
Runtime Funtimes
what runtimes give us

techniques to tackle what they don’t

cdleary @ nodevember ‘14

We’ll cover:
What’s a runtime?

Techniques to add new capabilities 
Random acts of hackery

Standard disclaimer: don’t speak for my employer

JavaScript is the
universal runtime
I know I’ve heard someone say that before…

Why would you ever need anything else?

JS is a General Purpose
Programming Language

JS is just like LISP
Are you sure about that?

var	 lispSuperPowers	 =	
	 	 	 	 require('./lisp-‐dsl-‐defn');	

function	 greet()	 {	
	 	 "use	 lisp"	
	 	 {define	
	 	 	 	 salutation	
	 	 	 	 {list-‐ref	
	 	 	 	 	 	 {list	
	 	 	 	 	 	 	 	 "Hi"	
	 	 	 	 	 	 	 	 "Hello"}	
	 	 	 	 	 	 {random	
	 	 	 	 	 	 	 	 2}}}	
	 	 {define	
	 	 	 	 greet	
	 	 	 	 	 	 {name}	
	 	 	 	 	 	 {string-‐append	
	 	 	 	 	 	 	 	 salutation	
	 	 	 	 	 	 	 	 ",	 "	
	 	 	 	 	 	 	 	 name}}	
	 	 {greet	
	 	 	 	 "Chris"}	
}	

exports.greet	 =	
	 	 	 	 lispSuperPowers(greet)

Show of hands:
who thinks this can work

with “stock” node.js
(no C extensions)

github.com/cdleary/nodevember-hacks

(whole module)

https://github.com/cdleary/nodevember-hacks

We’ll get back to how that works…
I really came to this  

JS conference to talk about  
CPU instructions

(only half serious)

Instructions are divided into 
syscalls that ask the OS for stuff

& everything else (e.g. add)

C program
compiler-generated

executable code

C runtime
syscall-oriented
or pre-canned

routines

libc.so, libm.so, libpthread.so, libdl.so

function calls 
(e.g. malloc, 
send, recv)

my_program.exe

C program that just
computes “fancy” exit codes

would require no syscalls
But that would be super boring

JS program
source text

JS runtime
syscall-oriented
or pre-canned

routines

JIT codegen

d8.exe

function calls
(e.g. Math.random)

object allocation

my_program.js

Generated
executable code

“run me!”

generates 
code to run

w/o compilation step
(late binding), runtimes
are even more critical

Runtimes are also fallbacks  
for fast path assumptions

Violating these results in  
(potentially severe) perf penalties

Gen’d
Fast
Path

Gen’d
Slow
Path JS Runtime

(can handle
anything)

I don’t 
handle this

I don’t 
handle this

either

JIT-generated code

VM binary codemore: http://goo.gl/Msxqdx

http://goo.gl/Msxqdx

But did you know? 
ES-262 is useless on its own 

Does not prescribe I/O
Not even return codes

The core JS runtime is
extended by node

to make it (async) I/O capable

Operating System (syscall interface)
kqueue, epoll, mmap, fork/exec

libuv: async I/O &
“reactor” loop ES-262 (V8 engine)

node.js core

node.js user code

node.js packages

Hardware Queues:  
CPU cores, NICs, memories/disks

World

Runtimes are windows to the world
Program’s execution environment

I/O, I/O, off to work we go

Runtimes are built to enable  
semantics of interest

op a user in our environment wants to perform is X
e.g. addproperty, receive

node.js runtime is more than 
V8 with libuv bolted on

defines & supports conceptual constructs
Streams, EventEmitters, Buffers, …

Key insight: 
you can change 

or play into what the platform
you’re building on wants

–MC Hammer

“When all you’ve got is a hammer…
use that hammer to hammer itself into a better

hammer.”

Sorry, I forgot,  
he hammered his name into a
more condensed, memorable

form…

–MC Hammer

“When all you’ve got is a hammer…
use that hammer to hammer itself into a better

hammer.”

–MC Hammer

“When all you’ve got is a hammer…
use that hammer to hammer itself into a better

hammer.”

–Hammer

(It’s true, check Wikipedia)
(Except the quote, I totally made that up)

Technique Approach

Modules extend lightly

RPCs bridge, potentially to other platforms

DSLs constrict, specialize, raise

“Declarative Sandboxes” constrict w/full language expressiveness

Macros/Desugaring
(sweet.js) embrace, extend

Binary Extensions
Hosted FFI Bindings extend deeply, control tradeoffs

Hosted Natives (JIT Hinting) symbiotic optimization

Transpilers reface, change emphasis

Technique Rundown

Takeaway: there’s a slew
of techniques available to
help us achieve our goals

All these techniques are useful because
programmability has no silver bullet 
Therefore, it’s good to have options

resource-consumption
by-construction

correct-
by-construction

categorical
reasoning

composition/
reuse

testability

expressiveness

debuggabilitylearning curve/
familiarity

power-
when-of-interest

regularity

things of interest 
are easymutability vs

resistance to change

var	 lispSuperPowers	 =	
	 	 	 	 require('./lisp-‐dsl-‐defn');	

function	 greet()	 {	
	 	 "use	 lisp"	
	 	 {define	
	 	 	 	 salutation	
	 	 	 	 {list-‐ref	
	 	 	 	 	 	 {list	
	 	 	 	 	 	 	 	 "Hi"	
	 	 	 	 	 	 	 	 "Hello"}	
	 	 	 	 	 	 {random	
	 	 	 	 	 	 	 	 2}}}	
	 	 {define	
	 	 	 	 greet	
	 	 	 	 	 	 {name}	
	 	 	 	 	 	 {string-‐append	
	 	 	 	 	 	 	 	 salutation	
	 	 	 	 	 	 	 	 ",	 "	
	 	 	 	 	 	 	 	 name}}	
	 	 {greet	
	 	 	 	 "Chris"}	
}	

exports.greet	 =	
	 	 	 	 lispSuperPowers(greet)

Crux:
esprima.parse
new	 Function

{
 "type": "BlockStatement",
 "body": [{
 "type": "ExpressionStatement",
 "expression": {
 "type": "Identifier",
 "name": "define"
 }
 }, {
 "type": "ExpressionStatement",
 "expression": {
 "type": "Identifier",
 "name": "salutation"
 }
 },
 …
}

BlockStatement

ExpressionStatement Identifier
“define”

ExpressionStatement Identifier
“salutation”

…

Parse trees

Match against limited patterns of 
JS parse nodes, reusing the JS parser

Either rewrite and new Function 
or interpret that limited parse tree

Transform any syntactically valid JS

Thinking of a use case yet?

µservice:
do one thing, do it well, pipe together

“I KNOW THIS, IT’S UNIX!”

My dataflow DSL on top
of Seneca µservices

var	 main	 =	 senecaPipeline(function	 runPipeline()	 {	
	 	 serve&	
	 	 (snapshot2	 |	 snapshot-‐pair-‐motion	 |	 push-‐update)*N	
});

async.foreverpipeline
“snowballs”
command

results

seneca.act
w/continuation

DSLs could be 
operator overloading from hell, 

but provided semantics should be
“whitelist based”

A well done DSL has a very short spec

One person’s µservice
Is another person’s λ

function: short, understandable
class: Single Responsibility Principle
µservice: performs a single function

More? 
write in sync DSL 

lower to async program 
across processes in cluster?

var	 lispSuperPowers	 =	
	 	 	 	 require('./lisp-‐dsl-‐defn');	

function	 greet()	 {	
	 	 "use	 lisp"	
	 	 {define	
	 	 	 	 salutation	
	 	 	 	 {list-‐ref	
	 	 	 	 	 	 {list	
	 	 	 	 	 	 	 	 "Hi"	
	 	 	 	 	 	 	 	 "Hello"}	
	 	 	 	 	 	 {random	
	 	 	 	 	 	 	 	 2}}}	
	 	 {define	
	 	 	 	 greet	
	 	 	 	 	 	 {name}	
	 	 	 	 	 	 {string-‐append	
	 	 	 	 	 	 	 	 salutation	
	 	 	 	 	 	 	 	 ",	 "	
	 	 	 	 	 	 	 	 name}}	
	 	 {greet	
	 	 	 	 "Chris"}	
}	

exports.greet	 =	
	 	 	 	 lispSuperPowers(greet)

Going farther:
source maps

auto-transform hooks
CPS transform

partial eval

Takeaway: you don’t need a whole compiler to
make your runtime better

Enabling factor: µservices permit tinkering, 
are rewrite-friendly: amenable to DSL usage

npm	 install	 [mynotationhere].js

With that one technique covered,  
back to the bigger picture

Runtimes aren’t one-style limited
Server-side has a track record of
doing very fancy things when

performance really counts
DSLs w/perf oriented transforms

AoT compilation of Java
Erlang on Xen (look ma! no OS!)

Vortex-style WPO analysis

Runtimes aren’t one-node limited
There are distributed runtime services

Distributed Smalltalk cross-node GC (1987)
Erlang/BEAM VM process links to remote pids

Runtime mismatched to use case?
It can be taught

In many different ways…
At all the different levels.

Operating System (syscall interface)
kqueue, epoll, mmap, fork/exec

libuv: async I/O &
“reactor” loop ES-262 (V8 engine)

node.js core

node.js user code

node.js packages

Hardware Queues:  
CPU cores, NICs, memories/disks

World

Technique Approach

Modules extend lightly

RPCs bridge to other platforms

DSLs constrict, specialize, raise

“Declarative Sandboxes” constrict w/full language expressiveness

Macros/Desugaring
(sweet.js) embrace, extend

Binary Extensions
Hosted FFI Bindings extend deeply, control tradeoffs

Hosted Natives (JIT Hinting) symbiotic optimization

Transpilers reface, change emphasis

Backup

Thought I was going to talk
mostly about maxing perf

Could only pull 4FPS from endpoint for 
“my toddler sleep-motion project”, so  

DSLs it was :-)

JS runtime gives you:
Aggressive inlining (closures too)

Constant propagation
Not: value specialization

Not: opt across JS/C boundaries

// ECMA-262 section 15.5.4.7
function StringIndexOf(pattern /* position */) { // length == 1
 CHECK_OBJECT_COERCIBLE(this, "String.prototype.indexOf");

 var subject = TO_STRING_INLINE(this);
 pattern = TO_STRING_INLINE(pattern);
 var index = 0;
 if (%_ArgumentsLength() > 1) {
 index = %_Arguments(1); // position
 index = TO_INTEGER(index);
 if (index < 0) index = 0;
 if (index > subject.length) index = subject.length;
 }
 return %StringIndexOf(subject, pattern, index);
}

Teaching the runtime more
about performance-critical
pieces: “hosted natives”

runtime implementation is a
balancing act between

build it in
build in it

var uv = ctypes.open(“libuv.so”);
var loop = uv.uv_loop_new();

var retcode = uv.uv_run(loop);

jsctypes/node-ffi based
“bolting”

The dream of Mozilla’s
privileged JS runtime  
is alive in node (+ ES6)

node Moz privileged JS

FFI node-ffi jsctypes

Parser Exposure esprima Reflect.parse

Message Bus seneca XPCOM*

Transpilers? coffeescript, sweet.js privileged JS extensions,
XUL*

* Disclaimer: I never worked on Gecko, so this may be completely off.
In any case, these elements feel familiar.

