+ a ^= c; a -= rot(c,11); \
+ b ^= a; b -= rot(a,25); \
+ c ^= b; c -= rot(b,16); \
+ a ^= c; a -= rot(c,4); \
+ b ^= a; b -= rot(a,14); \
+ c ^= b; c -= rot(b,24); \
+}
+
+/*
+--------------------------------------------------------------------
+ This works on all machines. To be useful, it requires
+ -- that the key be an array of uint32_t's, and
+ -- that the length be the number of uint32_t's in the key
+
+ The function hashword() is identical to hashlittle() on little-endian
+ machines, and identical to hashbig() on big-endian machines,
+ except that the length has to be measured in uint32_ts rather than in
+ bytes. hashlittle() is more complicated than hashword() only because
+ hashlittle() has to dance around fitting the key bytes into registers.
+--------------------------------------------------------------------
+*/
+uint32_t ngx_lookup3_hashword(const uint32_t *k, /* the key, an array of uint32_t values */
+ size_t length, /* the length of the key, in uint32_ts */
+ uint32_t initval) /* the previous hash, or an arbitrary value */
+{
+ uint32_t a,b,c;
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
+
+ /*------------------------------------------------- handle most of the key */
+ while (length > 3)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 3;
+ k += 3;
+ }
+
+ /*------------------------------------------- handle the last 3 uint32_t's */
+ switch(length) /* all the case statements fall through */
+ {
+ case 3 : c+=k[2];
+ case 2 : b+=k[1];
+ case 1 : a+=k[0];
+ final(a,b,c);
+ case 0: /* case 0: nothing left to add */
+ break;
+ }
+ /*------------------------------------------------------ report the result */
+ return c;
+}
+
+
+/*
+--------------------------------------------------------------------
+hashword2() -- same as hashword(), but take two seeds and return two
+32-bit values. pc and pb must both be nonnull, and *pc and *pb must
+both be initialized with seeds. If you pass in (*pb)==0, the output
+(*pc) will be the same as the return value from hashword().
+--------------------------------------------------------------------
+*/
+void ngx_lookup3_hashword2 (const uint32_t *k, /* the key, an array of uint32_t values */
+ size_t length, /* the length of the key, in uint32_ts */
+ uint32_t *pc, /* IN: seed OUT: primary hash value */
+ uint32_t *pb) /* IN: more seed OUT: secondary hash value */
+{
+ uint32_t a,b,c;
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc;
+ c += *pb;
+
+ /*------------------------------------------------- handle most of the key */
+ while (length > 3)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 3;
+ k += 3;
+ }
+
+ /*------------------------------------------- handle the last 3 uint32_t's */
+ switch(length) /* all the case statements fall through */
+ {
+ case 3 : c+=k[2];
+ case 2 : b+=k[1];
+ case 1 : a+=k[0];
+ final(a,b,c);
+ case 0: /* case 0: nothing left to add */
+ break;
+ }
+ /*------------------------------------------------------ report the result */
+ *pc=c; *pb=b;
+}
+
+
+/*
+-------------------------------------------------------------------------------
+hashlittle() -- hash a variable-length key into a 32-bit value
+ k : the key (the unaligned variable-length array of bytes)
+ length : the length of the key, counting by bytes
+ initval : can be any 4-byte value
+Returns a 32-bit value. Every bit of the key affects every bit of
+the return value. Two keys differing by one or two bits will have
+totally different hash values.
+
+The best hash table sizes are powers of 2. There is no need to do
+mod a prime (mod is sooo slow!). If you need less than 32 bits,
+use a bitmask. For example, if you need only 10 bits, do
+ h = (h & hashmask(10));
+In which case, the hash table should have hashsize(10) elements.
+
+If you are hashing n strings (uint8_t **)k, do it like this:
+ for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
+
+By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
+code any way you wish, private, educational, or commercial. It's free.
+
+Use for hash table lookup, or anything where one collision in 2^^32 is
+acceptable. Do NOT use for cryptographic purposes.
+-------------------------------------------------------------------------------
+*/
+
+uint32_t ngx_lookup3_hashlittle(const void *key, size_t length, uint32_t initval)
+{
+ uint32_t a,b,c; /* internal state */
+ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
+
+ u.ptr = key;
+ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
+ const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]&0xffffff" actually reads beyond the end of the string, but
+ * then masks off the part it's not allowed to read. Because the
+ * string is aligned, the masked-off tail is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticably faster for short strings (like English words).
+ */
+#ifndef VALGRIND
+
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
+ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
+ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
+ case 6 : b+=k[1]&0xffff; a+=k[0]; break;
+ case 5 : b+=k[1]&0xff; a+=k[0]; break;
+ case 4 : a+=k[0]; break;
+ case 3 : a+=k[0]&0xffffff; break;
+ case 2 : a+=k[0]&0xffff; break;
+ case 1 : a+=k[0]&0xff; break;
+ case 0 : return c; /* zero length strings require no mixing */
+ }
+
+#else /* make valgrind happy */
+ const uint8_t *k8;
+
+ k8 = (const uint8_t *)k;
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
+ case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
+ case 9 : c+=k8[8]; /* fall through */
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
+ case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
+ case 5 : b+=k8[4]; /* fall through */
+ case 4 : a+=k[0]; break;
+ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
+ case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
+ case 1 : a+=k8[0]; break;
+ case 0 : return c;
+ }
+
+#endif /* !valgrind */
+
+ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
+ const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
+ const uint8_t *k8;
+
+ /*--------------- all but last block: aligned reads and different mixing */
+ while (length > 12)
+ {
+ a += k[0] + (((uint32_t)k[1])<<16);
+ b += k[2] + (((uint32_t)k[3])<<16);
+ c += k[4] + (((uint32_t)k[5])<<16);
+ mix(a,b,c);
+ length -= 12;
+ k += 6;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ k8 = (const uint8_t *)k;
+ switch(length)
+ {
+ case 12: c+=k[4]+(((uint32_t)k[5])<<16);
+ b+=k[2]+(((uint32_t)k[3])<<16);
+ a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
+ case 10: c+=k[4];
+ b+=k[2]+(((uint32_t)k[3])<<16);
+ a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 9 : c+=k8[8]; /* fall through */
+ case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
+ a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
+ case 6 : b+=k[2];
+ a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 5 : b+=k8[4]; /* fall through */
+ case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
+ case 2 : a+=k[0];
+ break;
+ case 1 : a+=k8[0];
+ break;
+ case 0 : return c; /* zero length requires no mixing */
+ }
+
+ } else { /* need to read the key one byte at a time */
+ const uint8_t *k = (const uint8_t *)key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ a += ((uint32_t)k[1])<<8;
+ a += ((uint32_t)k[2])<<16;
+ a += ((uint32_t)k[3])<<24;
+ b += k[4];
+ b += ((uint32_t)k[5])<<8;
+ b += ((uint32_t)k[6])<<16;
+ b += ((uint32_t)k[7])<<24;
+ c += k[8];
+ c += ((uint32_t)k[9])<<8;
+ c += ((uint32_t)k[10])<<16;
+ c += ((uint32_t)k[11])<<24;
+ mix(a,b,c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch(length) /* all the case statements fall through */
+ {
+ case 12: c+=((uint32_t)k[11])<<24;
+ case 11: c+=((uint32_t)k[10])<<16;
+ case 10: c+=((uint32_t)k[9])<<8;
+ case 9 : c+=k[8];
+ case 8 : b+=((uint32_t)k[7])<<24;
+ case 7 : b+=((uint32_t)k[6])<<16;
+ case 6 : b+=((uint32_t)k[5])<<8;
+ case 5 : b+=k[4];
+ case 4 : a+=((uint32_t)k[3])<<24;
+ case 3 : a+=((uint32_t)k[2])<<16;
+ case 2 : a+=((uint32_t)k[1])<<8;
+ case 1 : a+=k[0];
+ break;
+ case 0 : return c;
+ }
+ }
+
+ final(a,b,c);
+ return c;
+}
+
+
+/*
+ * hashlittle2: return 2 32-bit hash values
+ *
+ * This is identical to hashlittle(), except it returns two 32-bit hash
+ * values instead of just one. This is good enough for hash table
+ * lookup with 2^^64 buckets, or if you want a second hash if you're not
+ * happy with the first, or if you want a probably-unique 64-bit ID for
+ * the key. *pc is better mixed than *pb, so use *pc first. If you want
+ * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
+ */
+void ngx_lookup3_hashlittle2(const void *key, /* the key to hash */
+ size_t length, /* length of the key */
+ uint32_t *pc, /* IN: primary initval, OUT: primary hash */
+ uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */
+{
+ uint32_t a,b,c; /* internal state */
+ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc;
+ c += *pb;
+
+ u.ptr = key;
+ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
+ const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]&0xffffff" actually reads beyond the end of the string, but
+ * then masks off the part it's not allowed to read. Because the
+ * string is aligned, the masked-off tail is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticably faster for short strings (like English words).
+ */
+#ifndef VALGRIND
+
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
+ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
+ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
+ case 6 : b+=k[1]&0xffff; a+=k[0]; break;
+ case 5 : b+=k[1]&0xff; a+=k[0]; break;
+ case 4 : a+=k[0]; break;
+ case 3 : a+=k[0]&0xffffff; break;
+ case 2 : a+=k[0]&0xffff; break;
+ case 1 : a+=k[0]&0xff; break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+
+#else /* make valgrind happy */
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
+ case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
+ case 9 : c+=k8[8]; /* fall through */
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
+ case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
+ case 5 : b+=k8[4]; /* fall through */
+ case 4 : a+=k[0]; break;
+ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
+ case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
+ case 1 : a+=k8[0]; break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+
+#endif /* !valgrind */
+
+ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
+ const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
+ const uint8_t *k8;
+
+ /*--------------- all but last block: aligned reads and different mixing */
+ while (length > 12)
+ {
+ a += k[0] + (((uint32_t)k[1])<<16);
+ b += k[2] + (((uint32_t)k[3])<<16);
+ c += k[4] + (((uint32_t)k[5])<<16);
+ mix(a,b,c);
+ length -= 12;
+ k += 6;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ k8 = (const uint8_t *)k;
+ switch(length)
+ {
+ case 12: c+=k[4]+(((uint32_t)k[5])<<16);
+ b+=k[2]+(((uint32_t)k[3])<<16);
+ a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
+ case 10: c+=k[4];
+ b+=k[2]+(((uint32_t)k[3])<<16);
+ a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 9 : c+=k8[8]; /* fall through */
+ case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
+ a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
+ case 6 : b+=k[2];
+ a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 5 : b+=k8[4]; /* fall through */
+ case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
+ case 2 : a+=k[0];
+ break;
+ case 1 : a+=k8[0];
+ break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+
+ } else { /* need to read the key one byte at a time */
+ const uint8_t *k = (const uint8_t *)key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ a += ((uint32_t)k[1])<<8;
+ a += ((uint32_t)k[2])<<16;
+ a += ((uint32_t)k[3])<<24;
+ b += k[4];
+ b += ((uint32_t)k[5])<<8;
+ b += ((uint32_t)k[6])<<16;
+ b += ((uint32_t)k[7])<<24;
+ c += k[8];
+ c += ((uint32_t)k[9])<<8;
+ c += ((uint32_t)k[10])<<16;
+ c += ((uint32_t)k[11])<<24;
+ mix(a,b,c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch(length) /* all the case statements fall through */
+ {
+ case 12: c+=((uint32_t)k[11])<<24;
+ case 11: c+=((uint32_t)k[10])<<16;
+ case 10: c+=((uint32_t)k[9])<<8;
+ case 9 : c+=k[8];
+ case 8 : b+=((uint32_t)k[7])<<24;
+ case 7 : b+=((uint32_t)k[6])<<16;
+ case 6 : b+=((uint32_t)k[5])<<8;
+ case 5 : b+=k[4];
+ case 4 : a+=((uint32_t)k[3])<<24;
+ case 3 : a+=((uint32_t)k[2])<<16;
+ case 2 : a+=((uint32_t)k[1])<<8;
+ case 1 : a+=k[0];
+ break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+ }
+
+ final(a,b,c);
+ *pc=c; *pb=b;
+}
+
+
+
+/*
+ * hashbig():
+ * This is the same as hashword() on big-endian machines. It is different
+ * from hashlittle() on all machines. hashbig() takes advantage of
+ * big-endian byte ordering.
+ */
+uint32_t ngx_lookup3_hashbig(const void *key, size_t length, uint32_t initval)
+{
+ uint32_t a,b,c;
+ union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
+
+ u.ptr = key;
+ if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
+ const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]<<8" actually reads beyond the end of the string, but
+ * then shifts out the part it's not allowed to read. Because the
+ * string is aligned, the illegal read is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticably faster for short strings (like English words).
+ */
+#ifndef VALGRIND
+
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
+ case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
+ case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
+ case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
+ case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
+ case 4 : a+=k[0]; break;
+ case 3 : a+=k[0]&0xffffff00; break;
+ case 2 : a+=k[0]&0xffff0000; break;
+ case 1 : a+=k[0]&0xff000000; break;
+ case 0 : return c; /* zero length strings require no mixing */
+ }
+
+#else /* make valgrind happy */
+
+ k8 = (const uint8_t *)k;
+ switch(length) /* all the case statements fall through */
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=((uint32_t)k8[10])<<8; /* fall through */
+ case 10: c+=((uint32_t)k8[9])<<16; /* fall through */
+ case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */
+ case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */
+ case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */
+ case 4 : a+=k[0]; break;
+ case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */
+ case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */
+ case 1 : a+=((uint32_t)k8[0])<<24; break;
+ case 0 : return c;
+ }
+
+#endif /* !VALGRIND */
+
+ } else { /* need to read the key one byte at a time */
+ const uint8_t *k = (const uint8_t *)key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += ((uint32_t)k[0])<<24;
+ a += ((uint32_t)k[1])<<16;
+ a += ((uint32_t)k[2])<<8;
+ a += ((uint32_t)k[3]);
+ b += ((uint32_t)k[4])<<24;
+ b += ((uint32_t)k[5])<<16;
+ b += ((uint32_t)k[6])<<8;
+ b += ((uint32_t)k[7]);
+ c += ((uint32_t)k[8])<<24;
+ c += ((uint32_t)k[9])<<16;
+ c += ((uint32_t)k[10])<<8;
+ c += ((uint32_t)k[11]);
+ mix(a,b,c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch(length) /* all the case statements fall through */
+ {
+ case 12: c+=k[11];
+ case 11: c+=((uint32_t)k[10])<<8;
+ case 10: c+=((uint32_t)k[9])<<16;
+ case 9 : c+=((uint32_t)k[8])<<24;
+ case 8 : b+=k[7];
+ case 7 : b+=((uint32_t)k[6])<<8;
+ case 6 : b+=((uint32_t)k[5])<<16;
+ case 5 : b+=((uint32_t)k[4])<<24;
+ case 4 : a+=k[3];
+ case 3 : a+=((uint32_t)k[2])<<8;
+ case 2 : a+=((uint32_t)k[1])<<16;
+ case 1 : a+=((uint32_t)k[0])<<24;
+ break;
+ case 0 : return c;
+ }
+ }
+
+ final(a,b,c);
+ return c;
+}
+
+/* Local Variables: */
+/* mode: c */
+/* c-basic-offset: 4 */
+/* c-file-offsets: ((arglist-cont-nonempty . 4)) */
+/* End: */
Index: nginx-catap/nginx/src/core/ngx_lookup3.h
===================================================================
--- /dev/null
+++ nginx-catap/nginx/src/core/ngx_lookup3.h
@@ -0,0 +1,97 @@
+/*
+ * ngx_lookup3.h by Kirill A. Korinskiy
+ */
+
+#ifndef _NGX_LOOKUP3_H_INCLUDED_
+#define _NGX_LOOKUP3_H_INCLUDED_
+
+#define NGX_HAVE_LOOKUP3 1
+
+#include <ngx_config.h>
+#include <ngx_core.h>
+
+/*
+--------------------------------------------------------------------
+ This works on all machines. To be useful, it requires
+ -- that the key be an array of uint32_t's, and
+ -- that the length be the number of uint32_t's in the key
+
+ The function hashword() is identical to hashlittle() on little-endian
+ machines, and identical to hashbig() on big-endian machines,
+ except that the length has to be measured in uint32_ts rather than in
+ bytes. hashlittle() is more complicated than hashword() only because
+ hashlittle() has to dance around fitting the key bytes into registers.
+--------------------------------------------------------------------
+*/
+uint32_t ngx_lookup3_hashword(const uint32_t *k, /* the key, an array of uint32_t values */
+ size_t length, /* the length of the key, in uint32_ts */
+ uint32_t initval); /* the previous hash, or an arbitrary value */
+
+void ngx_lookup3_hashword2 (const uint32_t *k, /* the key, an array of uint32_t values */
+ size_t length, /* the length of the key, in uint32_ts */
+ uint32_t *pc, /* IN: seed OUT: primary hash value */
+ uint32_t *pb); /* IN: more seed OUT: secondary hash value */
+
+
+/*
+-------------------------------------------------------------------------------
+hashlittle() -- hash a variable-length key into a 32-bit value
+ k : the key (the unaligned variable-length array of bytes)
+ length : the length of the key, counting by bytes
+ initval : can be any 4-byte value
+Returns a 32-bit value. Every bit of the key affects every bit of
+the return value. Two keys differing by one or two bits will have
+totally different hash values.
+
+The best hash table sizes are powers of 2. There is no need to do
+mod a prime (mod is sooo slow!). If you need less than 32 bits,
+use a bitmask. For example, if you need only 10 bits, do
+ h = (h & hashmask(10));
+In which case, the hash table should have hashsize(10) elements.
+
+If you are hashing n strings (uint8_t **)k, do it like this:
+ for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
+
+By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
+code any way you wish, private, educational, or commercial. It's free.
+
+Use for hash table lookup, or anything where one collision in 2^^32 is
+acceptable. Do NOT use for cryptographic purposes.
+-------------------------------------------------------------------------------
+*/
+uint32_t ngx_lookup3_hashlittle(const void *key,
+ size_t length,
+ uint32_t initval);
+
+/*
+ * hashlittle2: return 2 32-bit hash values
+ *
+ * This is identical to hashlittle(), except it returns two 32-bit hash
+ * values instead of just one. This is good enough for hash table
+ * lookup with 2^^64 buckets, or if you want a second hash if you're not
+ * happy with the first, or if you want a probably-unique 64-bit ID for
+ * the key. *pc is better mixed than *pb, so use *pc first. If you want
+ * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
+ */
+void ngx_lookup3_hashlittle2(const void *key, /* the key to hash */
+ size_t length, /* length of the key */
+ uint32_t *pc, /* IN: primary initval, OUT: primary hash */
+ uint32_t *pb); /* IN: secondary initval, OUT: secondary hash */
+
+/*
+ * hashbig():
+ * This is the same as hashword() on big-endian machines. It is different
+ * from hashlittle() on all machines. hashbig() takes advantage of
+ * big-endian byte ordering.
+ */
+uint32_t ngx_lookup3_hashbig(const void *key,
+ size_t length,
+ uint32_t initval);
+
+#endif /* _NGX_LOOKUP3_H_INCLUDED_ */
+
+/* Local Variables: */
+/* mode: c */
+/* c-basic-offset: 4 */
+/* c-file-offsets: ((arglist-cont-nonempty . 4)) */
+/* End: */
Index: nginx-catap/nginx/src/core/ngx_rbtreehash.c
===================================================================
--- /dev/null
+++ nginx-catap/nginx/src/core/ngx_rbtreehash.c
@@ -0,0 +1,696 @@
+
+/*
+ * Copyright (C) Kirill A. Korinskiy
+ */
+
+#include <ngx_config.h>
+#include <ngx_core.h>
+
+typedef struct {
+ u_char color;
+ uint32_t crc32;
+
+ ngx_rbtreehash_list_node_t list_item;
+
+ size_t len;
+ u_char data[1];
+} ngx_rbtreehash_node_t;
+
+typedef struct {
+ ngx_str_t key;
+ ngx_str_t data;
+} ngx_rbtreehash_key_t;
+
+typedef struct {
+ ngx_pool_t *pool; /* this pool need only for tempory using and must destroy afer create tree */
+ ngx_array_t keys; /* keys for hash */
+ ngx_rbtreehash_t *hash;
+} ngx_rbtreehash_ctx_t;
+
+static ngx_command_t ngx_rbtreehash_commands[] = {
+ ngx_null_command
+};
+
+static ngx_core_module_t ngx_rbtreehash_module_ctx = {
+ ngx_string("rbtreehash"),
+ NULL,
+ NULL
+};
+
+ngx_module_t ngx_rbtreehash_module = {
+ NGX_MODULE_V1,
+ &ngx_rbtreehash_module_ctx, /* module context */
+ ngx_rbtreehash_commands, /* module directives */
+ NGX_CORE_MODULE, /* module type */
+ NULL, /* init master */
+ NULL, /* init module */
+ NULL, /* init process */
+ NULL, /* init thread */
+ NULL, /* exit thread */
+ NULL, /* exit process */
+ NULL, /* exit master */
+ NGX_MODULE_V1_PADDING
+};
+
+static void*
+ngx_rbtreehash_alloc(ngx_rbtreehash_pool_t *pool, size_t size)
+{
+ if (pool->pool) {
+ /* use pool to allocated memory */
+ return ngx_palloc(pool->pool, size);
+ }
+
+ if (pool->shm_zone) {
+ /* or shm */
+ return ngx_slab_alloc((ngx_slab_pool_t *) pool->shm_zone->shm.addr,
+ size);
+ }
+
+ /* or system system memory */
+ if (!pool->log) {
+ /* if not set log for pool use cycle log */
+ return ngx_alloc(size, ngx_cycle->log);
+ }
+
+ return ngx_alloc(size, pool->log);
+}
+
+static void
+ngx_rbtreehash_free(ngx_rbtreehash_pool_t *pool, void *p)
+{
+ if (pool->pool) {
+ /* can't have free in pool-based alloc */
+ return;
+ }
+
+ if (pool->shm_zone) {
+ ngx_slab_free((ngx_slab_pool_t *) pool->shm_zone->shm.addr, p);
+ return;
+ }
+
+ ngx_free(p);
+}
+
+
+static void
+ngx_rbtreehash_list_insert(ngx_rbtreehash_t *hash, ngx_rbtreehash_node_t *node)
+{
+ node->list_item.len = node->len;
+ node->list_item.data = node->data;
+ node->list_item.next = NULL;
+ node->list_item.prev = NULL;
+
+ if (hash->data->list.head) {
+ hash->data->list.tail->next = &node->list_item;
+ node->list_item.prev = hash->data->list.tail;
+ hash->data->list.tail = &node->list_item;
+ } else {
+ hash->data->list.head = &node->list_item;
+ hash->data->list.tail = &node->list_item;
+ }
+}
+
+
+static void
+ngx_rbtreehash_list_delete(ngx_rbtreehash_t *hash, ngx_rbtreehash_node_t *node)
+{
+ if (&node->list_item == hash->data->list.head) {
+ hash->data->list.head = hash->data->list.head->next;
+ if (hash->data->list.head) {
+ hash->data->list.head->prev = NULL;
+ }
+ }
+
+ if (&node->list_item == hash->data->list.tail) {
+ hash->data->list.tail = hash->data->list.tail->prev;
+ }
+
+ if (node->list_item.prev) {
+ node->list_item.prev->next = node->list_item.next;
+ }
+ if (node->list_item.next) {
+ node->list_item.next->prev = node->list_item.prev;
+ }
+}
+
+
+static void
+ngx_rbtreehash_rbtree_insert_value(ngx_rbtree_node_t *temp,
+ ngx_rbtree_node_t *node, ngx_rbtree_node_t *sentinel)
+{
+ ngx_rbtree_node_t **p;
+ ngx_rbtreehash_node_t *rn, *rnt;
+
+ for ( ;; ) {
+
+ if (node->key < temp->key) {
+
+ p = &temp->left;
+
+ } else if (node->key > temp->key) {
+
+ p = &temp->right;
+
+ } else { /* node->key == temp->key */
+
+ rn = (ngx_rbtreehash_node_t *) &node->color;
+ rnt = (ngx_rbtreehash_node_t *) &temp->color;
+
+ p = rn->crc32 < rnt->crc32
+ ? &temp->left : &temp->right;
+ }
+
+ if (*p == sentinel) {
+ break;
+ }
+
+ temp = *p;
+ }
+
+ *p = node;
+ node->parent = temp;
+ node->left = sentinel;
+ node->right = sentinel;
+ ngx_rbt_red(node);
+}
+
+ngx_rbtree_node_t* ngx_rbtreehash_insert(ngx_rbtreehash_t *hash, ngx_str_t *key,
+ void *value, size_t len)
+{
+ uint32_t n;
+ ngx_rbtree_node_t *node;
+ ngx_rbtreehash_node_t *rn;
+
+ n = offsetof(ngx_rbtree_node_t, color)
+ + offsetof(ngx_rbtreehash_node_t, data)
+ + len;
+
+ node = ngx_rbtreehash_alloc(&hash->pool, n);
+ if (node == NULL) {
+ return NULL;
+ }
+ hash->data->nodes++;
+
+ rn = (ngx_rbtreehash_node_t*) &node->color;
+
+ node->key = ngx_lookup3_hashlittle(key->data, key->len, 0);
+ rn->crc32 = ngx_crc32_short(key->data, key->len);
+ rn->len = len;
+ ngx_memcpy(rn->data, value, len);
+
+ ngx_rbtree_insert(hash->data->tree, node);
+ ngx_rbtreehash_list_insert(hash, rn);
+
+ return node;
+}
+
+ngx_int_t ngx_rbtreehash_delete(ngx_rbtreehash_t *hash, ngx_str_t *key)
+{
+ ngx_uint_t hash32;
+ ngx_uint_t crc32;
+ ngx_rbtree_node_t *node;
+ ngx_rbtreehash_node_t *rn = NULL;
+
+ hash32 = ngx_lookup3_hashlittle(key->data, key->len, 0);
+ crc32 = ngx_crc32_short(key->data, key->len);
+ node = hash->data->tree->root;
+
+ while (node != hash->data->tree->sentinel) {
+ if (hash32 < node->key) {
+ node = node->left;
+ continue;
+ }
+
+ if (hash32 > node->key) {
+ node = node->right;
+ continue;
+ }
+
+ do {
+ rn = (ngx_rbtreehash_node_t*) &node->color;
+
+ if (crc32 == rn->crc32) {
+ break;
+ }
+
+ if (crc32 == rn->crc32) {
+ break;
+ }
+
+ node = crc32 < rn->crc32 ? node->left : node->right;
+ } while (node != hash->data->tree->sentinel && hash32 == node->key);
+
+ break;
+ }
+
+ if (node == hash->data->tree->sentinel) {
+ return NGX_OK;
+ }
+
+ ngx_rbtree_delete(hash->data->tree, node);
+
+ ngx_rbtreehash_list_delete(hash, rn);
+
+ ngx_rbtreehash_free(&hash->pool, node);
+
+ hash->data->nodes--;
+
+ return NGX_OK;
+}
+
+ngx_int_t ngx_rbtreehash_init(ngx_rbtreehash_t *hash)
+{
+ ngx_rbtree_node_t *sentinel;
+
+ hash->data = ngx_rbtreehash_alloc(&hash->pool, sizeof(ngx_rbtreehash_hash_t));
+ ngx_memzero(hash->data, sizeof(ngx_rbtreehash_hash_t));
+
+ hash->data->tree = ngx_rbtreehash_alloc(&hash->pool, sizeof(ngx_rbtree_t));
+ if (hash->data->tree == NULL) {
+ return NGX_ERROR;
+ }
+
+ sentinel = ngx_rbtreehash_alloc(&hash->pool, sizeof(ngx_rbtree_node_t));
+ if (sentinel == NULL) {
+ return NGX_ERROR;
+ }
+
+ ngx_rbtree_init(hash->data->tree, sentinel,
+ ngx_rbtreehash_rbtree_insert_value);
+
+ hash->data->list.head = NULL;
+ hash->data->list.tail = NULL;
+
+ return NGX_OK;
+}
+
+ngx_int_t ngx_rbtreehash_destroy(ngx_rbtreehash_t *hash)
+{
+ ngx_rbtree_node_t *node;
+
+ for (;;) {
+ if (hash->data->tree->root == hash->data->tree->sentinel) {
+ break;
+ }
+
+ node = ngx_rbtree_min(hash->data->tree->root,
+ hash->data->tree->sentinel);
+
+ ngx_rbtree_delete(hash->data->tree, node);
+
+ ngx_rbtreehash_free(&hash->pool, node);
+
+ }
+
+ return NGX_OK;
+}
+
+static ngx_int_t
+ngx_rbtreehash_init_tree(ngx_shm_zone_t *shm_zone, void *data)
+{
+ uint32_t i;
+ ngx_rbtreehash_t *hash;
+ ngx_rbtreehash_ctx_t *octx = data;
+ ngx_rbtreehash_ctx_t *ctx;
+ ngx_rbtreehash_key_t *keys;
+
+ ctx = shm_zone->data;
+
+ if (octx &&
+ ngx_strncmp(ctx->hash->pool.shm_key.data,
+ octx->hash->pool.shm_key.data,
+ ctx->hash->pool.shm_key.len) != 0) {
+ ngx_log_error(NGX_LOG_EMERG, shm_zone->shm.log, 0,
+ "rbhash use path \"%s\" with previously it used "
+ "the \"%s\"", ctx->hash->pool.shm_key.data,
+ octx->hash->pool.shm_key.data);
+ return NGX_ERROR;
+ }
+
+ if (ngx_rbtreehash_init(ctx->hash) != NGX_OK) {
+ return NGX_ERROR;
+ }
+
+ keys = ctx->keys.elts;
+
+ for (i = 0; i < ctx->keys.nelts; i++) {
+ if (keys[i].key.len == 0) {
+ continue;
+ }
+
+ if (ngx_rbtreehash_insert(ctx->hash, &keys[i].key,
+ keys[i].data.data,
+ keys[i].data.len) == NULL) {
+ return NGX_ERROR;
+ }
+
+ }
+
+ if (ctx->pool) {
+ ngx_destroy_pool(ctx->pool);
+ ctx->pool = NULL;
+ }
+
+ /* setup hash->data to all linked conf */
+ for (hash = ctx->hash; hash->next; hash = hash->next) {
+ hash->next->data = hash->data;
+ }
+
+ for (; hash->prev; hash = hash->prev) {
+ hash->prev->data = hash->data;
+ }
+
+ return NGX_OK;
+}
+
+void* ngx_rbtreehash_find(ngx_rbtreehash_t *hash, ngx_str_t *key, size_t *len)
+{
+ ngx_uint_t hash32;
+ ngx_uint_t crc32;
+ ngx_rbtree_node_t *node;
+ ngx_rbtree_node_t *sentinel;
+ ngx_rbtreehash_node_t *rn;
+
+ if (!hash->data) {
+ return NULL;
+ }
+
+ if (hash->data->nodes == 0) {
+ return NULL;
+ }
+
+ if (key->len == 0) {
+ return NULL;
+ }
+
+ hash32 = ngx_lookup3_hashlittle(key->data, key->len, 0);
+ crc32 = ngx_crc32_short(key->data, key->len);
+
+ node = hash->data->tree->root;
+ sentinel = hash->data->tree->sentinel;
+
+ while (node != sentinel) {
+ if (hash32 < node->key) {
+ node = node->left;
+ continue;
+ }
+
+ if (hash32 > node->key) {
+ node = node->right;
+ continue;
+ }
+
+ do {
+ rn = (ngx_rbtreehash_node_t*) &node->color;
+
+ if (crc32 == rn->crc32) {
+ *len = rn->len;
+ return rn->data;
+ }
+
+ if (crc32 == rn->crc32) {
+ break;
+ }
+
+ node = crc32 < rn->crc32 ? node->left : node->right;
+
+ } while (node != sentinel && hash32 == node->key);
+ break;
+ }
+
+ return NULL;
+}
+
+char *
+ngx_rbtreehash_crete_shared_by_size(ngx_conf_t *cf, ngx_command_t *cmd, void *conf)
+{
+ ngx_str_t *value;
+ char *p = conf;
+ size_t size;
+ ngx_rbtreehash_ctx_t *ctx;
+
+ ctx = ngx_pcalloc(cf->pool, sizeof(ngx_rbtreehash_ctx_t));
+ if (ctx == NULL) {
+ return NGX_CONF_ERROR;
+ }
+
+ ctx->hash = (ngx_rbtreehash_t*) (p + cmd->offset);
+
+ if (cf->args->nelts != 3) {
+ return "need two args";
+ }
+
+ value = cf->args->elts;
+
+ if (ctx->hash->pool.shm_zone) {
+ return "is duplicate";
+ }
+
+ size = ngx_parse_offset(&value[2]);
+
+ ctx->hash->pool.shm_key.len = value[1].len + NGX_INT_T_LEN;
+ ctx->hash->pool.shm_key.data = ngx_palloc(cf->pool, ctx->hash->pool.shm_key.len);
+ if (ctx->hash->pool.shm_key.data == NULL) {
+ return NGX_CONF_ERROR;
+ }
+
+ ngx_sprintf(ctx->hash->pool.shm_key.data, "%V%d", &value[1], size);
+
+ if (size < (size_t) (8 * ngx_pagesize)) {
+ size = (size_t) (8 * ngx_pagesize);
+ } else {
+ size = 8 * ngx_pagesize * (size / (8 * ngx_pagesize) + 1);
+ }
+
+ ctx->hash->pool.shm_zone = ngx_shared_memory_add(cf, &ctx->hash->pool.shm_key,
+ size,
+ &ngx_rbtreehash_module);
+
+ if (ctx->hash->pool.shm_zone == NULL) {
+ return NGX_CONF_ERROR;
+ }
+
+ ctx->hash->pool.shm_zone->init = ngx_rbtreehash_init_tree;
+ ctx->hash->pool.shm_zone->data = ctx;
+ ctx->hash->pool.pool = NULL;
+ ctx->hash->pool.log = cf->log;
+
+ return NGX_CONF_OK;
+}
+
+char *
+ngx_rbtreehash_from_path(ngx_conf_t *cf, ngx_command_t *cmd, void *conf)
+{
+ ngx_str_t *value;
+ char *p = conf;
+ ngx_str_t data;
+ ngx_str_t path;
+ ngx_int_t fd;
+ ngx_file_info_t fi;
+ ngx_rbtreehash_key_t *key;
+ size_t need_shmem = 0;
+ ngx_rbtreehash_ctx_t *ctx;
+ u_char *ptr;
+ u_char *ptr_last;
+ u_char *ptr_end;
+ size_t len;
+
+ ctx = ngx_pcalloc(cf->pool, sizeof(ngx_rbtreehash_ctx_t));
+ if (ctx == NULL) {
+ return NGX_CONF_ERROR;
+ }
+
+ ctx->hash = (ngx_rbtreehash_t*) (p + cmd->offset);
+
+ if (cf->args->nelts != 2) {
+ return "need two args";
+ }
+
+ value = cf->args->elts;
+
+ if (ctx->hash->pool.shm_zone) {
+ return "is duplicate";
+ }
+
+ ctx->pool = ngx_create_pool(4096, cf->log);
+ if (ctx->pool == NULL) {
+ return NGX_CONF_ERROR;
+ }
+
+ if (ngx_conf_full_name(cf->cycle, &value[1], 0) == NGX_ERROR) {
+ return NGX_CONF_ERROR;
+ }
+
+ path = value[1]; /* shm_key is a path to file with data */
+
+ fd = ngx_open_file(path.data, NGX_FILE_RDONLY, NGX_FILE_OPEN, 0);
+ if (fd == NGX_INVALID_FILE) {
+ if (ngx_errno == NGX_ENOENT) {
+ ngx_log_error(NGX_LOG_WARN, cf->log, 0,
+ "file \"%s\" not found", path.data);
+ return NGX_CONF_OK;
+ }
+
+ ngx_log_error(NGX_LOG_CRIT, cf->log, ngx_errno,
+ ngx_open_file_n " \"%s\" failed", path.data);
+ return NGX_CONF_ERROR;
+ }
+
+ if (ngx_fd_info(fd, &fi) == NGX_FILE_ERROR) {
+ ngx_log_error(NGX_LOG_CRIT, cf->log, ngx_errno,
+ ngx_fd_info_n " \"%s\" failed", path.data);
+
+ return NGX_CONF_ERROR;
+ }
+
+ data.len = ngx_file_size(&fi);
+ data.data = mmap(NULL, data.len, PROT_READ, MAP_PRIVATE, fd, 0);
+ if (data.data == MAP_FAILED) {
+ return NGX_CONF_ERROR;
+ }
+
+ for (ptr = data.data, ptr_end = data.data + data.len, len = 0;
+ ptr <= ptr_end; ptr++) {
+ if (*ptr == '\n' || ptr == ptr_end) {
+ len++;
+ }
+ }
+
+ if (ngx_array_init(&ctx->keys, ctx->pool, len,
+ sizeof(ngx_rbtreehash_key_t)) != NGX_OK) {
+ return NGX_CONF_ERROR;
+ }
+
+ key = ngx_array_push(&ctx->keys);
+ ngx_memzero(key, ctx->keys.size);
+ for (ptr_last = ptr = data.data, ptr_end = data.data + data.len
+ ; ptr <= ptr_end; ptr++) {
+ switch (*ptr) {
+ case ' ':
+ {
+ if (*ptr == *ptr_last) {
+ ptr++;
+ ptr_last = ptr;
+ }
+ break;
+ }
+ case ':':
+ {
+ if (key->key.data != NULL) {
+ continue;
+ }
+ key->key.len = ptr - ptr_last;
+ key->key.data = ngx_palloc(ctx->pool, key->key.len);
+ if (key->key.data == NULL) {
+ goto error;
+ }
+
+ memcpy(key->key.data, ptr_last, key->key.len);
+
+ ptr++;
+ ptr_last = ptr;
+ break;
+ }
+ default:
+ {
+ if (*ptr != '\n' && ptr != ptr_end) {
+ continue;
+ }
+ if (key->key.data == NULL) {
+ key->key.len = ptr - ptr_last;
+ key->key.data = ngx_palloc(ctx->pool, key->key.len);
+ if (key->key.data == NULL) {
+ goto error;
+ }
+
+ memcpy(key->key.data, ptr_last, key->key.len);
+
+ key->data = key->key;
+ } else {
+ key->data.len = ptr - ptr_last;
+ key->data.data = ngx_palloc(ctx->pool, key->data.len);
+ if (key->data.data == NULL) {
+ goto error;
+ }
+
+ memcpy(key->data.data, ptr_last, key->data.len);
+ }
+
+ need_shmem += ngx_align(offsetof(ngx_rbtree_node_t, color)
+ + offsetof(ngx_rbtreehash_node_t, data)
+ + key->data.len,
+ ngx_pagesize);
+
+ ptr++;
+ ptr_last = ptr;
+ key = ngx_array_push(&ctx->keys);
+ ngx_memzero(key, ctx->keys.size);
+ break;
+ }
+ }
+ }
+
+ ctx->hash->pool.shm_key.len = path.len + NGX_INT_T_LEN;
+ ctx->hash->pool.shm_key.data = ngx_palloc(cf->pool, ctx->hash->pool.shm_key.len);
+ if (ctx->hash->pool.shm_key.data == NULL) {
+ goto error;
+ }
+
+ /* shm_key is path to file and value hash function on the contents of file оп*/
+ ngx_sprintf(ctx->hash->pool.shm_key.data, "%s %d", &path,
+ ngx_lookup3_hashlittle(data.data, data.len, 0));
+
+
+ munmap(data.data, data.len);
+
+ need_shmem += ngx_align(sizeof(ngx_rbtree_t), ngx_pagesize)
+ + ngx_align(sizeof(ngx_rbtree_node_t), ngx_pagesize) /* sentinel */
+ + ngx_align(sizeof(ngx_rbtreehash_hash_t), ngx_pagesize); /* hash_data */
+
+ if (need_shmem < (size_t) (8 * ngx_pagesize)) {
+ need_shmem = (size_t) (8 * ngx_pagesize);
+ } else {
+ need_shmem = 8 * ngx_pagesize * (need_shmem / (8 * ngx_pagesize) + 1);
+ }
+
+ ctx->hash->pool.shm_zone = ngx_shared_memory_add(cf, &ctx->hash->pool.shm_key,
+ need_shmem,
+ &ngx_rbtreehash_module);
+
+ if (ctx->hash->pool.shm_zone == NULL) {
+ goto error_wo_data;
+ }
+
+ ctx->hash->pool.shm_zone->init = ngx_rbtreehash_init_tree;
+ ctx->hash->pool.shm_zone->data = ctx;
+ ctx->hash->pool.pool = NULL;
+
+ return NGX_CONF_OK;
+
+ error:
+ munmap(data.data, data.len);
+ error_wo_data:
+ ngx_destroy_pool(ctx->pool);
+ return NGX_CONF_ERROR;
+}
+
+ngx_int_t ngx_rbtreehash_merge_value(ngx_rbtreehash_t *conf, ngx_rbtreehash_t *prev)
+{
+ ngx_rbtreehash_t *hash;
+
+ if (prev->pool.shm_zone || prev->pool.pool) {
+ conf->pool = prev->pool;
+ }
+
+ for (hash = prev; hash->next; hash = hash->next);
+ hash->next = conf;
+ conf->prev = hash;
+
+ return NGX_OK;
+}
+
+/* Local Variables: */
+/* mode: c */
+/* c-basic-offset: 4 */
+/* c-file-offsets: ((arglist-cont-nonempty . 4)) */
+/* End: */
Index: nginx-catap/nginx/src/core/ngx_rbtreehash.h
===================================================================
--- /dev/null
+++ nginx-catap/nginx/src/core/ngx_rbtreehash.h
@@ -0,0 +1,77 @@
+
+/*
+ * Copyright (C) Kirill A. Korinskiy
+ */
+
+#ifndef __NGX_RBTREEHASH
+#define __NGX_RBTREEHASH
+
+#include <ngx_config.h>
+#include <ngx_core.h>
+
+typedef struct ngx_rbtreehash_list_node_s ngx_rbtreehash_list_node_t;
+
+struct ngx_rbtreehash_list_node_s {
+ size_t len;
+ void *data;
+
+ ngx_rbtreehash_list_node_t *next;
+ ngx_rbtreehash_list_node_t *prev;
+};
+
+typedef struct {
+ ngx_rbtreehash_list_node_t *head;
+ ngx_rbtreehash_list_node_t *tail;
+} ngx_rbtreehash_list_t;
+
+
+typedef struct {
+ /* in hash using shm_zone */
+ ngx_shm_zone_t *shm_zone;
+ ngx_str_t shm_key;
+
+ /* ... or pool */
+ ngx_pool_t *pool;
+
+ ngx_log_t *log;
+} ngx_rbtreehash_pool_t;
+
+typedef struct {
+ ngx_rbtree_t *tree;
+ size_t nodes;
+
+ ngx_rbtreehash_list_t list;
+} ngx_rbtreehash_hash_t;
+
+typedef struct ngx_rbtreehash_s ngx_rbtreehash_t;
+
+struct ngx_rbtreehash_s {
+ ngx_rbtreehash_pool_t pool;
+ ngx_rbtreehash_hash_t *data;
+
+ /* hack to pointer to next/prev config */
+ ngx_rbtreehash_t *next;
+ ngx_rbtreehash_t *prev;
+};
+
+ngx_int_t ngx_rbtreehash_init(ngx_rbtreehash_t *hash);
+ngx_int_t ngx_rbtreehash_destroy(ngx_rbtreehash_t *hash);
+ngx_rbtree_node_t* ngx_rbtreehash_insert(ngx_rbtreehash_t *hash, ngx_str_t *key,
+ void *value, size_t len);
+ngx_int_t ngx_rbtreehash_delete(ngx_rbtreehash_t *hash, ngx_str_t *key);
+void *ngx_rbtreehash_find(ngx_rbtreehash_t *hash, ngx_str_t *key, size_t *len);
+
+char *ngx_rbtreehash_crete_shared_by_size(ngx_conf_t *cf, ngx_command_t *cmd, void *conf);
+char *ngx_rbtreehash_from_path(ngx_conf_t *cf, ngx_command_t *cmd, void *conf);
+
+ngx_int_t ngx_rbtreehash_merge_value(ngx_rbtreehash_t *conf, ngx_rbtreehash_t *prev);
+
+extern ngx_module_t ngx_rbtreehash_module;
+
+#endif //__NGX_RBTREEHASH
+
+/* Local Variables: */
+/* mode: c */
+/* c-basic-offset: 4 */
+/* c-file-offsets: ((arglist-cont-nonempty . 4)) */
+/* End: */
Jump to Line
Something went wrong with that request. Please try again.