
Carl Chesser
@che55er

What’s in your JVM?

Titanium	
 Sponsors	

Pla0num	
 Sponsors	

Gold	
 Sponsors	

We’re hiring! 

Big Data
C#

Java
Python
Ruby
Web

& more!

engineering.cerner.com

“In God we trust, all
others bring data.”

- William Edwards Deming

Introduction
Image: amazon.com

Thread States

Blocked

New

Waiting Timed Waiting

Terminated Runnable

Thread States

Blocked

New

Waiting Timed Waiting

Terminated Runnable

Latency
Events

Thread States

Blocked

New

Waiting Timed Waiting

Terminated Runnable

Compute
Event

Compute | Latency Events

•  Spending time on the
CPU - “doing something”

•  Dictated by thread
scheduling

•  Waiting on another
thread

•  Blocked on a lock

JVM Time Consumers

Garbage
Collection

Cycles

JIT
Compilation

Garbage Collection

Types Size of heap

When
compactions

occur

JIT Compilation

Compilation at
runtime

Outperform
interpreted

code

Based on stats
of “hot” code

Investigation

Capture as
much

evidence
before

altering the
environment

Image: https://www.flickr.com/photos/citizenbrick

JMX

Remote JMX is
your friend

Allows collecting
data and

performing
operations on

JVM

jcmd
Image: lego.wikia.com

Lightweight console tool to
invoke diagnostic commands

jcmd
Why?

Need to enable JVM options or
gather JVM state (Java 7 u 4) When?

jcmd

Executed with no options, displays all local JVMs
by PID (like jps)

> jcmd !
7470 io.kcdc.MailServer!
7471 io.kcdc.FileServer!
7472 io.kcdc.CleanupAgent!
23713 sun.tools.jcmd.JCmd !

View help options on target JVM process ID

!
> jcmd <PID> help !
!

jcmd

!
com.sun.tools.attach.AttachNotSupportedException: Unable to open socket file: target process
not responding or HotSpot VM not loaded !
 at sun.tools.attach.LinuxVirtualMachine.<init>(LinuxVirtualMachine.java:106) !
 at sun.tools.attach.LinuxAttachProvider.attachVirtualMachine(LinuxAttachProvider.java:63) !
 at com.sun.tools.attach.VirtualMachine.attach(VirtualMachine.java:213) !
 at sun.tools.jcmd.JCmd.executeCommandForPid(JCmd.java:140) !
 at sun.tools.jcmd.JCmd.main(JCmd.java:129) !
!

When attaching to a JVM, you must be issuing
the jcmd as the same OS user as target JVM

jcmd

Displays a vast array of performance related metrics

!
> jcmd <PID> PerfCounter.print !
!

jcmd

java.threads.daemon=20 !
java.threads.live=26 !
java.threads.livePeak=38 !
java.threads.started=697 !

jcmd

Example of output on threads from PerfCounter

sun.gc.generation.0.capacity=45088768 !
sun.gc.generation.0.maxCapacity=179306496 !
sun.gc.generation.0.minCapacity=45088768 !
sun.gc.generation.0.name="new” !

jcmd

Example of output on GC from PerfCounter

Thread dump (just like jstack)
Can use “-l” for synchronizer information

!
> jcmd <PID> Thread.print !
!

jcmd

Enable JMX on already running JVM

!
> jcmd <PID> ManagementAgent.start !
 jmxremote.ssl=false !
 jmxremote.authenticate=false !
 jmxremote.port=<Port #> !
!

jcmd

top

Image: http://www.wikihow.com/Build-a-Big-LEGO-Tower

Console tool to provide live
results on CPU utilization

top
Why?

Unsure if JVM slowness is
attributed to heavy compute
events

When?

See JVMs by CPU%

> top !
top - 14:22:01 up 208 days, 22:22, 2 users, load average: 0.14, 0.07, 0.01 !
Tasks: 228 total, 1 running, 227 sleeping, 0 stopped, 0 zombie !
Cpu(s): 0.8%us, 0.6%sy, 0.0%ni, 98.2%id, 0.0%wa, 0.2%hi, 0.3%si, 0.0%st !
Mem: 24608272k total, 22222568k used, 2385704k free, 639632k buffers !
Swap: 4194296k total, 0k used, 4194296k free, 8872124k cached !
!
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND !
20709 minion 20 0 2939m 492m 19m S 1.0 2.1 44:04.37 java !
 1328 minion 20 0 2753m 270m 15m S 0.7 1.1 9:35.16 java !
 2281 minion 20 0 2947m 532m 19m S 0.7 2.2 36:58.92 java !
 6236 minion 20 0 2751m 323m 16m S 0.7 1.3 87:53.46 java !
16416 minion 20 0 15036 1336 948 R 0.7 0.0 0:00.03 top !
19124 minion 20 0 2750m 288m 16m S 0.7 1.2 60:26.22 java !
21246 minion 20 0 2743m 303m 15m S 0.7 1.3 99:47.73 java !

top

Press “Shift + H” while top is running

> top !
top - 14:22:01 up 208 days, 22:29, 2 users, load average: 0.02, 0.03, 0.00 !
Tasks: 227 total, 1 running, 226 sleeping, 0 stopped, 0 zombie !
Cpu(s): 0.7%us, 0.8%sy, 0.0%ni, 98.0%id, 0.0%wa, 0.3%hi, 0.3%si, 0.0%st !
Mem: 24608272k total, 22258860k used, 2349412k free, 639640k buffers !
Swap: 4194296k total, 0k used, 4194296k free, 8872236k cached !
 Show threads On !
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND !
 1452 minion 20 0 2753m 270m 15m S 4.2 1.1 2:43.92 java !
28368 minion 20 0 2743m 269m 14m S 2.9 1.1 29:19.49 java !
22498 minion 20 0 2746m 299m 14m S 2.6 1.2 28:01.51 java !
11563 minion 20 0 2742m 253m 14m S 2.3 1.1 26:57.11 java !
17424 minion 20 0 16384 2572 952 R 2.0 0.0 0:01.95 top !

top

View threads by CPU time on a specific JVM
process

!
> top –H –p <PID> !
!

top

20812 is the thread ID

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND !
20812 minion 20 0 2939m 492m 19m S 9.6 2.1 14:48.59 java!

top

> printf "%x" 20812!
514C!

Convert decimal thread ID to hex (514C)
"metrics-graphite-pickle-reporter-thread-1" daemon prio=10
tid=0x00007feb88542000 nid=0x514c !

Identify thread in thread dump (native thread ID)

strace

Image: https://rebrick.lego.com/en-US/bookmark/daniel-sicolo-blog--lego-bob-ross-brilliant-/irp167

Need lower-level details of OS
and JVM interaction

strace
Why?

Unsure if JVM is hitting OS
limits and restricting
performance

When?

strace
!
> strace -f -v -p <PID> !
!

Print out system calls by process ID (includes
child processes)

strace

strace
!
java.lang.OutOfMemoryError: unable
to create new native thread !
!

What causes this?

!
[pid 11242] 18:06:35
clone(child_stack=0x7f9f09f7dff0, flags=CLONE_VM|
CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|
CLONE_CHILD_CLEARTID,
parent_tidptr=0x7f9f09f7e9d0, tls=0x7f9f09f7e700,
child_tidptr=0x7f9f09f7e9d0) = -1 EAGAIN
(Resource temporarily unavailable) !
!

strace

strace
!
> man clone!
... !
ERRORS !
 EAGAIN Too many processes are already running. !
!

strace
!
> ps auxw | !
 grep <SEARCH PHRASE> | !
 awk '{print "-p " $2}' | !
 xargs strace -f –v !
!

Tracing across different PIDs

Java
Visual VM

Image: http://www.brickshow.com/episode46-5-7955

Want simple visualizations and
profiling of the JVM

Visual VM
Why?

Initial assessments of the JVM
when troubleshooting
performance

When?

!
> jvisualvm !
!

Visual VM

vs.
Netbeans Profiler

Visual VM

VisualVM Snapshot Compare

Java
Mission Control

Image: lego.com

It’s like VisualVM…but better. Why?
Initial assessments of the JVM
when troubleshooting
performance (Java 7 u 40).
Advanced analysis of flight
recordings.

When?

Java Mission Control

CPU

Memory

Live
gauges

Can graph any
MBean attribute

!
> jmc !
!

Java Mission Control

Any
MBean

attribute

Action
taken on
trigger

Actions can be: application alert, email, generate a heap dump,
log to a file, echo out in your console, etc

Java Mission Control

Live usage
on memory

pools

Help define sizing to
minimize thrashing

Java Mission Control

Java
Flight Recorder

Image: lego.com

Java Flight Recorder

Low-profile option to collect
rich information of the JVM
(1 – 2% overhead)

Why?

Needing to capture rich
amount of information during
profiling

When?

Java Flight Recorder

Can continuously
collect in a buffer

Output on shutdown

Restrictions
•  FREE to use for development
•  NOT FREE to use in production

– Licensing:
•  Oracle Java SE Advanced
•  Oracle Java SE Suite

Java Flight Recorder

!
-XX:+UnlockCommercialFeatures !
-XX:+FlightRecorder !
!

Need to enable target JVM
Supported in Java 7 update 40

Java Flight Recorder

> jcmd <PID> JFR.start duration=60s !
 filename=myrecording.jfr !

Enable on demand in
Java Mission Control

Java Flight Recorder

Time spent
by host

Java Flight Recorder

Hot
methods

Java Flight Recorder

GC pause
time

Java Flight Recorder

Compilation
time

Java Flight Recorder

Timeline of
events

Summary

Know your
command line

tools

Capture metrics
while it is still

sluggish

Use Flight
Recorder in dev

to get details

Identify
compute /

latency events

Workshop
service kcdc.info

HTTP (GET)

HTTP (GET)

Query conference information

Workshop

Heap Analysis
What’s in your JVM?

Tooling

Capture
Heap Dump

JVM
Settings

Concepts

CONCEPTS

Dead objects are
garbage. x	
 	
 x	
 	

Weak
Generational
Hypothesis

Most objects
die young. x	
 	
 x	
 	

#1

Few old objects
reference young
objects.

#2

HotSpot VM is based
on this hypothesis.

Uses a generational garbage collector.

Old Gen Young Gen

Eden Tenured
Su

rv
iv

or

Su
rv

iv
or

Heap Native
Perm Gen

Thread Stack

Eden Tenured
Su

rv
iv

or

Su
rv

iv
or

Heap Perm Gen
Native Metaspace Java 8

Old Gen Young Gen Thread Stack

Eden Tenured
Su

rv
iv

or

Su
rv

iv
or

Heap Native Metaspace

Old Gen Young Gen

To From

Thread Stack

Eden Tenured
Su

rv
iv

or

Su
rv

iv
or

Heap Native Metaspace

Old Gen Young Gen

To From

Thread Stack

Eden Tenured
Su

rv
iv

or

Su
rv

iv
or

Heap Native Metaspace

Old Gen Young Gen

From To

Thread Stack

Eden Tenured
Su

rv
iv

or

Su
rv

iv
or

Heap Native Metaspace

Old Gen Young Gen

From To

Thread Stack

Eden Tenured
Su

rv
iv

or

Su
rv

iv
or

Heap Native Metaspace

Old Gen Young Gen

To From

Su
rv

iv
or

Thread Stack

Eden Tenured
Su

rv
iv

or

Su
rv

iv
or

Heap

Thread Stack

Native Metaspace

Old Gen Young Gen

To From

Su
rv

iv
or

Avoid
STW.

Stop The World
(pausing application threads)

1)  Total heap size
2)  Ratio of heap for young

generation
3)  Know how to view and

measure collection

Serial

Throughput

CMS

G1

Serial Collector

Don’t use this.
Single thread, small heap application

Freezes application threads

Throughput (Parallel) Collector

Uses multiple threads

Pauses on minor / major GC

It’s the default.

Supports adaptive sizing

Throughput: The Two Operations

Multiple threads to collect
Young Generation

Multiple threads to collect
Old Generation

#1
#2

Makes it
faster than
Serial
Collector

CMS: Concurrent Mark Sweep

Designed to eliminate the long
pauses from the full GC cycles

Low pause collector

Uses multiple threads

(Pauses on minor GC, execute full GC on background)

CMS: The Three Operations
Collect the young generation

(stopping all application threads)

Run concurrent cycle to clean data
out of the old generation

If necessary, perform full GC

#1
#2
#3

G1: Garbage First (introduced in Java 7u4)

(isolate to clean up regions that are mostly garbage)

(! 4 GB)

Designed to support large
heaps

Divides heap into regions

Duplicate Strings Strings Strings

(besides their char[] reference)

(different than String.intern())

G1 has support for string
de-duplication

Strings are generally the
largest consumer in your
heap

Java 8 u20

h e l l o

JVM SETTINGS

JVM Args: Garbage Collector

-XX:+UseG1GC
G1

-XX:+UseConcMarkSweepGC
-XX:+UseParNewGC

Concurrent Mark Sweep

-XX:+UseParallelGC
Throughput

(diff algorithm to collect young gen)

JVM Args: Total Heap Sizing

Xms == Xmx
Can be utilized to avoid heap resizing

Helpful when benchmarking specific areas

-Xmx<size>[g|G|m|M|k|K]

-Xms<size>[g|G|m|M|k|K]
Minimum and initial heap size

Maximum heap size

JVM Args: Adapt

-XX:MaxGCPauseMillis=N

Indicates the max pause time that is tolerable to assist
in adaptive sizing (ergonomics)

-XX:+UseStringDeduplication
String de-duplication (G1 – Java 8 u20+ only)

JVM Args: Adapt

-XX:-HeapDumpOnOutOfMemoryError

Enables dumping heap to a file when
OutOfMemoryError occurs

-XX:HeapDumpPath
Path to dump heap (ex. /tmp)

-XX:OnOutOfMemoryError="<cmd>;"

Command to execute on OOME (capture diagnostics
and shutdown)

JVM Args: GC Log

-XX:+PrintGCDetails
Include more details within your GC log

-XX:+PrintGCDateStamps
Have readable date/time strings to correlate to events

-Xloggc:<file>
Specify log file (otherwise will go to stdout)

-XX:+UseGCLogFileRotation
Rotate your GC logs!

-XX:GCLogFileSize=50M
-XX:NumberOfGCLogFiles=10

Note: -verbose:gc is NOT necessary
when you set –Xloggc (it is implied)

CAPTURE A
HEAP DUMP

> jcmd <PID> GC.heap_dump
 hd.hprof

> jmap
 -dump:format=b,file=hd.hprof
 <PID>

Command Line

MBean

True: Only dump live objects

File name for the heap dump

Will create the heap dump with read/write privs for
JVM owning user.

> sudo gdb --pid=<PID>
> gcore /tmp/jvm.core
> detach
> quit
> jmap
 -dump:format=b,file=hd.hprof
 /usr/bin/java /tmp/jvm.core

Core Dump

Java 8 Issue: JDK-8073606
jmap can not get class data
for sun/net/
ExtendedOptionsImpl$
$Lambda

TOOLS

VisualVM

JOverflow

Eclipse Memory
Analyzer

JOverflow

Add plugin to JMC
Select and install

> jmc
(Java Mission Control)

JOverflow: Load the heap dump

File " Open File
(select hprof file)

Analyze locally
running JVM

JOverflow: See Instance Data

Window " Show View " Other…

DEMO

VisualVM

> jvisualvm

Visual GC

* OQL Syntax Support

Helpful
plugins:

DEMO

Eclipse Memory Analyzer

Install as: Standalone app

Eclipse Plugin in IDE

Java ThreadLocals can
make it helpful to correlate
transactional context in a
heap dump.

Thread locals
are the gateway
drug to global
memory.

DEMO

Summarize

Capture and understand GCs
and heap dumps

Know your tools

Understand what GC you are
using and how it is configured

References

“Short of rewriting code,
tuning the garbage
collector is the most
important thing that can
be done to improve the
performance of a Java
application.” – Scott Oaks

