Runtime Funtimes

what runtimes give us
techniques to tackle what they don't

cdleary @ nodevember ‘14

We’ll cover:
What's a runtime?
Technigues to add new capabilities
Random acts of hackery

Standard disclaimer: don’t speak for my employer

JavaScript is the
universal runtime

| know |'ve heard someone say that before...

JS is a General Purpose
Programming Language

Why would you ever need anything else”

JS is just like LISP

Are you sure about that”

var lispSuperPowers =
require('./lisp-dsl-defn');

function greet() {
"use lisp"
{define
salutation
{list-ref
{1list
i
"Hello"}
{randonm Show of hands:

(defing who thinks this can work

gr?et } with “stock™ node.|s
name

fstring-append (no C extensions)
salutation
name}}
{greet
"Chris"}
}

exports.greet =

11 p |
1spSuperPowers(greet) github.com/cdleary/nodevember-hacks

(whole module)

https://github.com/cdleary/nodevember-hacks

We'll get back to how that works...
| really came to this
JS conference to talk about
CPU instructions

(only half serious)

Instructions are divided into
syscalls that ask the OS for stuft
& everything else (e.g. add)

function calls
(e.g. malloc, C runtime

SCUHIEOYN syscall-oriented

EEAE O pre-canned

routines

C program

compiler-generated

executable code
libc.so, libm.so, libpthread.so, libdl.so

my_program.exe

C program that just
computes ‘fancy’ exit codes
would require no syscalls

But that would be super boring

d8.exe

JS runtime
syscall-oriented

(44 'H
runme: or pre-canned

routines

JS program JIT codegen
source text

generates function calls
code to run (e.g. Math.random)
object allocation

Generated

executable code

my_program.js

w/o0 compilation step
(late binding), runtimes
are even more critical

Runtimes are also fallbacks
for fast path assumptions
Violating these results In
(potentially severe) pert penalties

| don'’t
handle this

| don’t

nandie his JS Runtime
(can handle
anything)

JIT-generated code

more: http://goo.gl/Msxgdx VM binary code

http://goo.gl/Msxqdx

But did you know??
ES-262 1s useless on its own
Does not prescribe |/O

Not even return codes

The core JS runtime is
extended by node
to make it (async) 1/O capable

node.|s packages l

node.|s core

s 060 (VB ongine)
reactor” loop

Operating System (syscall interface)
kqueue, epoll, mmap, fork/exec

[

Hardware Queues:
CPU cores, NICs, memories/disks

J

T

Runtimes are windows to the world
Program’s execution environment

/O, 1/O, off to work we go

Runtimes are built to enable
semantics of interest

Op a user in our environment wants to perform is X
e.g. addproperty, receive

node.js runtime is more than
V8 with libuv bolted on

defines & supports concept

Streams,

—vent

-mitters,

Jal constructs

Buffers, ...

Key Insignt:
you can change
or play into what the platform
you re building on wants

“When all you've got iIs a hammer...

use that hammer to hammer itself into a better
hammer.”

—MC Hammer

Sorry, | forgot,
he hammered his name Into a
more condensed, memorable
form...

“When all you've got iIs a hammer...

use that hammer to hammer itself into a better
hammer.”

—MC Hammer

“When all you've got iIs a hammer...

use that hammer to hammer itself into a better
hammer.”

-MGC Hammer
—Hammer

(It's true, check Wikipedia)

(Except the quote, | totally made that up)

Technigue Rundown

Technique Approach
Modules extend lightly
RPCs bridge, potentially to other platforms
DSLs constrict, specialize, raise

“Declarative Sandboxes” constrict w/full language expressiveness

Macros/Desugaring
(sweet.|s)

embrace, extend

Binary Extensions

Hosted FFI Bindings extend deeply, control tradeoffs

Hosted Natives (JIT Hinting) symbiotic optimization

Transpilers reface, change emphasis

Takeaway: there's a slew
of technigques available to
nelp us achieve our goals

All these techniques are useful because
programmability has no silver bullet
Therefore, it's good to have options

categorical

reasoning things of interest

mutability vs
are easy

resistance to change

resource-consumption
regularity by-construction

composition/ correct-
reuse by-construction

power-

. expressiveness
when-of-interest P

learning curve/

familiarity debuggability

testability

Crux:

esprima.parse
new Function

var lispSuperPowers =
require('./lisp-dsl-defn');

function greet() {
"use lisp”
{define
salutation
{list-ref
{list
T
"Hello"}
{random
21}
{define
greet
{name}
{string-append
salutation
name}}
{greet
"Chris"}
}

exports.greet =
lispSuperPowers(greet)

L — E—

Parse trees

"type": "BlockStatement",
BlockStatement "body": [{
"type": "ExpressionStatement",
"expression": {
"type": "Identifier",
. |dentifier "name": "define"
mmmm CXpressionStatement g .
define)
b Ao
"type": "ExpressionStatement",
o "expression": {
ExpressionStatement B, 'dentifier. ‘type": "Identifier™,
salutation "name": "salutation"
}

I

Match against limited patterns of
JS parse nodes, reusing the JS parser

—ither rewrite and new Function
or interpret that limited parse tree

Transform any syntactically valid JS

Thinking of a use case yet?

uservice:
do one thing, do it well, pipe together
‘I KNOW THIS, IT'S UNIX!”

My datatlow DSL on top
Of Seneca Jservices

seneca.act
w/continuation
varfmain = senecaPipeline(function runPipeline() {

serve&
(snapshot2 | snapshot-pair-motion | push-update)*N

})s

pipeline async.forever

“snowbpalls”
command
results

DSLs could be
operator overloading from hell,
but provided semantics should be
"whitelist based”

A well done DSL has a very short spec

function: short, understandable
class: Single Responsibility Principle
gservice: performs a single function

One person’s yservice
'S another persons A

More”?
write in sync DSL
lower to async program
across processes in cluster?

var lispSuperPowers =
require('./lisp-dsl-defn');

function greet() f{
"use lisp”
{define

salutation
{list-ref
{list

Going farther: Lst,

"Hello"}

source maps (randon

auto-transform hooks {define

greet

CPS transform {name)

{string-append

F)Eajwtiéi‘ E}\/Ei‘ ﬁalgtation

J

name}}
{greet
"Chris"}
¥

exports.greet =
lispSuperPowers(greet)

M-

Takeaway: you don’t need a whole compiler to
make your runtime better

Enabling factor: uservices permit tinkering,
are rewrite-friendly: amenable to DSL usage

npm install [mynotationhere].js

With that one technigue covered,
back to the bigger picture

Runtimes aren’t one-style limited
Server-side has a track record of
doing very fancy things when
performance really counts

DSLs w/pertf oriented transforms
Aol compilation of Java
Erlang on Xen (look ma! no OS!)
Vortex-style WPO analysis

Runtimes aren’t one-node limited
There are distributed runtime services

Distributed Smalltalk cross-node GC (1987)
Erlang/BEAM VM process links to remote pids

Runtime mismatched to use case?
It can be taught
In many different ways...
At all the difterent levels.

node.|s packages l

node.|s core

s 060 (VB ongine)
reactor” loop

Operating System (syscall interface)
kqueue, epoll, mmap, fork/exec

[

Hardware Queues:
CPU cores, NICs, memories/disks

J

T

Technique
Modules
RPCs

DSLs

“Declarative Sandboxes”

Macros/Desugaring
(sweet.|s)

Binary Extensions
Hosted FFI Bindings

Hosted Natives (JIT Hinting)

Transpilers

Approach

extend lightly
bridge to other platforms
constrict, specialize, raise
constrict w/full language expressiveness
embrace, extenad
extend deeply, control tradeoffs
symbiotic optimization

reface, change emphasis

Backup

T'hougnt | was going to talk
mostly about maxing perf

Could only pull 4FPS from endpoint for
‘my toddler sleep-motion project”, so
DSLs it was :-)

JS runtime gives you:
Aggressive inlining (closures too)
Constant propagation
Not: value specialization
Not: opt across JS/C boundaries

leaching the runtime more
about performance-critical
pleces: “hosted natives”™

function StringIndexOf (pattern) |
CHECK OBJECT COERCIBLE (this, "String.prototype.indexOf");

var subject = TO STRING INLINE (this);
pattern = TO STRING INLINE (pattern);
var index = 0;

if (%_ArgumentsLength() > 1) {
index = % _Arguments(l);
index = TO INTEGER (1ndex) ;
if (index < 0) index = 0;

if (index > subject.length) 1ndex = subject.length;
}

return 3%StringIndexOf (subject, pattern, 1index);

runtime implementation is a
pbalancing act between
build It In
build In it

isctypes/node-ffi based
“bolting”

var uv = ctypes.open(“libuv.so”);
var loop = uv.uv_loop_new();
var retcode = uv.uv_run(loop);

The dream of Mozilla’s
privileged JS runtime
s alive in node (+ ESO6)

Moz privileged JS

FFI node-ffi jsctypes
Parser Exposure esprima Reflect.parse

Message Bus seneca XPCOM*

privileged JS extensions,

S . .
Transpilers* coffeescript, sweet.js YUL*

* Disclaimer: | never worked on Gecko, so this may be completely off.
In any case, these elements feel familiar.

