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Abstract

Quantum computers are becoming a reality. But designing applications for these devices requires automated,
efficient, and user-friendly software tools that cater to the needs of end users, engineers, and physicists at every
level of the entire quantum software stack. Many of the problems to be tackled in that regard are similar to design
problems from the classical realm for which sophisticated design automation tools have been developed in the
previous decades. The Munich Quantum Toolkit (MQT) is a collection of software tools for quantum computing
developed by the Chair for Design Automation at the Technical University of Munich which explicitly utilizes this
design automation expertise. Our overarching objective is to provide solutions for design tasks across the entire
quantum software stack. This entails high-level support for end users in realizing their applications as well as
efficient methods for the classical simulation, compilation, and verification of quantum circuits. These methods
are supported by corresponding data structures (such as decision diagrams) and core methods (such as SAT
encodings/solvers). Reaching towards the hardware level, we also consider tools for quantum error correction
and physical design. All of the developed tools are available as open source and are hosted on github.com/cda-
tum. The following sections provide a brief overview of the provided solutions for various levels in the quantum
software stack.

Note: A live version of this document is available at mqt.readthedocs.io.
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I Introduction
Quantum computing has the potential to revolutionize many fields in the 21st century. Over the past decade,
numerous quantum computers from multiple providers based on different qubit technologies have been made
publicly available. However, the best hardware is only as good as the software available to realize corresponding
applications on it—a lesson learned from the past decades of research on designing and developing classical
circuits and systems. Thanks to the software tools and methods for Electronic Design Automation (EDA), we can
create classical systems with a staggering amount of transistors and complex functionalities that we often take for
granted. These methods allow designers to efficiently and automatically handle the intricacies of such systems
and optimize their performance. Compared to that, most existing software solutions for quantum computing
are based on manual approaches. This is not only susceptible to errors, inefficiency, and inconsistency but also
leaves decades of research on design automation methods underutilized.

The Munich Quantum Toolkit (MQT), which is developed by the Chair for Design Automation at the Technical
University of Munich, aims to leverage this latent potential by providing a collection of state-of-the-art design
automation methods and software tools for quantum computing. Our overarching objective is to provide solutions
for design tasks across the entire quantum software stack. This entails high-level support for end users in realizing
their applications as well as efficient methods for the classical simulation, compilation, and verification of
quantum circuits. Reaching towards the hardware level, we also consider tools for quantum error correction and
physical design. In all these tools, we try to utilize data structures and core methods facilitating the efficient
handling of quantum computations. The proposed solutions demonstrate significant improvements in efficiency,
scalability, and reliability. They illustrate the immense benefits of leveraging expertise in classical circuit and
system design rather than starting from scratch. All tools developed as part of the MQT are made available as
open-source packages on github.com/cda-tum.

In the following, we briefly summarize the main tools (covering classical simulation, compilation, and
verification of quantum circuits as well as benchmarking). We particularly focus on how to use the tools,
but additionally provide references and links that offer detailed descriptions of the underlying methods as well
as summaries of corresponding case studies and evaluations demonstrating the benefits.
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II Classical Simulation of Quantum Circuits
Performing a quantum computation (commonly described as a quantum circuit) entails evolving an initial
quantum state by applying a sequence of operations (also called gates) and measuring the resulting system.
Eventually, the goal should obviously be to do that on a real device. However, there are several important
reasons for simulating the corresponding computations on a classical machine, particularly in the early stages
of the design: As long as no suitable devices are available (e.g., in terms of scale, feasible computation depth,
or accuracy), classical simulations of quantum circuits still allow one to explore and test quantum applications,
even if only on a limited scale. However, also with further progress in the capabilities of the hardware platforms,
classical simulation will remain an essential part of the quantum computing design process, since it additionally
allows access to all amplitudes of a resulting quantum state in contrast to a real device that only probabilistically
returns measurement results. Moreover, classical simulation provides means to study quantum error correction
as well as a baseline to estimate the advantage of quantum computers over classical computers.

The classical simulation of quantum circuits is commonly conducted by performing consecutive matrix-vector
multiplication, which many simulators realize by storing a dense representation of the complete state vector in
memory and evolving it correspondingly (see, e.g., [1, 2, 3, 4, 5]). This approach quickly becomes intractable
due to the exponential growth of the quantum state with respect to the number of qubits—quickly rendering such
simulations infeasible even on supercomputer clusters. Simulation methodologies based on decision diagrams
[6, 7, 8] are a promising complementary approach that frequently allows reducing the required memory by
exploiting redundancies in the simulated quantum state.

The MQT offers the classical quantum circuit simulator DDSIM that can be used to perform various quantum
circuit simulation tasks based on using decision diagrams as a data structure. This includes strong and weak
simulation, approximation techniques, noise-aware simulation, hybrid Schrödinger-Feynman techniques, support
for dynamic circuits, the computation of expectation values, and more [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20].
Example 1. Consider the following listing that builds the quantum circuit for generating a three-qubit GHZ
state:

1 from qiskit import QuantumCircuit
2

3 circ = QuantumCircuit(3)
4 circ.h(2)
5 circ.cx(2, 1)
6 circ.cx(1, 0)
7 circ.measure_all()

Fig. 1. Quantum circuit for generating a three-qubit GHZ state.

The following listing demonstrates how to simulate this circuit using DDSIM as a backend for IBM Qiskit:

1 from mqt.ddsim import DDSIMProvider
2

3 provider = DDSIMProvider()
4 backend = provider.get_backend("qasm_simulator")
5 result = backend.run(circ, shots=10000).result()
6 result.get_counts()

{'000': 4989, '111': 5011}
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MQT DDSIM
Code: https://github.com/cda-tum/mqt-ddsim
Python Package: https://pypi.org/p/mqt.ddsim
Documentation: https://mqt.readthedocs.io/projects/ddsim

III Compilation of Quantum Circuits
In today’s digital world, creating computer programs has become a crucial element of software development.
With the advent of high-level programming languages such as C++ or Python, the development process has
become simpler and more efficient. These languages enable developers to produce code that is more human-
readable and understandable without having to worry about the underlying hardware’s low-level features. But
before these programs can be executed on a computer, they must be translated into machine code that the
computer can process. This procedure is known as compilation, and it entails converting high-level code into a
binary format that the computer’s processor can directly execute. By making it easier for more people to create
computer programs, this has enabled the development of complex software applications that can run on many
different platforms such as desktops, laptops, mobile phones or embedded devices.

Just as in classical computing, the design of quantum circuits and the development of quantum algorithms
are fundamental in the development of quantum computing applications. Quantum circuits are analogous to
classical functions or programs in that they are a sequence of quantum gates that perform specific operations on
quantum bits or qubits instead of classical bits. Similarly to classical processors, quantum processors can only
execute a certain set of native instructions, and they might further limit the qubits on which these operations
might be applied. Thus, any high-level quantum circuit (describing a quantum application) must be compiled
into a representation that can be executed on the targeted device. Most importantly, the resulting quantum circuit
must only use gates that are native to the device on which it shall be executed. If the device only has limited
connectivity between its qubits, it must only apply gates to qubits that are connected on the device. Naturally, the
efficiency of this compilation process is critical because it can have a significant impact on the performance of
the resulting quantum program. Inefficient compilation can lead to longer execution times, higher error rates, and
reduced accuracy in the final result. Therefore, developing efficient compilation methods for quantum programs
is essential to overcome the challenges of quantum computing and realize the potential of this technology.

In the following, we mainly focus on the quantum circuit mapping task. This is a crucial step in the compilation
flow, as it directly affects the feasibility and performance of the quantum circuit on a given device. It involves
finding a way to map the qubits of a quantum circuit to the qubits of a quantum device, while respecting the
limited connectivity constraints of the device and minimizing the overhead of additional gates. In most cases,
it is not possible to statically define a mapping of the circuit’s qubits to the device’s qubits such that all gates
of the circuit conform to the connectivity limitations of the device. Consequently, this mapping has to change
dynamically throughout the circuit. This can be accomplished by using SWAP gates that allow the position of
two logical qubits on the architecture to be interchanged. However, since any additional gate increases the error
rate and, hence, reduces the accuracy of the computation, it is vital to keep the number of additionally added
gates as low as possible. It has been shown that even this small part in the compilation flow is an NP-complete
problem [21].

The MQT offers the quantum circuit mapping tool QMAP that allows one to generate circuits which satisfy all
constraints given by the targeted architecture and, at the same time, keep the overhead in terms of additionally
required quantum gates as low as possible. More precisely, different approaches based on design automation
techniques are provided, which are generic and can be easily configured for future architectures. Among them
is a heuristic, scalable solution for arbitrary circuits based on informed-search algorithms [22, 23] as well as a
solution for obtaining mappings ensuring minimal overhead with respect to SWAP gate insertions [24, 25].
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MQT offers many more methods for various compilation tasks, such as Clifford circuit synthesis [26, 27],
determining optimal sub-architectures [28], compiler optimization [29], or compilation techniques for different
architectures [30, 31, 32, 33, 34].
Example 2. Assume we want to perform the computation from Fig. 1 on a five-qubit IBM quantum computer
described by the coupling map shown in Fig. 2.

Fig. 2. Generic five-qubit IBM device.

Then, mapping the circuit to that device merely requires the following lines of Python and results in the circuit
shown in Fig. 3.

1 from mqt.qmap import compile
2 from qiskit.providers.fake_provider import Fake5QV1
3

4 backend = Fake5QV1()
5 circ_mapped, results = compile(circ, backend)

Fig. 3. Quantum circuit from Fig. 1 mapped to the five-qubit device shown in Fig. 2.

MQT QMAP
Code: https://github.com/cda-tum/mqt-qmap
Python Package: https://pypi.org/p/mqt.qmap
Documentation: https://mqt.readthedocs.io/projects/qmap
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IV Verification of Quantum Circuits
Compiling quantum algorithms results in different representations of the considered functionality, which
significantly differ in their basis operations and structure but are still supposed to be functionally equivalent.
As described in the previous section, even individual compilation tasks can be highly complex. Consequently,
checking whether the original functionality is indeed maintained throughout all these different abstractions
becomes increasingly relevant in order to guarantee a consistent and error-free compilation flow. This is similar
to the classical realm, where descriptions at various levels of abstraction also exist. These descriptions are verified
using design automation expertise—resulting in efficient methods for verification to ensure the correctness of the
design across different levels of abstraction [35]. However, since quantum circuits additionally employ quantum-
physical effects such as superposition and entanglement, these methods cannot be used out of the box in the
quantum realm. Accordingly, verification of quantum circuits must be approached from a different perspective.
At first glance, these characteristics of quantum computing make verification much harder as for classical circuits
and systems. In fact, equivalence checking of quantum circuits has been proven to be a computationally hard
problem [36].

At the same time, quantum circuits possess certain characteristics that offer remarkable potential for efficient
equivalence checking that is not available in classical computing. More precisely, consider two quantum circuits
𝐺 = 𝑔1, . . . , 𝑔𝑚 and 𝐺′ = 𝑔′1, . . . , 𝑔

′
𝑛 whose equivalence shall be checked. Due to the inherent reversibility of

quantum operations, the inverse of a quantum circuit can easily be computed by taking the complex conjugate
of every gate and reversing the sequence of the gates in the circuit, i.e., 𝐺′−1 = (𝑔′𝑛)

†, . . . , (𝑔′1)
†. If two

circuits are equivalent, this allows for the conclusion that 𝐺 ·𝐺′−1 = 𝐼 , where 𝐼 is the identity function. Since
the identity has the most compact representation for most data structures representing quantum functionality
(e.g., linear with respect to the number of qubits in case of decision diagrams), the equivalence check can be
simplified considerably. Even complex circuits can be verified efficiently, if one manages to apply the gates
of both circuits in a sequence that keeps the intermediate representation “close to the identity”. Within the
MQT, several methods and strategies were proposed that utilize this characteristic of quantum computations.
Eventually, this led to solutions that can verify the results of whole quantum compilation flows (such as IBM’s
Qiskit) in negligible runtime—something we never even managed for classical circuits and systems.

The MQT offers the quantum circuit equivalence checking tool QCEC which encompasses a comprehensive
suite of efficient methods and automated tools for the verification of quantum circuits based on the ideas outlined
in [37, 38, 39, 40, 41, 42, 43, 44, 45]. By this, an important step towards avoiding or substantially mitigating
the emerge of a verification gap for quantum circuits is taken, i.e., a situation where the physical development
of a technology substantially outperforms our ability to design suitable applications for it or to verify it.
Example 3. Verifying that the quantum circuit from Fig. 3 has been correctly compiled to the architecture
from Fig. 2, i.e., whether it still implements the functionality of the circuit shown in Fig. 1, merely requires the
following lines of Python:

1 from mqt.qcec import verify
2

3 result = verify(circ, circ_mapped)
4 print(result.equivalence)

equivalent

MQT QCEC
Code: https://github.com/cda-tum/mqt-qcec
Python Package: https://pypi.org/p/mqt.qcec
Documentation: https://mqt.readthedocs.io/projects/qcec
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V Benchmarking Software and Design Automation Tools for Quan-
tum Computing

Tools like the ones proposed above are key in order to support end users in the realization of their quantum
computing applications. And, thankfully, a huge variety of tools has been proposed in the past—with many more
to come. However, whenever such a quantum software tool is proposed, it is important to empirically evaluate its
performance and to compare it to the state of the art. For that purpose, proper benchmarks are needed. To provide
those, MQT Bench is proposed, which offers over 70, 000 benchmarks on various abstraction levels (depending
on what level the to-be-evaluated software tool operates on). Having all those benchmarks in a single repository
enables an increased comparability, reproducibility, and transparency. To make the benchmarks as accessible as
possible, MQT Bench comes as an easy-to-use website that is hosted at www.cda.cit.tum.de/mqtbench/ and as
a Python package available on PyPI.
Example 4. A larger version of the quantum circuit from Fig. 1 can easily be obtained programmatically from
the MQT Bench Python package as follows:

1 from mqt.bench import get_benchmark
2

3 circ = get_benchmark("ghz", circuit_size=8, level="alg")

Fig. 4. Larger version of the circuit from Fig. 1 obtained via MQT Bench.

This circuit can then be used to evaluate the performance of a quantum software tool, e.g., to test how well it
can simulate the circuit or how well it can compile it to a given architecture.

MQT Bench
Code: https://github.com/cda-tum/mqt-bench
Python Package: https://pypi.org/p/mqt.bench
Documentation: https://mqt.readthedocs.io/projects/bench
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VI Open-Source Implementations
All tools that have been developed as part of the MQT are publicly available on github.com/cda-tum. Many
of these tools are powered by MQT Core, which forms the backbone of the entire toolkit. It features a
comprehensive intermediate representation for quantum computations as well as a state-of-the-art decision
diagram package for quantum computing and a high-performance ZX-calculus library.

MQT Core
Code: https://github.com/cda-tum/mqt-core
Python Package: https://pypi.org/p/mqt.core
Documentation: https://mqt.readthedocs.io/projects/core
All tools have been mainly implemented in C++, but strive to be as user-friendly as possible for the community.
Hence, push-button solutions are provided through Python bindings, pre-built Python wheels are available for
all major platforms and Python versions, and all tools integrate natively with IBM’s Qiskit. All tools are actively
maintained and well documented.

VII Conclusions
Design automation tools and software have been crucial for the development of classical circuits and systems.
They enable faster and more reliable design cycles, reduce human errors, and allow for complex and large-
scale designs. In the domain of quantum computing, the corresponding design automation methods (which
have been developed over the past decades) remain heavily underutilized. The Munich Quantum Toolkit (MQT)
makes substantial contributions towards leveraging this latent potential. For many important design tasks, several
methods and tools have been proposed that explicitly use design automation expertise while, at the same time,
considering characteristics of quantum computing.

Overall, the MQT demonstrates the immense benefits of leveraging existing knowledge and expertise in classical
circuit and system design for the development of quantum software. By applying design automation methods
to various tasks, the MQT significantly advances the state of the art in quantum computing and improves
the efficiency, scalability, and reliability of quantum software solutions. In the absence of appropriate tools
and software, the potential of quantum computers may remain untapped despite their immense computational
capabilities. The MQT highlights the importance of design automation methods in shaping the future of quantum
computing.
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