

libdispatch

● Grand Central Dispatch
● Asynchronous & concurrent programming

model
● From apple
● http://libdispatch.macosforge.org/

chenj@lemote.com

http://libdispatch.macosforge.org/

Based on Queues

● split tasks to blocks and send them to
different queues.

● A block is scheduled in its target queue.

● Notification when a group of blocks
finish executing.

● Queue types: Global Concurrent Queues,
Main Queue, Private Serial Queues

Global Concurrent Queues

● q = dispatch_get_global_queue(

 DISPATCH_QUEUE_PRIORITY_DEFAULT,

 NULL /* reserved for future use */);
● Execute function complex_calculation 100

times:
● dispatch_apply_f(100, q,

 user_data, complex_calculation);
● complex_calculation(user_data, i); /* i ∈ [0, 100) */
● more than one complex_calculation run parallelly

Main Queue

● Is a serial queue (back up by one thread)
● q_main = dispatch_get_main_queue();
● Is a global queue
● To integrate with Apple's Cocoa framework

Private Serial Queues

● q_sum = dispatch_queue_create("com.example.sum", NULL);

● Serialize access to shared data structures:
#define COUNT 128

double sum = 0;

void calc_func(void *data, size_t i) {

 double x = complex_calculation(i);

 double *sum = (double *)data;

 dispatch_async(q_sum, ^{ *sum += x});

}

dispatch_apply_f(COUNT, q_default, &sum, calc_func);

dispatch_set_target_queue

thread
 pool

Global
Concurrent

Queues

private queues

main queue mgr queue

low
-overcommit

default
-overcommit

high
-overcommit

Relations between queues

Main classes and inheritance
const void *do_vtable;
struct x *volatile do_next;

unsigned int do_ref_cnt;
unsigned int do_xref_cnt;
unsigned int do_suspend_cnt;
struct dispatch_queue_s *do_targetq;
void *do_ctxt;
dispatch_function_t do_finalizer;

dispatch_continuation_s

➔dispatch_queue_s

➔ dispatch_source_s

➔dispatch_queue_attr_s

➔dispatch_source_attr_s

➔dispatch_semaphore_s = dispatch_group_s

dispatch_object_s

dispatch_queue_s
● Contain a list of DO(dispatch_object_s)

● Num of Running DO: uint32_t dq_running;
● Width of concurrency: uint32_t dq_width;

struct dispatch_object_s *
dq_items_head NULLDO DO DO

struct dispatch_object_s *
volatile dq_items_tail

Enqueue

_dispatch_queue_push_list

_dispatch_queue_push

_dispatch_queue_push_list_slow

queue
is empty

Slow path

inline

NO inline

_dispatch_wakeup

Dequeue

● _dispatch_queue_concurrent_drain_one
● Get and return a DO concurrently

● _dispatch_queue_drain
● Get and process all DOs in the queue
● Lock the queue before calling:

_dispatch_queue_trylock(dq)

How a block be executed?

1. wrap a block to dispatch_continuation_s

2. _dispatch_queue_push to its target queue → _dispatch_wakeup
the target queue if empty

3. _dispatch_wakeup do the following:

• If SUSPENDED, return NULL
• Run vtable->do_probe, if return false and the queue is

empty, return NULL
• _dispatch_trylock (object lock), if lock fail, return NULL
• _dispatch_queue_push(dou.do->do_targetq, dou._do);

4. Finally _dispatch_queue_push to a root queue (i.e. Global
Concurrent Queue, do_targetq == NULL)

Send to thread pool

_dispatch_wakeup(root queue)

vtable->do_probe _dispatch_queue_wakeup_global

Send to thread pool

_dispatch_wakeup(root queue)

vtable->do_probe _dispatch_queue_wakeup_global

int
pthread_workqueue_additem_np (

pthread_workqueue_t workq,
void *(*workitem_func)(void *), void * workitem_arg,
pthread_workitem_handle_t * itemhandlep, unsigned int *gencountp)

Send to thread pool

_dispatch_wakeup(root queue)

vtable->do_probe _dispatch_queue_wakeup_global

int
pthread_workqueue_additem_np (

pthread_workqueue_t workq,
void *(*workitem_func)(void *), void * workitem_arg,
pthread_workitem_handle_t * itemhandlep, unsigned int *gencountp)

_dispatch_worker_thread2

while ((item = fastpath(_dispatch_queue_concurrent_drain_one(dq))))
 _dispatch_continuation_pop(item);

Executing

● _dispatch_continuation_pop
● Is a "dispatch_continuation_s" ?

➔ Process flag: DISPATCH_OBJ_ASYNC_BIT
➔ Process flag: DISPATCH_OBJ_GROUP_BIT
➔ dc->dc_func(dc->dc_ctxt)

● Or is a "dispatch_queue_s"?
➔ Run _dispatch_queue_invoke

1.Check SUSPEND state and try to acquire queue lock
2._dispatch_queue_drain
3.Release queue lock

4.Release object lock (locked in _dispatch_wakeup)

When wake up queues?

● push to an empty queue
● dq_running is 0
● _dispatch_queue_wakeup_global in

_dispatch_queue_concurrent_drain_one (fork
more working threads)

Implementation of thread pool
● Use Darwin's extension to POSIX threads

➔ Create thread pool: pthread_workqueue_create_np
➔ Adjust pool size by the overall load on the system
➔ Add a job: pthread_workqueue_additem_np

● Built-in lightweight implementation
● Pool size: dgq_thread_pool_size
● Worker function: _dispatch_worker_thread
● When all jobs complete, working thread will sleep

on a signal for several seconds, until be waken up
or quit on timeout

Other implementation technique
● Two reference counts

● Internal reference count (do_ref_cnt)
● External reference count (do_xref_cnt) – Better

error detection for client code

● A simple but efficient memory allocation cache
● Only cache dispatch_continuation_t
● Per-thread, single link
● Only flush cache on some points, usually when a

working thread finishes all jobs

● fastpath, slowpath

Port to Linux

● By Mark Heily
● http://packages.debian.org/squeeze/libdispatc

h0
● Related libraries:

1.libkqueue (implement kevent on top of epoll,
inotify, signalfd and timerfd)

2.libpthread_workqueue (implement
pthread_workqueue in userspace)

mailto:mark@heily.com
http://packages.debian.org/squeeze/libdispatch0
http://packages.debian.org/squeeze/libdispatch0
http://mark.heily.com/libkqueue/
http://mark.heily.com/src/libpthread_workqueue-0.1.tar.gz

END

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

