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Abstract

The learning mechanism in the hippocampus has almost universally been assumed to be Hebbian in nature, where
individual neurons in an engram join together with synaptic weight increases to support facilitated recall of memories later.
However, it is also widely known that Hebbian learning mechanisms impose significant capacity constraints, and are
generally less computationally powerful than learning mechanisms that take advantage of error signals. We show that the
differential phase relationships of hippocampal subfields within the overall theta rhythm enable a powerful form of error-
driven learning, which results in significantly greater capacity, as shown in computer simulations. In one phase of the theta
cycle, the bidirectional connectivity between CA1 and entorhinal cortex can be trained in an error-driven fashion to learn to
effectively encode the cortical inputs in a compact and sparse form over CA1. In a subsequent portion of the theta cycle, the
system attempts to recall an existing memory, via the pathway from entorhinal cortex to CA3 and CA1. Finally the full theta
cycle completes when a strong target encoding representation of the current input is imposed onto the CA1 via direct
projections from entorhinal cortex. The difference between this target encoding and the attempted recall of the same
representation on CA1 constitutes an error signal that can drive the learning of CA3 to CA1 synapses. This CA3 to CA1
pathway is critical for enabling full reinstatement of recalled hippocampal memories out in cortex. Taken together, these
new learning dynamics enable a much more robust, high-capacity model of hippocampal learning than was available
previously under the classical Hebbian model.
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Introduction

Over the past half century the hippocampus has provided fertile
ground for the work of mechanistic computational models to inform
empirical research. From the earliest investigations into Long Term
Potentiation to the complex dynamics of place cells, models of
hippocampal function have enabled a greater understanding of how
learning and memory emerges from more basic neural mechanisms
in this remarkable brain area. The paradigmatic theoretical model
guiding this work is the Hebb-Marr framework [1–3], which features
the core idea that Hebbian learning wires together neurons that are
firing together as part of a memory or engram representation, e.g., in
the central area CA3 of the hippocampus. With these connections
strengthened, the ability to pattern complete a partial memory cue to a
full representation of the original memory is enhanced. For this
pattern completion within CA3 to actually drive full memory recall,
it must trigger a chain reaction of pattern completion throughout the
cortex — although central to most theoretical accounts, the critical
role of the CA1 in this larger pattern completion process has not
been as widely recognized. Specifically, learning between CA3 and
CA1 neurons must take place at memory encoding, to enable the
CA1 to then drive entorhinal cortex (EC), which then drives the
higher-level association cortex areas that are bidirectionally inter-
connected with it. This plasticity at the CA3 to CA1 synapses indeed

may be the most important factor for subsequent memory recall [4].
It is the nature of this plasticity, and the learning that takes place in
the bidirectional connections between EC and CA1, that is the focus
of this paper.

We argue that, by taking into account the phase differences of
firing for these areas within the overall theta cycle of the
hippocampus [5,6], a powerful error-driven form of learning
emerges, which can result in much higher storage capacity than
the standard Hebbian learning mechanism. Furthermore, these
phase dynamics within the EC – CA1 bidirectional connections
enable the CA1 to very naturally learn to be a sparse, invertible
auto-encoder of the EC inputs, which has long been an important
but somewhat implausibly implemented feature of our computa-
tional models [7–10]. Thus, this new model, which we refer to as
the theta-phase hippocampus model, in reference to the theta
oscillation, provides a more unified and computationally powerful
model of hippocampal function. This model also enables us to
make more direct contact with a large base of evidence, in both
humans and rodents, relating hippocampal EEG oscillations to
learning and memory. Much of the progress within this literature
has been made in animal electrophysiology targeting hippocampal
representation during spatial navigation and recall, while evidence
from human EEG and intracranial recordings of oscillatory
interactions also shows connections to episodic memory.
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Modeling work, originally developed within the spatial naviga-
tion literature, suggested that connectivity between hippocampal
subregions is coordinated via the 3 to 8 Hz EEG theta oscillation
[5,6]. This work has also been extended into a more general
framework of hippocampal function including a proposed
extension from spatial navigation into episodic memory [8,11].
These investigations provide the foundation for the theta-phase
model described in the current work, in terms of establishing the
existence and functional role of the oscillatory coordination of
hippocampal subregions within an encoding and retrieval
dynamic. We build upon this foundation by showing how these
dynamics can lead to error-driven learning, and a concomitant
increase in overall storage capacity for the system. The
implementation of this theta-phase model is based directly on
the Complimentary Learning Systems neural network model of
the hippocampus [7,9,10], which is implemented within the Local,
Error-driven, and Associative, Biologically Realistic Algorithm
(Leabra) framework [12,13]. We assess the impact of the theta-
phase error-driven learning mechanisms by comparing it with an
otherwise identical model that uses a Hebbian learning rule, while
varying the number of units within the Dentate Gyrus (DG) and
area CA3, and measuring the models’ recall on a varying number
of learned patterns. These learned patterns are presented at test
with 25 percent of the pattern missing, and the models are
compared on their ability to complete the missing portion of the
pattern. Results show the error-driven signal performs significantly
better than the Hebbian learning rule.

Materials and Methods

Hippocampal Architecture
The model used in the current work is built upon a series of

structural and functional hypotheses based on anatomical and
physiological data, which have been captured in the complemen-
tary learning systems (CLS) model of the hippocampus [7,9]. The
Entorhinal Cortex (EC) in the model is assumed to be the cortical
gateway to the hippocampus. This gateway feeds through the
trisynaptic pathway (TSP) to the Dentate Gyrus (DG), CA3, and then
to CA1. Similarly, there is a parallel connection through the
monosynaptic pathway (MSP) from the EC to the CA1 (and back)
(Figure 1).

The TSP connections via the perforant path from EC to DG and
CA3 are broadly diffuse, and support the conjunctive binding of
various distributed pieces of information into an overall episodic
memory representation in the CA3. The CA3 has sparse and highly
separable patterns of activity (which are further pattern-separated

via the very sparse DG layer), resulting in substantially reduced
interference from synaptic weight changes, thus enabling rapid
learning of novel episodic or conjunctive information [7]. To recall
existing memories, the recurrent connections in CA3, along with
plasticity in the EC to CA3, as well as the DG to CA3 connections,
support pattern completion of missing information from retrieval
cues.

For pattern completion in CA3 to have any effect on the rest of
the brain, there must be a way to map the CA3 representation
back out to the neocortex. This occurs via connections from CA3
to CA1 (the Schaffer collateral pathway), and then from CA1 back
to EC, which then projects back out to the cortex to fill in the full
memory representation in the cortical areas where it can actually
be used in further cognitive processing. This Schaffer collateral
pathway is a key focus of the theta-phase model, where we can
train synapses in this pathway according to an error-driven
learning signal, instead of the standard Hebbian signal assumed in
other existing models.

The MSP between EC and CA1 is also essential for supporting
memory retrieval, in a way that is often under-appreciated in the
literature. This pathway is topologically organized, not diffuse,
which we capture by organizing the simulated neurons in EC and
CA1 into mutually interconnected slots, presumably encoding
different separable elements across all the cortical areas that
converge on the EC [14]. This slot architecture (Figure 1) enables
the MSP to develop separable invertible pathways where a given EC
input pattern can be encoded over a sparser representation in the
corresponding CA1 slot, and this CA1 representation can in turn
recover the full original EC slot pattern. The topographic nature
of this CA1 representation is important for providing a mapping
from cortex into the hippocampus and back out again. Weight
adjustments along the TSP form conjunctive representations that
bind information across the topography of EC and are important
for recreating a previously experienced state from incomplete
inputs (i.e., pattern completion). The Schaffer collaterals (the
connection between CA3 and CA1) provide the translation
between these two types of representations, allowing the conjunc-
tive representations learned in the TSP to influence the
topographic representations within CA1, and subsequently back
out to EC. In our previous CLS models, we have trained these
topographic slot mapping weights between EC and CA1 in an
offline manner prior to training the full hippocampal network. The
new theta-phase learning mechanisms now enables us to train this
important MSP pathway in a very natural manner, at the same
time as the rest of the hippocampal system learns.

To summarize, after learning, the model recollects studied items
by reactivating the original patterns via the trained weighted
connections between areas. The accuracy of this recall is scored as
a simple comparison between the originally studied ECin pattern
and the recollected ECout pattern. If the input pattern corresponds
to a non-studied pattern, or even if individual components of the
pattern were previously studied, but not together, the conjunctive
nature of the CA3 representations will minimize the extent to
which recall occurs. Conversely, when previously studied patterns
are presented in an incomplete or noisy input format, these
weights allow the hippocampus to recall the originally studied
pattern.

Theta Phase Learning
As noted previously, the original Complementary Learning

Systems (CLS) hippocampal model pretrained the invertible
mapping between EC and CA1 on a vocabulary of possible
patterns for a single slot [9]. The resulting weights for the
connections within this individual slot network were then

Author Summary

We present a novel hippocampal model based on the
oscillatory dynamics of the theta rhythm, which enables
the network to learn much more efficiently than the
Hebbian form of learning that is widely assumed in most
models. Specifically, two pathways, Tri-Synaptic and Mono-
Synaptic, alternate in strength during theta oscillations to
provide an alternation of encoding vs. recall bias in area
CA1. The difference between these two states and the
unaltered cortical input representation creates an error
signal, which can drive powerful error-driven learning in
both Tri-Synaptic and Mono-Synaptic pathways. Further-
more, the presence of these alternating modes of network
behavior (encoding vs. recall) provide an intriguing target
for future work examining how prefrontal control mech-
anisms can manipulate the behavior of the hippocampus.

Theta Coordination in Hippocampus
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replicated across all EC–CA1 slots (see Figure 1 where an
individual slot is highlighted) in the MSP. This restricts the space
of inputs possible to the vocabulary of patterns in which the slot
network was trained.

The alternative approach adopted in this work utilizes
simultaneous, independent learning along both the MSP and the
TSP. This dual-pathway learning is motivated by physiological
recordings within the subfields of rat hippocampi, along with
mathematical models of hippocampal function [6], in terms of the
3–8 Hz oscillatory EEG signal known as theta. The theta
oscillation can be found throughout the hippocampus and
surrounding cortex, however it is strongest and most consistent
when recorded within the region separating CA1 and DG known
as the hippocampal fissure. For this reason all references to theta
oscillations will be referring to the EEG signal measured at the
hippocampal fissure.

Figure 2A shows an illustration of hippocampal subfield
dynamics in relation to the fissure recorded theta oscillation
shown in red. This cartoon, derived from current source density
analysis [6,15], shows the current sinks into area CA1 alternatively
originating from either area CA3 in blue or EC layers II and III in
green. At the trough of fissure recorded theta, EC sources into
CA1 are at their peak and area CA3 is at its minimum. This
implies that EC has a strong influence over synaptic potentials
within area CA1 at this time. At the peak of fissure recorded theta,
CA3 sources are at their peak and EC influence has diminished.
This again suggests that CA3 input to area CA1 is now the
dominant influence, and EC is less so as compared to the trough of
the theta oscillation.

These dynamics are modeled within the neural network as, for
any given input pattern, three distinct time points of activation:
Theta Trough (TT), Theta Peak (TP), and Theta Plus (+) as shown
in Figure 2B. These three time points are modeled as three
independent settling processes across simulated neurons within the
differential equation described in eq. (1). The patterns of activation
that arise from these three time points are used to train the
weighted connections along the MSP and the TSP, where the
equations for the error-driven weight changes at these synapses are
shown in eqs. (6) and (7).

Specifically, input patterns are projected onto ECin which is
then allowed to project to CA1 and subsequently to area ECout,

while CA3 input to CA1 is inhibited. This creates a pattern of
activation dominated by the MSP which is then used to drive
learning within these connections. This is denoted as superscript
TT in eq. (6) for ‘‘Theta Trough’’, as this time point is analogous to
the connectivity dynamics at the trough of theta oscillations, where
EC strongly influences CA1, and CA3 influence is relatively low.
Following this, CA3 input onto CA1 is released from inhibition
while the influence from ECin onto CA1 is diminished. This
corresponds to the Theta Peak (denoted as TP in eq. (7)); a time
point that reflects strong influence from CA3 onto CA1. This time
point is analogous to the peak of the fissure recorded theta
oscillation where EC input to CA1 is weak, while CA3 input is
strong.

The final plus stage of activation (denoted with the + in eqs. (6)
and (7)) corresponds to ECin projecting onto ECout and area CA1,
and ECout projecting back onto CA1. The representations within
ECin and ECout will remain relatively static due to the direct
connection between them, which then forces CA1 to settle into a
representation that respects this symmetric mapping between ECin

and ECout. This provides the veridical ground truth in the error-
driven learning signal. In reference to eq. (3), this pattern of
activation is used for the plus stage learning signal in contrast to
the MSP’s TT and the TSP’s TP minus stage.

The alteration of these connections’ strength are manipulated in
the model by simply denying information flow through specific
subregion projections at select points in the settling process of the
differential equation shown in eq. (1). The three particular
projections that are manipulated in the model are
ECin?CA1,CA3?CA1, and ECin?ECout where the pattern
of manipulation that these projections are subjected to are
highlighted in Table 1. All other connections within the network
have no error-driven component to their weight adjustments, only
Hebbian, as seen in eq. (8).

Model Validation
The validation process adopted in this work is to compare the

theta-phase learning model described above with a simple Hebbian
learning model. The critical connections that utilize an error-driven
learning signal within the theta-phase model are the Mono-Synaptic
Pathway (ECin?CA1,CA1?ECout), as well as the Schaffer
collaterals (CA3?CA1). In contrast, these connections in the

Figure 1. Hippocampal connectivity. A) Schematic of hippocampal connections with Entorhinal Cortex(EC) B) Image of neural network model
used in this work on the right. Two pathways are highlighted: the Mono-Synaptic Pathway (MSP) in green, and the Tri-Synaptic Pathway (TSP) in blue.
An individual EC slot is highlighted in orange within the neural network on the right.
doi:10.1371/journal.pcbi.1003067.g001

Theta Coordination in Hippocampus
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comparison model use a purely Hebbian learning rule. The task run
across both models is a simple capacity test such that each model is
trained for 15 repetitions of an input pattern set (referred to as 15
epochs), and the performance of the two models is then tested by

measuring the accuracy of the recalled patterns of activation given
an input cue which has 25 percent of the trained pattern missing.

We explored three training regimes to contrast error-driven vs.
Hebbian learning. First, both the MSP and TSP utilized an error-
driven learning signal and was compared to a full Hebbian
network. We then compared the contribution of these two
pathways by using error-driven learning within either the MSP
and not the TSP, or conversely within the TSP and not the MSP.
Finally, to better compare against earlier models where the MSP
pathway was pretrained in advance, we compared pretrained vs.
non-pretrained MSP. In the pretrained MSP, only the MSP
pathway was trained for 15 epochs (on the same patterns used for
the overall training), followed by integrated training of both TSP
and MSP as described above. In the non-pretrained MSP, both
pathways were trained in the integrated fashion from the start.

The question of how network performance scales is addressed
by varying the training set size, and network size across multiple
levels of these two variables. The size of the input pattern set is
varied from 40 to 800 patterns to get a measure of model

Figure 2. Diagram of relation to physiological data and computational model. Figure adapted from [6] A) Relation of current-source/sink
analysis within subfields of the hippocampus and the fissure recorded theta oscillation. The blue histogram shows the strength of the Tri-Synaptic
Pathway’s(TSP) influence on area CA1 over time, and the green histogram shows the Mono-Synaptic Pathway’s(MSP) influence on CA1 on the same
time line. The orange line represents the fissure recorded theta oscillation in reference to these histograms. Dotted lines show the points of maximum
influence from either the TSP or MSP on CA1. B) Visual depiction of computational model shown at three sequential time points, with arrow weight
highlighting the manipulated connection strengths at those time points; connections not depicted imply there was no modification of connection
strength. The three time points of interest, theta peak, theta trough, and theta plus are shown with the influence of the MSP(shown in green) on CA1
strong at theta’s trough, the influence of the TSP(shown in blue) on CA1 strong at the peak, and the influence of ECin on ECout (shown in black), as
well as ECin to CA1 strong during theta plus. The transition from theta plus to the following theta trough is shown in the far right network.
doi:10.1371/journal.pcbi.1003067.g002

Table 1. Table of connection strength between subfields as a
function of theta phase.

Phase ECin?CA1 CA3?CA1 ECin?ECout

Theta Trough + 2 2

Theta Peak 2 + 2

Theta Plus + 2 +

The ‘+’ symbols represent unaltered connections, and ‘2’ symbols represent a
fully inhibited connection.
doi:10.1371/journal.pcbi.1003067.t001

Theta Coordination in Hippocampus
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performance across small and large training sets, with the
assumption that better performance on larger training sets is
more reflective of hippocampal function. Similarly, the size of the
network itself was varied by increasing the number of units within
the CA3 and DG layers, while holding a constant ratio between
them. This is done to try and maintain a connection to the original
biological constraints of the hippocampal circuit, and for this
reason a ratio of 5 DG units to 1 CA3 unit was adopted, as this
generally reflects the ratio in the human hippocampus [14,16].
Maintaining this ratio, the total units within CA3 were varied from
10 to 100 units, which in turn corresponds to a varying of DG
units from 50 to 500.

Finally, input patterns were constructed, and memory retrieval
performance measured, based on the slot topology in the EC
layers (as highlighted in Figure 1). This slot structure is intended to
capture the modality segregation within EC, and within each slot
we assume there is a vocabulary of different patterns, which reflect
the representational repertoire within those modalities. We
generated a vocabulary of 100 distributed activity patterns, with
a minimum hamming distance of 10 between each vocabulary
pattern generated. A complete input pattern used in the model
validation process was then constructed by selecting a single
pattern from these 100 vocabulary patterns for each of the EC
slots. With 8 slots, a total of 1008 (npatterns raised to the nslots power)
unique ECin patterns are possible, however only 800 were used in
the testing of these models. These vocabulary patterns were
similarly used to estimate error within the networks’ output by
comparing, within a given slot, the output pattern of activation
with all other vocabulary patterns. If, for the given input pattern,
the slots’ output at the ECout layer is closest to the vocabulary
pattern it was trained on, it is considered correct, and otherwise
considered incorrect. This closest-pattern calculation is done
across each of the slots for every input pattern, and if any slot
shows an incorrect response the network output for that input
pattern is counted as incorrect. This measurement is referred to as
Name Error in the results section, and is thought to better represent
the potential for clean up of hippocampal output as compared to
more standard measures such as Sum Squared Error (SSE). It also
has the advantage of not requiring any further threshold or other
parameterization. It should be noted that this measure of error,
compared to a SSE, deemphasizes single unit based errors in
output in favor of an emphasis on distributed patterns of error
across groups of units.

Learning Framework
The model is implemented in the Leabra framework which uses

a combination of supervised and Hebbian learning [13]. What
follows is a coarse description of the essential components within
this framework necessary for understanding the current work. The
activation function for a given unit is a threshold based neuronal
model with continuous valued spike rate as output. Each neuron’s
membrane potential (Vm(t)) is updated using the following
differential equation:

dVm(t)

dt
~t

X

c

gc(t)!ggc(Ec{Vm(t)) ð1Þ

Here, 3 channels (gc) summed across in the membrane potential
calculation are: e excitatory input, i inhibitory input, and l leak
current. Excitatory input is calculated as the average over all

weighted inputs coming into a unit (gej
(t)~ 1

n

P
i xiwij ), where xi is

the activity of sending unit i and wij is the weighted connection
between sending unit i and receiving unit j. All principal weights

between units are excitatory while local circuit inhibition controls
positive feedback loops. Leabra assumes a winner take all dynamic
through a set-point inhibitory current (gi), producing a kWTA (k-
Winners-Take-All) dynamic. kWTA is computed via a uniform
level of inhibitory current for all units within a layer. Finally leak
current (gl(t)) is a constant value set to 0.1

Activation of communication (yi(t) for a given unit i) with other
units is a thresholded function of membrane potential:

yi(t)~
1

1z c½Vm(t){H$z
! "{1

ð2Þ

Here c is the gain factor which is set to a constant value of 100,
and H is the firing threshold value which is set to a constant of 0.5
within a units dynamic range of 0 to 1.

The Leabra framework utilizes a biologically plausible error-
driven learning algorithm which is equivalent to Contrastive
Hebbian Learning (CHL) [17]. Leabra uses two stages of
activation; the minus stage is the initial activation or expected
output of the network, while the plus stage is the provided target
output activation. The Leabra weight updating component
between sending units (x) and receiving units (y) is thus calculated
as:

DCHLij~½xz
i yz

j {x{
i y{

j $ ð3Þ

The + and 2 superscripts represent the plus and minus phase
components respectively. In addition to the error-driven learning
of CHL, a pure form of Hebbian learning is also used. Here the
weight change is calculated using only the target, or plus phase,
activations

DHebbij~yz
i (xz

i {wij) ð4Þ

This learning rule can be seen as computing the expected value of
the sending unit’s activity conditional on the receiver’s activity
[13]. Finally these two learning rules are proportionally weighted
(lmix) along with a learning rate parameter, E, for the combined
learning rule used in this work:

Dwij~E½lmix(DHebb)z(1{lmix)(DCHL)$ ð5Þ

The theta-phase learning approach uses the learning framework
described above within a particular dual-pathway architecture.
The target, or plus, component of the error signal (superscript ‘+’ in
eqs. (6) and (7)) is activation acquired from the ECin layer
projected onto ECout, and allowed to propagate back on to area
CA1 which settles into a pattern of activation constrained by static
representations in ECin and ECout. Similarly ECin projects along
the TSP providing a plus phase activation within DG and CA3,
however projections from CA3 onto CA1 are inhibited. Error
signals used in weight adjustment are then calculated by taking the
difference between this plus phase activation and the two distinct
time points within the theta cycle (peak and trough), yielding two
distinct error signals. Specifically, the MSP connections are
adjusted according to an error signal acquired from the difference
between plus phase activation and activation patterns acquired
during the trough of theta (superscript TT in eq. (6)). It is critical to
remember in the trough of theta there is no influence on ECout

representations from area ECin, while in the plus phase ECin

projects onto ECout. The difference in CA1 activation patterns at

Theta Coordination in Hippocampus
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the conclusions of these two phases allows for the calculation of an
error signal that is used to adjust the weighted connections within
the MSP. Similarly, the TSP connections are adjusted according
to an error signal acquired from the difference between the plus
phase activation and the activation during the peak of theta
(superscript TP in eq. (7)). In the peak of theta CA3 has a strong
influence on CA1, while in the plus phase CA1 is influenced solely
by the MSP. This change in CA1 representations allows for a error
signal tailored to best adjust the TSP connections to more closely
match the stimulus driven representation of the plus phase
activations. All other connections, within the network, i.e. ECin

to DG and CA3, DG to CA3, and recurrent connections within
CA3, have no error-driven component to their weight adjustment
(eq. (8)).

MonoSynapticPathway

DCHLECin?CA1~E½ECz
in CA1z{ECTT

in CA1TT $

DCHLCA1?ECout~E½CA1zECz
out{CA1TT ECTT

out $

DCHLECout?CA1~E½ECz
outCA1z{ECTT

out CA1TT $

8
>><

>>:

ð6Þ

TriSynapticPathway

DCHLCA3?CA1~E½CA3zCA1z{CA3TPCA1TP$
# ð7Þ

Otherwise DCHL~0f ð8Þ

Settling dynamics within the network are dictated by the
temporal evolution of Equation 1. This dynamic process, within
every unit, is allowed 30 time steps to settle into its equilibrium
state for each of the three phases within the theta cycle, thus
yielding a total of 90 time steps for each full theta oscillation. All
activation values within the network are reset to 0 at the onset of
theta trough but are allowed to be carried over from trough to
peak and finally from peak to the plus phase without alteration. All
manipulations of Hebbian vs. error-driven learning where done
via the lmix parameter as shown in eq. (5). Values used to
instantiate full Hebbian learning implies a lmix value of 1, while
error-driven learning used a lmix value 0f 0.001. This implies that
error-driven networks also used a very small amount of Hebbian
weight adjustment which we believe is implicit in normal neural
circuitry.

Results/Discussion

Figure 3 shows the comparison of various network configu-
rations. In panel A the theta-phase network with error-driven
learning in the MSP and TSP is compared with a fully Hebbian
learning network across various network sizes and trained input
pattern set sizes. Plots are shown as a function of network size,
where the number of CA3 units are shown on the x-axis which
implies that the number of DG units for that network are 5
times that of CA3. Training set size, shown on the y-axis refers
to the number of patterns a given network was trained and
tested on. Surface plots of the average Name Error, on the z-
axis, across the full training set are shown on the left for both the
theta-phase and the Hebbian network. Each cyan dot in the
surface plots represents a measured data point where both
network types were tested in the network-size by training-set-
size space. Each data point is the average within network type

across 5 random weight initializations. These points were then
fit to a 3D surface for visualization. The difference between
theta-phase and Hebbian surfaces is shown on the right. These
differences are compared using a random bootstrap method
where Name Error values are sampled with replacement from
both network types into two groups and a distribution of
difference values is calculated to produce a null hypothesis. Data
points with p values less than 0.005 are shown in the difference
plot with an asterisk.

Similarly, in panel B of Figure 3 a more fine grained follow up
test of performance shows a network with error-driven learning in
the TSP and Hebbian learning in the MSP (labeled TSP ErrDrv)
compared against a network with Hebbian learning in the TSP
and error-driven learning in the MSP. This secondary test
attempts to evaluate the relative importance of error-driven
learning within these two pathways on overall performance. These
results are then further tested by comparing pretrained MSP
connections to non-pretrained MSP connections. These results are
not shown in a similar style as Figures 3A and B as these
pretrained networks yielded results nearly identical to non-
pretrained networks. Figure 3C shows performance plots from
individual networks within these three comparisons; here the
overlap in pretrained and non-pretrained results can be seen in
comparison to the other two comparisons shown in Figures 3A
and B.

Results, shown in panel A of Figure 3, of the comparison
between network models shows that the error-driven learning,
provided by the theta coordination of subfield influence on CA1,
out-performs the purely Hebbian based learning network.
Investigating this relationship further, in panel B of Figure 3 it is
shown that the crucial connection that leads to this benefit is
between CA3 and CA1 along the TSP. There is little difference in
performance when the TSP uses Hebbian learning (plot labeled
MSP ErrDrv) compared to when the full network is exclusively
using Hebbian learning. Conversely, when the TSP (specifically
the connection between CA3 and CA1) takes advantage of the
error-driven learning signal, performance is dramatically in-
creased, and approaches Name Error levels achieved when both
TSP and MSP are using error-driven learning signals (shown in
Figure 3B and C). Contrasting performance from the full
ThetaPhase network with the TSP error-driven network shows
that there is indeed some performance benefit in the ThetaPhase
network compared to TSP error-driven network, suggesting some
synergy between the TSP and MSP over and above the benefit
from the TSP error-driven network alone.

Our comparison of the effects of pretraining on the MSP, as was
done in our earlier models, revealed very little difference as shown
in Figure 3C. This is of considerable practical benefit, as it is often
difficult to anticipate the full range of input pattern variability
needed for pretraining, and it also increases the overall plausibility
of our model, by eliminating any need for this extra step in the
model.

These results provide insight as to how these learning signals
compare across multiple network sizes and varying training set
sizes. Looking at the difference in network performance we can see
a divergence towards better error-driven performance as training
size and network size increases. Many hippocampal models used
within the literature test on relatively small training sets and with
small network sizes; usually of the size required for the task or
phenomena being modeled. Results from the current work suggest
that Hebbian performance may not scale with these dimensions as
expected, and that a more robust learning signal such as that
provided by error-driven learning may be necessary to provide
realistic performance in more ecologically valid network sizes and
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training set sizes. Given the significant performance advantages of
the error-driven learning mechanism, and its biological support in
the theta-phase coordination process, it would be surprising if the
biological hippocampus did not also leverage this form of error-
driven learning. In sum, we argue that this model represents a
significant advantage over the existing Hebbian-based models of
hippocampal learning, and can provide a predictive framework for
future empirical studies.

The idea of temporal differentiation between Mono-Synaptic
and the Tri-Synaptic pathways along the theta wave, as shown in
previous hippocampal modeling work [5,6], provides a well
founded framework for how theta oscillations interact with
behavior. The key contribution of this work to these models is a
demonstration that the invertible mapping in and out of area CA1
along the Mono-Synaptic Pathway can be learned in tandem with
the connections along the Tri-Synaptic Pathway, and that these
oscillatory dynamics enable a form of powerful error-driven
learning. Further, these results suggest that error-driven learning
in the Schaffer collaterals connecting CA3 to CA1 are a crucial
component in stabilizing this invertible mapping in the Mono-
Synaptic Pathway, and providing the performance advantage
shown in Figure 3.

The mapping of distributed representations into and out of area
CA1 is a problem that has not been adequately addressed in
previous models. Many models have used a simplified symmetric
representation between hippocampal subregions [5,6]. This allows
for a transparent interpretation of subregion processing, however it
reduces the ecological validity of the model’s processing. An early
model of episodic memory allowed for learning within this invertible
mapping between EC and CA1, however the representations used
were relatively small and simplified [8]. The current work shows
that error-driven learning is a key component behind the
requirement of relatively complex representational transformation
between subregions. The attempt to match the hippocampal

architecture and representational complexity within this work
provides insight into these more subtle issues that are often assumed
in other models of the hippocampus. The simulations done in this
work show that the representational transformation into and out of
the hippocampus is a non-negligible problem, and that more robust
learning signals than the standard Hebbian model are required for
accurate recall within large training data and small network sizes.

The current model provides a simplified version of oscillatory
processes within a discretized time frame, as compared to previous
models [5,6]. The peak and trough time points being modeled in
the current work can be thought of as stimulus driven at the trough
of theta, and recall driven at the peak of theta [6], however these
processes are implemented within the model as two relatively
discontinuous patterns of activation that get integrated together
when calculating the weight changes in the learning algorithm.
Additionally, the plus phase of activation, i.e. the ground truth
within the error calculation, is proposed as a projection of the
superficial EC layers onto the deep layers of the EC. Computa-
tionally within the model this is implemented after both the trough
and peak of the theta oscillation have completed, however we
conceptualize the theta cycle to begin on the trough of the
oscillation where the MSP is strongly active, and we therefore
speculate that this plus phase projection would occur within the
descending theta cycle following the peak but just before the
trough. In Figure 2 we show the plus phase to occur at the trough
of theta, however the model predicts that the plus phase would
occur anytime between theta peak and theta trough. In some sense
the plus phase is a transition from theta peak to theta trough where
the onset of the plus phase is marked by the inhibition of the TSP
and a projection from the superficial layers of EC to the deep
layers. This allows for the error-driven contrasting of this plus
phase pattern of activation with the preceding theta trough and
theta peak patterns. Indeed, laminar recordings from Entorhinal
Cortex support this theta phase reversal in deep layers compared

Figure 3. Comparison of network performance contrasting Hebbian and Error Driven learning rules. Network performance plotted
across various network sizes and training set sizes. A) Surface plots of the average Name Error across the full training set plotted on the left for both
the theta-phase (i.e. error-driven learning in both MSP and TSP) and the Hebbian network, and the difference between theta-phase and Hebbian
surfaces plotted on the right with an asterisk showing values significantly(p,0.005) different from 0. Cyan dots in the surface plots are data points
where performance was measured B) Same Name Error surface plots with the left panel (labeled TSP ErrDrv) showing performance from a network
with error-driven learning in the TSP and Hebbian learning the MSP. Middle panel (labeled MSP ErrDrv) shows performance from a network with
Hebbian learning in the TSP and error-driven learning in the MSP. Difference between these two shown on the right. C) Plot of network performance
taken from A and B for a single network size of 80 CA3 units and 400 DG units. Line color is shown in A and B where these data were extracted from
the surface plots, and the magenta and purple lines(labeled TSP+PT and MSP+PT respectively) come from networks with the same error-driven
configuration as in B, however these networks were pretrained on the input patters for 15 epochs within the MSP. Full surface plots for these two
networks are not shown.
doi:10.1371/journal.pcbi.1003067.g003
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to superficial [18], and a recent investigation into the microcircuits
within EC layers supports the increased firing from superficial EC
to deep EC just preceding the trough of ongoing theta oscillations
[19]. Future electrophysiological work could test these temporal
dynamics further by stimulating at these various stages of the theta
wave to try and disrupt or enhance this theoretical cascade of
activation.

Previous models have labeled activation patterns associated with
theta peak and trough as Encoding during the trough, and Retrieval
during the peak, which our model also captures [5,6,20]. This
separation of functionality between the two pathways might allow
for other systems to interact with the nominal theta cycle to
influence these processes and thereby bias the hippocampus
towards one process over the other. A growing base of empirical
evidence within the rodent literature suggests that oscillatory
coherence within the theta band between frontal regions and the
hippocampus is correlated with successful retrieval [21–23]. In
humans these interactions could provide the framework for some
form of volitional control over either encoding or retrieval. Future
empirical work in humans could probe this relationship between
encoding and retrieval within the hippocampus as well as its
interaction with other systems. The current model would suggest
that disruption of the theta oscillation during the trough of theta
would alter the encoding of new experiences, while disruption at
the peak of theta would alter the retrieval of previous experiences.

The question of how incoming stimuli align to these phase
dynamics is somewhat unclear, however constraints from previous
empirical work do exist. There is evidence suggesting that theta
oscillations show a phase resetting approximately 200 ms after
stimulus onset [24–26]. The entry point into the theta wave on
these phase resets, however, show a difference in study vs. test
items where test items enter on the descending wave of theta while
study items enter on the ascending wave. Our model suggests that
there would be a plus phase following the descending theta wave,
and would be evident through the projection from the superficial
layers of EC to the deep layers. This task dependent phase reset
could help to target this plus phase dynamic, and potentially
determine whether it is more associated with start of a given theta
oscillation or with the end.

There are many limitations within the current work in regards
to the scope of biological components, and we do not mean to
suggest that this model accurately reflects all aspects of
hippocampal function. For example, the discrete nature of the
two time points modeled, i.e. trough and peak, within the theta

cycle could be better approximated by having a continuous change
of activation after the plus phase. The current work simplifies the
more continuous change of activation at the end of a Theta cycle
by resetting activation after the plus phase. Additionally, there are
hippocampal subfields, in particular the Subiculum [27], which
are not included within this model. We are currently exploring the
addition of a Subiculum layer within our model which modulates
the learning rate of connections into CA1. The Subiculum-
mediated modulation focuses on increasing the learning rate for
novel stimuli, and reducing the learning rate for well learned Tri-
Synaptic Pathway (TSP) representations, theoretically allowing for
the reduction of interference in the otherwise purely Hebbian
learning in the TSP (e.g., in perforant pathway projections from
EC to CA3). Although no current explorations are underway, area
CA2 could also provide an augmentation to our model of the MSP
[28]. This area would fit in as a intermediary between the ECin

and CA1, providing a non-topographic representation across the
slots of Entorhinal Cortex, and potentially increasing the learning
capacity along this pathway.

In conclusion, within the subfields modeled, we have accurately
represented the known connectivity and topology using a
biologically motivated neural network framework. Further, we
have included coordination between those subfields through the
currently understood inhibitory processes as modulated by theta
oscillations. Building upon this framework in future projects can
provide a strong foundation in the known biological constraints,
and representational complexity of the hippocampal circuit.
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