
Behavior Driven Development

Christopher C. Lamb

Department of Electrical and Computer Engineering
University of New Mexico

September 13, 2011

Outline

1 What is Behavior Driven Development?

2 Unit Testing

3 Test Driven Development

4 Behavior Driven Development

What is Behavior Driven Development?

Behavior Driven Development (BDD) is a second-generation,
outside-in, pull-based, multiple-stakeholder, multiple-scale,
high-automation, agile methodology. It describes a cycle of
interactions with well-defined outputs, resulting in the delivery of
working, tested software that matters.
— Dan North, London, 2009

Basically, this means that it is driven by specific, quantifiable value
associated with produced code. The code is produced with an eye toward
verifiable quality, and as much of the quality strategy as possible is
automated. This implies that we have automated tests and automated
builds. BDD builds on Test Driven Development (TDD), which in turn
builds on disciplined unit testing. We’ll cover all of this today.

So what is this testing of units?

Unit testing has been around for 40 years or so. Basically, you test the
smallest units of code that are assembled into your system. People used
to do it with mainframes. Automated testing’s been around that long
too, but people used to write their own test frameworks for this kind of
thing. About 15 years ago, Things changed.

Kent Beck and Erich Gamma created JUnit, a unit testing framework to
support the development methodology they were evangelizing (e.g.
eXtreme Programming). Both of them are still around, and both were
and are very influential. We used to test modules and functions — now
we test classes and methods.

This established a de-facto standard for unit test frameworks now
referred to as xUnit.

Why do we do it?

Developing software is hard. It’s getting harder and harder as time goes
by. Software systems are becoming:

• More Complex
Ten years ago distributed systems were cutting edge. Mobile
computing was just starting. Now everything’s distributed, cloud
computing is widely used by developers, mobile computing
ubiquitous. This all depends on layers upon layers of usually
third-party libraries.

• Less Trustworthy
So we use all these new libraries to create software, how do we know
that it’s trustworthy? that we’re using it correctly? When we need
to change our code base, do we know we can do it without causing
other problems?

Why do we do it?

This is much better than the way we used to develop and test software.

Back in the old days, most projects had dedicated testing teams, with
legions of testers. These testers would test the system through some kind
of user interface, something they built or one of the developers built, and
then they would test the system according to some huge test plan that
outlined thousands of steps they needed to go through to test the software.

This cost a fortune, and didn’t work.

Why do we do it?

Just writing the test plan was a horrible, expensive experience. These
things were huge, and took lots of thought and time. Then you needed
an army to execute it, and it took forever, all of which cost $$$. And
how can you test error conditions in your communication layer when it is
two libraries removed from the user interface?

Answer: you can’t, not through the UI.

Enter unit tests.

Why do we do it?

Unit testing solves many of these problems. Unit tests are:

• Automated — Huge test suites run in seconds, and they can be
automated to run whenever you want them to. They can be
configured to run whenever a developer checks any changes
whatsoever into a code base.

• Functional — The tests not only test the code, they serve as
examples of how the code is to be used.

• Flexible — You can now test that hard-to-reach communication
layer by building unit tests right into that code.

• Aggregateable — You can pull together unit tests for all of your
code into test suites.

How do we do it?

Generally, you will test individual units of functionality in your code.
Think classes, methods, functions. Unit tests are self contained, and not
dependent on any single runtime environment. To do this you usually use
mocks or stubs, which emulate dependencies. To do this, you need to
design your code to be testable, usually using a pattern called
Dependency Injection.

We can use unit testing frameworks to support a variety of other testing
methods as well. You can use them for:

• Functional testing — no mocks, tied to runtime environment

• Integration testing — testing more than one unit; e.g. multiple
layers or components

How do we do it?

Unit testing allows more complete testing, less complexity, and better
software through:

• documentation of programmatic use

• better design, forces use in more than one domain, design for test

• more agility, easier to change your software

• ease of later integration

Now keep in mind, unit tests aren’t free.

They take time to write, and if you’re not careful you can create fragile
tests, which break easily when the code is changed, leading you to spend
an inordinate amount of time altering your test suite. These are the two
most sensible arguments people use against unit testing. Less sensible
arguments include the my code doesn’t need them or the I already
know how to do my job arguments.

So what is Test Driven Development?

Well, it’s another way to build software.

Remember, even if unit testing has been around for a while, it was
primarily a niche practice. For the most part, industry was using large
test teams, understood that they didn’t work well, but that was really the
only game in town. So that’s what people did. When unit testing started
to gain more mainstream acceptance, the flexibility of the practice (and
the xUnit frameworks) allowed developers to change how they did their
jobs, to enable them to produce better code.

Some renegade developers started writing tests for code that didn’t exist,
and then they would create code so the tests would pass.

Ergo, Test Driven Development was born.

How does it work?

You use a simple algorithm:

1 select a feature

2 write some tests

3 run tests (they should all fail)

4 implement feature a bit a a time, running tests after each bit of
work until all tests pass

5 repeat

That’s it!

Metrics for tests?

Okay, so now, if we’re doing TDD, we’re writing tests before we’re
writing code. How can we tell we’re writing good tests?

Writing software is hard, remember? It’s challenging to write good tests
that don’t need to be reworked again and again. Some rules of thumb:

• Think about design — Most agile developers think that agile means
you don’t do design or architecture. This isn’t true — rather, you do
as little design and architecture as possible to build a quality
product that meets needs. With TDD you can divide the task into
smaller and smaller units to test which makes it easier to think
about issues like error handling and argument checking. Your tests
should reflect this.

• Black/white/grey box testing — Try to stay away from examining
object internals. They tend to change more than interfaces after the
interfaces are established. Design tests with knowledge of
implementation, but not dependency on it; this is grey box testing.

Metrics for tests?

• Refactor — One of the keys to using agile methods to develop good
software is refactoring. Just like you refactor your code when you
find it needs it, you need to aggressively to this with your tests as
well.

• Metrics — Test coverage is a worthwhile metric, and there’s plenty
of tools that can generate that for you. Don’t get lulled into a false
sense of security though — if your tests are poor, or you’re not
testing the right things, this will be misleading. You’ll also find that
some areas need multiple tests under multiple different conditions
(e.g. boundary conditions, error conditions, etc.)

What is Behavior Driven Development?

So, remember the definition from the first slide:

Behavior Driven Development (BDD) is a second-generation,
outside-in, pull-based, multiple-stakeholder, multiple-scale,
high-automation, agile methodology. It describes a cycle of
interactions with well-defined outputs, resulting in the delivery of
working, tested software that matters.

This sure sounds nifty. But what does it really mean, and what kind of
things do you use to do it?

• Test Driven Development — We’ve covered this; though BDD
testing is slightly different.

• Domain Driven Design — A software design approach.

• Scrum (or similar) — An iterative software development
methodology based on short cycles focused on clear user stories.

We’ll touch on the last two now.

Domain Driven Design

Essentially, Domain Driven Design is a method of building software that
separates system functions from domain functions, leading to cleaner,
easier to understand code.

It does this by using groups of patterns to separate data from application
functionality.

For more info:
http://www.infoq.com/minibooks/domain-driven-design-quickly

And Scrum, etc.?

These are various types of agile methodologies. They’re characterized by:

• Fluid Requirements — They recognize that users don’t usually know
what they want until they see what they don’t want.

• Customer Involvement — Customers are members of the team, go
to meetings, sit with the developers, the whole bit.

• Daily Standup Meetings — The team gets together every morning
to check the pulse of the project.

• Iterative — They use short iterations (2-6 weeks) to keep on target.
At the end of each iteration, the client sees the current system and
determines direction.

They all have tweaks beyond this, but this is really the core of most agile
methodologies.

How BDD Testing differs

In the past, in Ruby, we’d use something like Test::Unit, an xUnit
compatible unit testing suite delivered with Ruby installations. Your tests
would look something like this:

class MyTests

def test this
Test something...
end

end

Pretty straightfoward. You can see what the tests are, code ’em up, run
’em, all that good stuff.

BDD Tests are Different!

BDD test differ, and that’s shown in the syntax you use. Generally,
they’re supposed to be clearly understandable and written in near english.
You describe activities by illustrating what it should do under certain
conditions.

In Ruby, we use RSpec to run these, and rspec tests look like this:

describe ’create activity’ do

it ’should be creatable with a block’ do
test creating with a block
end

it ’should be creatable without a block’ do
test creating without a block
end

end

So what?

The nice thing about RSpec tests is that they are:

• Clear — The whole describe it should... makes the intent of the
tests very clear, even to the author.

• Limited — The syntax also tends to enforce a more black-box
testing style. Here, we’re constantly reminded that we’re testing
what a component should do under specific conditions, and that
helps us from getting ourselves in trouble by testing things that
perhaps we shouldn’t.

The end result? better tests.

Questions?

Questions?

	What is Behavior Driven Development?
	Unit Testing
	Test Driven Development
	Behavior Driven Development

