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Dynamic system models play a critical role in under-
standing complex processes that evolve over time. While
these models are widely applicable in various fields, their
significance becomes even more pronounced when applied
to psychology. In psychology, the dynamics of individual
and group behavior, cognitive processes, and emotional re-
sponses are essential areas of study. The accurate modeling
of these dynamic systems is pivotal for unraveling the under-
lying mechanisms, and when these models are extended to
incorporate binary data, their relevance becomes even more
pronounced.

Dynamic systems models offer a powerful framework to
capture the intricate interplay between various psychologi-
cal variables. These models enable researchers to explore
how behaviors, emotions, or cognitive processes change
over time, providing insights into the temporal dependencies
within the data. This approach recognizes that the past states
of a psychological system can significantly impact its future
behavior, reflecting the complex and dynamic nature of hu-
man cognition and behavior.

Fitting dynamic system models involves accounting for
the inherent uncertainty associated with the system’s latent
state. The latent state, often representing an unobservable or
hidden process, plays a pivotal role in understanding how the
system evolves. To address this challenge, a range of esti-
mation approaches has been developed. These approaches
aim to provide estimates of the latent state that exhibit char-
acteristics of accuracy and unbiasedness. By achieving these
characteristics, they enhance our ability to make informed
predictions about the system’s behavior.

Among these estimation methods, the Kalman filter is
a well-established and computationally efficient approach.
The Kalman filter provides unbiased state estimates, mean-
ing that, on average, the estimated latent states are centered
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around the true underlying values. In linear and Gaussian
cases the Kalman filter is also efficient, meaning that the es-
timates from the filter have minimal variance, ensuring that
they are not only centered around the true states but also have
the least possible spread.

However, in real-world scenarios, many systems exhibit
non-linear behavior and non-Gaussian noise. When faced
with these complexities, the Kalman filter’s performance
may degrade. To address non-linear dynamics and non-
Gaussian noise, several approximation techniques have been
developed. These methods extend the applicability of the
Kalman filter to a broader range of systems, enabling the es-
timation of latent states even when the underlying dynamics
do not conform to linearity and Gaussian assumptions. In
essence, they allow the Kalman filter to retain its utility in the
face of challenging, real-world scenarios, where the system’s
behavior may deviate from the ideal conditions assumed by
the classic Kalman filter. While such extensions to Kalman
filters have been discussed and used before in psychologi-
cal research, non-continuous response data (e.g., binary or
categorical observations) have received relatively little focus
in terms of methods and software to accommodate them in
dynamic systems models. In this paper I focus specifically
on the binary data case.

Examples of binary data in psychology include yes/no re-
sponses to questions, the presence or absence of specific be-
haviors, or choices made during decision-making tasks. In-
corporating binary data into dynamic system models allows
researchers to address questions such as how and why certain
events occur, how they propagate through the system, and
how they influence future decisions and behaviors. One par-
ticularly interesting application for binary data in state-space
models may be for the purposes of modelling missingness
mechanisms — in such cases the missingness probability may
be modelled as a seperate process that interacts with the other
system processes and measurements.

When models are difficult to estimate, Bayesian meth-
ods are often useful, and indeed there have been a variety
of Bayesian approaches to including non-continuous data in
state-space models (e.g., Asparouhov et al., 2018} Hecht et
al.,|2019; Li et al.,|2016). Bayesian approaches are in general
very flexible, but the flexibility comes with typically high
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computational cost, which can limit possible use-cases or
limit alternative model comparisons and sensitivity checks.
A substantial reason Bayesian approaches are used in such
circumstances often has nothing to do with the philosophy or
use of priors, but simply for what are classically thought of
as Bayesian sampling techniques. Sampling techniques have
been used in frequentist contexts also however, though can
suffer from the same computational costs (e.g., Durbin &
Koopman, 2000). Particle filters are a specific form of se-
quential Monteo-Carlo sampling methodology, tailored for
use in dynamic systems. These have been used in a range
of works (e.g., Djuric et al., [2008; Henry et al., 2023), and
generally offer a relatively performant sampling-based ap-
proach. However, while specifics differ depending on ap-
plication, they are generally still orders of magnitude more
costly, in computational terms, than extended Kalman filter-
ing approaches (Daum & Huang, [2003).

Fahrmeir (1992) provided an early seminal formulation of
filtering algorithms with exponential family outcome data.
Van Rijn (2008) extended on this but the approach requires
fixing certain parameters such as state dynamics, the algo-
rithms are complex, and there is a lack of software imple-
mentations (Henry et al., [2023)).

In this work I describe a computationally fast, extended
Kalman filter (EKF) approach to including binary response
variables in state-space models, demonstrate the perfor-
mance in comparison to a Bayesian sampling approach, and
detail how such models may be estimated using the ctsem
(Driver & Voelkle, 2021} Driver et al., [2017) software for
R (R Core Team, 2014), which allows for complex indi-
vidual differences (Driver & Voelkle, [2018a), continuous
and discrete-time formulations, non-linear system and mea-
surement dynamics, and input effects such as interventions
(Driver & Voelkle, [2018b)). While this approach is an ap-
proximation, the computational tractability and capacity for
integrating with dynamic systems models of continuous data
should prove useful for many modelling circumstances in
psychological and related research.

Kalman Filter

The Kalman filter is a recursive, optimal estimation algo-
rithm used for state estimation in linear dynamic systems. It
maintains a state estimate (77) and an associated estimate co-
variance (P). The filter operates in two main steps: prediction
and update.

Prediction Step

In the prediction step, the state estimate is projected for-
ward in time using a linear transition model (i.e., matrix of
regression coefficients and intercept):

Nyu-1 = Fk’]u—llu—l +b

The prediction is accompanied by the propagation of the
state covariance:

P p T
Pu\u—l = FkPu—llu—le + Qk

Update Step

In the update step, measurements (y,) from the current
observation occasion u are used to correct the state estimate.
The Kalman gain (K) is computed and is used to blend the
predicted state estimate with the observed measurements ac-
cording to the relative uncertainty of each, then the covari-
ance estimate is adjusted again.

K = P H] (H;P,,_ H] + R

371( = Hkﬁulu—l

l’iu\u = (I - Kka)l’:\'ulu—l

The updated state estimate update is given by:

ﬁulu = f]u\u—l + Kk(yk - yk)

This classical Kalman filter formulation assumes that the
state dynamics and measurements are linear, and that the
noise is Gaussian.

Extended Kalman Filter

The Extended Kalman Filter is an extension of the tradi-
tional Kalman Filter designed to handle nonlinear dynamic
systems. It achieves this by locally linearizing the system at
each time step. The core idea behind the EKF is to assume
that the system’s dynamics and measurement models are lo-
cally linear around the current state estimate. This means that
within a small neighborhood around the current estimate, the
model can be approximated as linear. The EKF operates by
performing this local linearization at each time step.

To linearize a nonlinear system, the EKF employs Jaco-
bian matrices. These matrices capture the partial derivatives
of the nonlinear functions with respect to the state variables.
In the prediction step, the Jacobian matrix (Fy) of the state
transition function (f(-)) is used. In the update step, the Ja-
cobian matrix (H;) of the measurement function (4(-)) is em-
ployed.

Prediction Step

In the prediction step, the EKF propagates the state es-
timate (f]u‘u_ 1) and any additional control variables x; (e.g.,
intervention dummies) through the nonlinear state transition
function (f(-)). While this propagation is perfect (up to nu-
merical constraints), because the state is uncertain, the co-
variance also needs to be propagated through the transition
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function (f(-)). While some more accurate but computation-
ally costly approaches compute this by propagating many
samples of possible states through the transition function
(and then computing the covariance), the EKF uses the Jaco-
bian matrix (Fy) to locally approximate the nonlinear func-
tion as a linear one. With this, the covariance estimate can be
computed using the same equation as in the classic filter — in
the classic filter, the Jacobian does not need to be explicitly
computed because the Jacobian of a linear transition function
is just the transition matrix. The local linearization used by
the EKF essentially assumes that the system behaves linearly
over the short time interval between time steps. The forward-
prediction of the state is:

-1 = S @11 X00)

The Jacobian matrix (Fy) of the transition model function
is computed as follows:

_of
a’] =i, Ju-1

The prediction covariance is adjusted based on the Jaco-
bian:

F;

Pt = By F] + Q;

Update Step

In the update step, new measurements (y,) are used to cor-
rect the state estimate. The predicted measurement is ob-
tained using a nonlinear measurement model function (A(-)):

f’k = h(ﬁulu—l)

The Jacobian matrix (Hy) of the measurement model func-
tion is computed as:

_
6" =1

The Kalman gain (Kj) can then be computed as in the
classical Kalman filter:

H;

Ky = P, H] (H;P,,- H] +R,

The EKF proceeds iteratively, continuously updating its
state estimate based on new measurements. At each time
step, it re-evaluates the Jacobian matrices and performs local
linearization to account for the nonlinearities in the system.

It is important to note that the EKF’s local linearization
is an approximation. If the system undergoes significant
nonlinear changes between time steps, the EKF’s lineariza-
tion may become inaccurate. This can lead to suboptimal
estimates or divergence. As a result, the EKF is typically
more effective when the nonlinearities are mild and the state
changes are not too abrupt.

Likelihood for Continuous Variables

When dealing with continuous variables, the likelihood
of data is often assumed to follow a Gaussian distribution
due to its mathematical convenience and statistical proper-
ties. Given the expectation for y (the observation) (E(y)), a
measurement (y), and an associated measurement covariance
(R), the likelihood of observing the measurement can be ex-
pressed as:

1 1
E(y).R) = ——=exp|->
L(y | E(y),R) Gy 4o eXp( S

Where: - £(-) represents the likelihood function. -y is the
observed measurement. - E(y) represents the expectation for
y (the observation). - R is the measurement covariance. - H
is the measurement model matrix.

In the case of continuous data, this likelihood describes
how well the observed measurement aligns with the expected
measurement, given the uncertainty represented by the mea-
surement covariance R.

Extended Kalman Filter for Binary Data

To deal with binary response variables, some specific ad-
justments can be made to the EKF. In the update step, the
non-linear measurement function (4(-)) needs to include an
inverse logit to transform from any real value to a probability
between 0 and 1 (inv_logit).

In this context, the observations follow a Bernoulli distri-
bution, which is inherently non-Gaussian.The innovation (or
residual) is calculated as the difference between the actual
binary response (y,) and the predicted observation (¥,). At
this point, the residual covariance will vary as a function of
the latent state 7, — when h(1,,) is close to 0 or 1, error due to
the binary data will be close to zero, but when /(1,) is a value
more in the middle of 0 and 1, the expected residual will be
higher. Based on the logit link, the residual covariance matrix
is:

Ri = Ry + diag(abs(1 - §,) - ¥.,)

Because there may be other sources of measurement error
(beyond the logit link) it is also possible to view the above
equation as an addition to another, pre-specified or estimated,
residual covariance matrix. While the size of the residual co-
variance is correct here, the Gaussian form of it, inherent to
the EKF equations, is not, and as such the update step for
the next latent state will only be approximate. In particu-
larly difficult cases or when accuracy is more desirable than
computational tractability, alternative approaches like parti-
cle filters or full Bayesian modeling may offer more robust
solutions.

- HE(y))'R™\(y - HE(y)))
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Likelihood With Binary Variables

When incorporating one or more binary variables into the
likelihood model, the approach changes to handle binary re-
sponses. In this scenario, the likelihood can be defined using
the Bernoulli distribution. Each binary variable (z;) can be
considered as a Bernoulli-distributed random variable, and
the likelihood of observing these binary variables given the
predicted probabilities (p;) can be expressed as:

L | p) = pi(l=p)'™
The likelihood for all binary variables can be computed as
the product of individual Bernoulli likelihoods:

N
Loyip = [pia-py'
i=1

Where: - L(z; | p;) represents the Bernoulli likelihood
for a single binary variable. - y is a vector of observed binary
responses. - p is a vector of predicted probabilities for binary
responses.

This likelihood models how well the predicted probabili-
ties align with the observed binary responses.
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