
Security Audit Report

Celestia: Q4 2023 QGB

Authors: Andrija Mitrovic, Mirel Dalcekovic

Last revised 26 October, 2023

© 2023 Informal Systems Celestia: Q4 2023 QGB

Table of Contents

Audit overview... 1
The Project 1

Conclusions 1

Further Increasing Confidence 1

Disclaimer 1

Audit Dashboard ... 3
Severity Summary 3

Resolution Status Summary 3

System overview ... 4
State machine 5

QGB Orchestrator and Relayer (Not part of the audit) 5

QGB Smart Contract 6

Threat inspection .. 8
Threat: Valset power change influence on consensus over the attestation 8

Threat: Disrupting next nonce processing on QGB Smart contract due to attestation pruning 9

Threat: System congestion or halt due to invalid or non sequential nonce 10

Threat: Invalid new validator set update on QGB contract halts QGB bridge 11

Threat: Misalignment between verification and data submitting to QGB 13

Findings ... 14
Minor code improvements in x/qgb module 15

No trusting period or attestation expiry time check in Ethereum 16

Redundant EthAdress in ValsetConfirm 18

Minor code improvements in qgb contracts 20

Unnecessary code 22

Code simplification 23

Difference between two nmt libraries 24

Appendix: Vulnerability Classification ... 25
Impact Score 25

Exploitability Score 25

Severity Score 26

© 2023 Informal Systems Celestia: Q4 2023 QGB

Audit overview 1

•
•

•
•

Audit overview

The Project
In October 2023, Informal Systems has conducted a security audit for Celestia of the Quantum Gravity Bridge, which
has since been renamed to Blobstream.

The main focus of the audit was the correctness and functionality of the protocol components.

The audited consisted of inspecting the following repositories:

celestia-app/x/qgb: commit hash is 6515446b
QuantumGravityBridge contracts: commit hash is cf301adf

The audit took place from October 9, 2023 through October 27, 2023 by the following personnel:

Andrija Mitrovic
Mirel Dalcekovic

Conclusions
In general, we found the codebase to be of very high quality: the code is well structured and easy to follow, and all
functions contain good unit-tests. The documentation was good and code was very well commented and easy to
follow. In the audit, we identified 7 issues, the majority of which were informational, with one categorized as low
severity. These findings were collectively acknowledged by the team and subsequently reported on GitHub.

Further Increasing Confidence
To enhance the level of confidence in the QGB audit, it is essential to conduct an audit of both the relayer and
orchestrator components. This audit would aim to thoroughly examine any potential issues inherited from the
design of the gravity bridge, given that the QGB flow heavily relies on the functionality of these two off-chain
components.

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability, etc.) set forth in the associated Services Agreement. This report
provided in connection with the Services set forth in the Services Agreement shall be used by the Company only to
the extent permitted under the terms and conditions set forth in the Agreement.

This audit report is provided on an “as is” basis, with no guarantee of the completeness, accuracy, timeliness or of
the results obtained by use of the information provided. Informal has relied upon information and data provided by
the client, and is not responsible for any errors or omissions in such information and data or results obtained from
the use of that information or conclusions in this report. Informal makes no warranty of any kind, express or
implied, regarding the accuracy, adequacy, validity, reliability, availability or completeness of this report. This
report should not be considered or utilized as a complete assessment of the overall utility, security or bug free
status of the code.

This audit report contains confidential information and is only intended for use by the client. Reuse or republication
of the audit report other than as authorized by the client is prohibited.

This report is not, nor should it be considered, an “endorsement”, “approval” or “disapproval” of any particular
project or team. This report is not, nor should it be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts with Informal to perform a security assessment.
This report does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor does it provide any indication of the client’s business, business model or legal compliance. This

https://informal.systems/
https://github.com/celestiaorg/rsmt2d/tree/6515446be623987ded119e530900589f30e4c69e
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L177

© 2023 Informal Systems Celestia: Q4 2023 QGB

Audit overview 2

report should not be used in any way to make decisions around investment or involvement with any particular
project. This report in no way provides investment advice, nor should it be leveraged as investment advice of any
sort.

Blockchain technology and cryptographic assets in general and by definition present a high level of ongoing risk.
Client is responsible for its own due diligence and continuing security in this regard.

© 2023 Informal Systems Celestia: Q4 2023 QGB

Audit Dashboard 3

•
•
•

•
•
•
•

•
•

•
•
•

Audit Dashboard
Target Summary

Type: Specification and Implementation
Platform: Go, Solidity
Artifacts:

x/qgb module over tag: v1.0.0
QuantumGravityBridge.sol over commit hash: cf301ad
Inclusion Verifier DAVerifier.sol over commit hash: cf301ad
Libraries implementation over commit hash: cf301ad:

Binary
nmt

Engagement Summary

Dates: 09.10.2023 until 27.10.2023.
Method: Manual code review & protocol analysis
Employees Engaged: 2

Severity Summary

Finding Severity #

Critical 0

High 0

Medium 0

Low 1

Informational 6

Total 7

Resolution Status Summary

Resolution Status #

Resolved 0

Acknowledged/Reported 6

Functioning as Designed 1

Total 7

https://github.com/celestiaorg/celestia-app/tree/v1.0.0/x/qgb
https://github.com/celestiaorg/celestia-app/tree/v1.0.0
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/verifier/DAVerifier.sol
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/
https://github.com/celestiaorg/blobstream-contracts/tree/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/tree/binary
https://github.com/celestiaorg/blobstream-contracts/tree/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/tree/namespace

© 2023 Informal Systems Celestia: Q4 2023 QGB

System overview 4

1.
2.
3.

System overview
The persistent rise in gas costs on the Ethereum network has spurred the development of Layer 2 (L2) solutions
aimed at reducing Ethereum usage expenses. While these L2 solutions employ various approaches to cost
reduction, they don't entirely circumvent the need to pay gas per byte of data on Ethereum. Enter Celestia, serving
as the Data Availability (DA) layer for Ethereum rollups, resulting in the creation of "Celestiums."

In this setup, Ethereum L2 operators can transmit their transaction data to the Celestia network. Celestia's Proof of
Stake (PoS) validators then organize this data into blocks. A data availability attestation, represented by a Merkle
root of L2 data and verified by Celestia validators, confirms the data's presence on Celestia. This attestation is
facilitated by the Quantum Gravity Bridge (QGB), a one-way bridge from Celestia to Ethereum.

However, it's crucial to note that the QGB is solely designed to relay Celestia block header data roots to Ethereum
and doesn't support direct bridging of assets like tokens or facilitate messages from Ethereum back to Celestia.

A diagram that represents the usage of Celestia as a DA for Ethereum rollups is given:

As it can be seen from the previous diagram Celestia's Quantum Gravity Bridge contract is integrated into
Ethereum. Ethereum Layer 2 operators send their transaction data to Celestia, where it is structured into blocks by
Celestia's PoS validators. This data is then relayed as a data availability attestation from Celestia to Ethereum, with
the Quantum Gravity Bridge verifying these attestations. Ethereum's Layer 2 contract can verify updates by
checking that the required data is available on Celestia via the bridge contract, ensuring data integrity.

The QGB implementation consists of the following three components:

The state machine (on Celestia),
The orchestrator-relayer,
The QGB smart contract (on Ethereum).

These components are presented in the following diagram:

https://github.com/celestiaorg/quantum-gravity-bridge
https://github.com/celestiaorg/celestia-app/tree/main/x/qgb
https://github.com/celestiaorg/orchestrator-relayer
https://github.com/celestiaorg/quantum-gravity-bridge

© 2023 Informal Systems Celestia: Q4 2023 QGB

System overview 5

•

•

1.

2.

3.

A detailed explanation of these components will follow.

State machine
State machine is a part of the Celaestia application and is implemented as a module named qgb within it. Its
purpose is to create attestations within the state that should be signed by orchestrators (processes run by Celestia
validators) and then queried and relayed by relayers to the QGB smart contract.

There are two types of attestations:

Valsets - attestation type representing snapshots of validator sets with their staking power, used by the QGB
smart contract to monitor Celestia's validator set status. Generated within the state machine, orchestrators
sign and submit them to the QGB P2P network. Once over 2/3 of Celestia validators endorse a valset,
relayers transmit it, along with signatures, to the QGB contract. This ensures the contract's ability to verify
the correct Celestia validator set and majority support for attestations that follow. Valsets facilitate changes
in the validator set to determine which orchestrator should sign attestations.
Data commitments - attestation type representing requests to commit to a specific range of blocks,
allowing orchestrators to sign and share them in the QGB P2P network. This range is determined by the
DataCommitmentWindow parameter. Orchestrators sign and submit data commitments when they are

part of the validator set for the previous valset. These commitments are then relayed to the QGB smart
contract, where they are verified and saved, enabling the verification of Merkle-based inclusion proofs for
any data posted in the committed blocks.

The State machine logic is executed in the EndBlock, and it consists of three functions:

handleValsetRequest - generating new valsets in case that there is no valset in store, validator starts
unbonding or when there is a significant power change.
handleDataCommitmentRequest - generates a new data commitment when a sufficient number of blocks
have passed since the previous one.
pruneAttestations - prunes all expired attestations from state after running basic checks on saved
attestations. If the all the attestations in store are expired, which is an edge case that should never occur, the
QGB state machine doesn't prune the latest attestation.

QGB Orchestrator and Relayer (Not part of the audit)
Orchestrator

Orchestrator is a process run by a Celestia validator and which purpose is to sign attestations using its
corresponding validator EVM private key. These orchestrators are connected to a separate P2P network on which
they sign attestations.

https://github.com/celestiaorg/celestia-app/blob/d8d91e51791e80db92b89f0b54e5d84b0bd1c20a/x/qgb/abci.go#L28-L35
https://github.com/celestiaorg/celestia-app/blob/d8d91e51791e80db92b89f0b54e5d84b0bd1c20a/x/qgb/abci.go#L84
https://github.com/celestiaorg/celestia-app/blob/d8d91e51791e80db92b89f0b54e5d84b0bd1c20a/x/qgb/abci.go#L123-L134
https://github.com/celestiaorg/celestia-app/blob/d8d91e51791e80db92b89f0b54e5d84b0bd1c20a/x/qgb/abci.go#L37
https://github.com/celestiaorg/celestia-app/blob/d8d91e51791e80db92b89f0b54e5d84b0bd1c20a/x/qgb/abci.go#L139
https://github.com/celestiaorg/celestia-app/blob/d8d91e51791e80db92b89f0b54e5d84b0bd1c20a/x/qgb/abci.go#L161-L182
https://github.com/celestiaorg/celestia-app/blob/d8d91e51791e80db92b89f0b54e5d84b0bd1c20a/x/qgb/abci.go#L140-L157

© 2023 Informal Systems Celestia: Q4 2023 QGB

System overview 6

1.
2.
3.

4.

5.

1.
2.
3.

4.
5.

6.

•
•
•
•

The orchestrator does the following:

Connect to a Celestia-app full node or validator node via RPC and gRPC and wait for new attestations
Once an attestation is created inside the QGB state machine, the orchestrator queries it.
After getting the attestation, the orchestrator signs it using the provided EVM private key. The private key
should correspond to the EVM address provided when creating the validator.
Then, the orchestrator pushes its signature to the P2P network it is connected to, via adding it as a DHT
value.
Listen for new attestations and go back to step 2.

Relayer

Relayer is a separate process that can be run by anyone and its role is to gather attestations' signatures from the
orchestrators, and submit them to a target EVM chain (more specifically to the QGB smart contract).

The relayer works as follows:

Connect to a Celestia-app full node or validator node via RPC and gRPC and wait for attestations.
Once an attestation is created inside the QGB state machine, the relayer queries it.
After getting the attestation, the relayer checks if the target QGB smart contract's nonce is lower than the
attestation.
If so, the relayer queries the P2P network for signatures from the orchestrators.
Once the relayer finds more than 2/3s signatures, it submits them to the target QGB smart contract where
they get validated.
Listen for new attestations and go back to step 2.

QGB Smart Contract
QGB works by relying on a set of signers to attest to some event on Celestia: the Celestia validator set. The QGB
contract keeps track of the Celestia validator set by updating its view of the validator set with
updateValidatorSet() . More than 2/3 of the voting power of the current view of the validator set must sign

off on new relayed events, submitted with submitDataRootTupleRoot() . Each event is a batch of

DataRootTuple s, with each tuple representing a single data root (i.e. block header). Relayed tuples are in the
same order as Celestia block headers.

There are two types of events and messages that can be relayed to the smart contract: validator sets and batches.

Validator sets

The relayer informs the QGB contract who are the current validators and their power. This results in an execution of
the updateValidatorSet function which allows the contract to stay up to date with the Celestia validator set
changes. Update happens if the current set of validators have signed of the new set. Anyone can call this function,
but they must supply valid signatures of the current validator set over the new validator set.

This function performs the following checks:

Check that the new nonce is one more than the current one.
Check that current validators and signatures are well-formed.
Check that the supplied current validator set matches the saved checkpoint.
Check that enough current validators have signed off on the new validator set (checkValidatorSignatures).

Valset digest is generated within the domainSeparateValidatorSetHash method. This digest is computed as the
keccak256 hash of a combination of the following components: a predefined constant called
VALIDATOR_SET_HASH_DOMAIN_SEPARATOR , the universal nonce indicating a validator set change, the

power threshold representing two-thirds of the validator set, and the hash of the validator set itself, determined
using the computeValidatorSetHash function.

Batches

https://celestiaorg.github.io/celestia-app/specs/data_structures.html#header
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L245-L291
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L280
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L160-L169
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L148-L150

© 2023 Informal Systems Celestia: Q4 2023 QGB

System overview 7

•
•
•
•

The relayer informs the QGB contract of new data root tuple roots. This results in an execution of the
submitDataRootTupleRoot function. Anyone can call this function, but they must supply valid signatures of the
current validator set over the data root tuple root.

This function performs the following checks:

Check that the new nonce is one more than the current one.
Check that current validators and signatures are well-formed.
Check that the supplied current validator set matches the saved checkpoint.
Check that enough current validators have signed off on the data root tuple root and nonce.

The data (batch) commitment digest is generated using the domainSeparateDataRootTupleRoot method by taking
the keccak256 hash of a combination of constant elements, including
DATA_ROOT_TUPLE_ROOT_DOMAIN_SEPARATOR , a universal nonce denoting the data commitment, and the

data root tuple root representing a commitment over a specific set of blocks.

https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L311-L357
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L177-L185

© 2023 Informal Systems Celestia: Q4 2023 QGB

Threat inspection 8

•

•

•

•

•

•
•

•

•

Threat inspection
During the initial stage of the audit the auditing team spent time onboarding to the project’s scope and identifying
potential threats. Analysis of the possibility of realization of those threats was done during code inspection. Our
primary objective was to validate the design's correctness and identify any issues in the code base that could result
in the realization of these threats. To achieve this, we held weekly sync meetings with the Celestia QGB team to
discuss possible flaws in the system and gain insights into the current behavior of the system. Through these
efforts, we were able to validate that the identified threats could not/could be realized.

The following analysis contains our conclusions and the explanation of the audited product design and
implementation on how those threats are mitigated. In addition to our threat inspection analysis, we have
documented our results as findings.

It should be noted that, while we do our best in the analysis below, a security audit can by no means guarantee the
absence of threats: the real guarantees can be provided only via systematic quality assurance, including manual
and automated testing, and, ultimately, via the usage of formal methods, such as model-based testing or formal
verification.
It's essential to emphasize the limited scope of this audit project. Notably, the QGB design includes two off-chain
components, namely the Relayer and Orchestrator, which play crucial roles within the system. These components,
however, were not subject to the audit's assessment. The inclusion of off-chain components raises the potential for
additional threats, some of which are highlighted below:

Congestion Due to High Activity: In the event of a substantial surge in attestations and submissions, if not
effectively managed, the activities of these off-chain components could result in network congestion.
Malicious Behavior: The deliberate malicious actions of any of these off-chain components have the
potential to disrupt the network, causing congestion or even a complete halt.
Impact on Ethereum Rollup: Failure in QGB communication, such as the absence of attestation processing,
could potentially impact the Ethereum rollup.
Assumptions and Their Implications: Assumptions concerning the expected behavior of off-chain
components may lead to severe issues if these assumptions are not met. For example, the assumption of
having at least one honest relayer within the system is critical for the proper functioning of the QGB and its
support for Ethereum rollup.

The design of the Gravity Bridge served as the foundation for the Quantum Gravity Bridge. An audit team found that
the Quantum Gravity Bridge design had addressed several design flaws that were present in the Gravity Bridge,
including:

Unclear Rules to Issue Validator Set Updates

However, it appears that some similarities in protocol and architecture still persist:

No Independent Validation in Ethereum
No Trusting Period Check in Ethereum

Threat: Valset power change influence on consensus over the attestation
One of the three conditions for a validator set change on the QGB smart contract is when there's a significant shift in
the power allocation within the validator set, exceeding the specified threshold (5%). This condition can have
implications for the decision-making process on the QGB, particularly in terms of achieving a 66% agreement with
the attestation.

Attack vectors:

Unbonding Validators Leaving the Active Valset: When validators exit the current validator set due to
unbonding or a power change, they must still sign attestations during the unbonding period. A malicious
validator might exploit this transition phase by intentionally omitting the attestation signature.
Significant Power Changes in Current Valset: In instances where multiple validators adjust their power
levels, leading to an update or reorganization of the validator set that involves different power threshold
values, the network's dynamics can shift, potentially impacting attestation consensus.

https://github.com/althea-net/cosmos-gravity-bridge/issues/205
https://github.com/althea-net/cosmos-gravity-bridge/issues/207
https://github.com/althea-net/cosmos-gravity-bridge/issues/200

© 2023 Informal Systems Celestia: Q4 2023 QGB

Threat inspection 9

•

•
•
•

•

1.

2.

If more than 33% of the validators power threshold is changed with the reasons listed above the impact on the QGB
SC attestation acceptance is under risk.

Threat inspection

Unbonding Validators threat inspection: The QGB design includes the implementation of the unbonding
hook within the QGB module, signifying a substantial enhancement in contrast to the Gravity Bridge design.
Upon a validator initiating the unbonding period, the hook's code is executed within the QGB module,
subsequently updating the LatestUnBondingBlockHeight to the current block height.
This, in turn, serves as a signal during the end block process - here, indicating that the current validator set
should be replaced with a new validator set.
This implementation addresses the potential issue of the QGB smart contract expecting validators
undergoing unbonding to sign attestations.
Signficant Power Changes threat inspection: The QGB design includes two important aspects:

validators are always ordered by their current power in the valset
when sending the attestation containing the new valset, QGB module is also providing the
newThreshholdPower within the attestation data.

With the two, after the validator set is updated both with validators ordered by power and new
powerThreshold, all the attestations should be signed accorging to new bridging consensus rules prior to
being accepted on the QGB smart contract.

Findings:

No findings reported during this analysis.

Threat: Disrupting next nonce processing on QGB Smart contract due
to attestation pruning
The current design of the QGB module may have a flaw when it comes to attestation pruning, as it exhibits the
potential issues:

The QGB module lacks awareness of whether attestations have been successfully accepted on the QGB
Smart Contract side.
Similarly, the QGB Smart Contract is unaware of the process of attestation pruning.

These shortcomings in the design could potentially introduce vulnerabilities and inconsistencies in the system,
impacting its overall performance and integrity.

The combination of both issues — unnoticed attestation pruning and the smart contract's unawareness — could
result in a critical impact on the QGB Smart Contract. The QGB Smart Contract may not receive the nonce it expects
as the next one (nonce value in state + 1), which can disrupt its operations and the overall system's security.

Threat inspection:

Pruning takes place within the QGB EndBlocker logic as the concluding action for each block. It involves the
removal of all attestations up to a designated AttestationExpiryTime, which is currently configured to align with the
consensus unbonding period of 3 weeks.

 // AttestationExpiryTime is the expiration time of an attestation. When this
 // much time has passed after an attestation has been published, it will be
 // pruned from state.
 AttestationExpiryTime = 3 * oneWeek // 3 weeks

If all the existing attestations are expired, the latest one will not be pruned, so pruning is done until
latestAttestationNonce :

for newEarliestAvailableNonce = earliestAttestation.GetNonce();

https://github.com/celestiaorg/celestia-app/blob/2335d2b7d8d9463abc85f79b430926380dd41001/x/qgb/abci.go#L123-L134
https://github.com/celestiaorg/celestia-app/blob/v1.0.0/x/qgb/abci.go#L25

© 2023 Informal Systems Celestia: Q4 2023 QGB

Threat inspection 10

1.

2.

3.

•

1.

2.

•

•

•

•

 newEarliestAvailableNonce < latestAttestationNonce;
 newEarliestAvailableNonce++ { ... }

Possible reasons for reaching this situation include:

The absence of an honest or active relayer capable of relaying signed attestations during the
attestationExpiryTime .

A shortage of honest or functional orchestrators to facilitate validator signing, or a deficiency of validators
with the requisite power threshold for the attestation to be accepted on the QGB smart contract.
Inability of relayer to transfer the attestation to QGB smart contract on Ethereum (due to high transaction
fees, lost connections…)

Once relaying is reestablished, the QGB contract will anticipate the oldest pruned attestation nonce as the next one
to be processed, rather than the youngest attestation that was not deleted in the QGB module (which is updated as
the latestAttestationNonce).

Findings:

No trusting period or attestation expiry time check in Ethereum

Threat: System congestion or halt due to invalid or non sequential
nonce

Could a gap between attestation nonces occur so that this check fails leading to stop of data processing on QGB
contract?

Attack vectors:

Disorderly Attestation Submissions: The ordering of attestation submissions may become disorganized,
potentially leading to adverse effects on QGB bridge processing.
Malicious Relayer Exploitation: A malicious relayer could circumvent the requirement for data
commitment attestation submission to be verified by the current validator set. Instead, they might send the
valset update attestation, posing a security risk.

Threat Inspection

The occurrence of potential situations is rendered impossible by the robust design of the QGB. This design
incorporates

Synchronous Bridge Approach: The utilization of a synchronous bridge approach ensures that the various
components of the QGB bridge remain synchronized, reducing the risk of vulnerabilities.
Universal Nonces Approach: Both ValsetConfirm and DataCommitmentConfirm employ a
universal nonce mechanism, wherein they increment the same nonce. This enhances consistency and
reduces the likelihood of inconsistencies or vulnerabilities.
QGB Smart Contract Safeguard: The QGB Smart Contract includes a stringent check that verifies the nonce
of the incoming attestation against the universal nonce. If the nonce of the attestation is not incremented by
1, it is promptly rejected, ensuring the integrity and security of the system.

// Check that the new nonce is one more than the current one.
if (_newNonce != currentNonce + 1)
{
 revert InvalidValidatorSetNonce();
}

Findings:

No findings reported during this analysis.

https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L259-L262
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L259-L262

© 2023 Informal Systems Celestia: Q4 2023 QGB

Threat inspection 11

•

•

•

Threat: Invalid new validator set update on QGB contract halts QGB
bridge
Updating the validator set is initiated by an off-chain component - relayer.
There is a risk of an incorrect newValidatorSetHash being saved on the QGB contract. Such an error has the
potential to render bridging impossible at the point where it becomes necessary to verify incoming attestations
against the updated validator set signatures.

This would result in the obstruction of Celestia attestation’s bridging and the updating of the validator set, thus
failing to address the issue. To guarantee the success of both operations, it is imperative to verify that the
attestation, which may contain new valset, has been signed by a sufficient threshold of the current validators. The
validation of a legitimate validator set is achieved through the comparison of the checkpoint here:

 // Check that the supplied current validator set matches the saved checkpoint.
 bytes32 currentValidatorSetHash = computeValidatorSetHash(_currentValidatorSet);
 if (
 domainSeparateValidatorSetHash(_oldNonce, currentPowerThreshold,
currentValidatorSetHash)
 != lastValidatorSetCheckpoint
) {
 revert SuppliedValidatorSetInvalid();
 }

Additionally, the transmission of invalid data within signatures has the potential to bring the QGB bridge to a halt
here.

The analysis must encompass considerations regarding potential threat realization in the presence of a malicious
relayer or if there are security vulnerabilities related to the verification of signatures.

Attack vectors:

Invalid new validator set hash: Invalid hash is sent by the relayer, together with signatures and the current
validator set. If there is no check to verify that the exact content of the hash was signed by the current set of
validators, a malicious relayer could change the hash and cause the QGB contract to update the validator set
to an invalid checkpoint.
Invalid power threshold: A malicious relayer could set a new power threshold to a value higher or lower
than the valid, signed threshold, and produce attestations that may be wrongly rejected or accepted.
Invalid number of signatures sent to the QGB contract in sigs . The number of signatures must align with
the number of validators in the current validator set. Any attempt to send an invalid number of signatures
should be detected and prevented.

Threat Inspection

During our threat inspection, we examined the validator set update process to confirm the potential existence of
this threat. To accomplish this, we conducted an in-depth review of the orchestrator and relayer code, paying
particular attention to specific, critical, details. This level of scrutiny was necessary as the accuracy of this process
relies on the performance of off-chain components.

https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L269-L276
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L264-L267

© 2023 Informal Systems Celestia: Q4 2023 QGB

Threat inspection 12

1.

2.

3.

4.

5.

a.

b.

We have identified the following steps and existing checks:

When attestation processing for an updated validator set is triggered, the first step is to retrieve the
signBytes of the attestation. Source is QGB state machine, where the signBytes are created and

represent the keccak256 hash of abi encoded validator set hash domain separator, nonce, new power
threshold and new validator set. These bytes should be signed by the validators.
Confirm that more that two thirds of current validator set has signed the attestation’s signBytes - the

check is performed over QgbDHT store. EthAddress validator signature for nonce and signBytes

should be present in the store, upon which the currThreshold is calculated. If the majority of needed
votes are present, the validity of the attestation is confirmed.
Signatures are saved in relayer’s Signature Store in a batch, containing key (nonce ,

EthAddress , signBytes) and the value - ValsetConfirm for each validator that signed this
attestation.
This means that UpdateValidatorSet tx should be relayed to QGB smart contract. To accomplish
this, the transaction should be created using the EVM client's UpdateValidatorSet function. In this process,
an ethVsHash is generated for the newValset , which will be sent in wrapped tx with

newThreshhold value to the QGB Smart Contract on execution.
The creation of this transaction by relayer is a potential threat, as a malicious relayer could potentially
transmit incorrect hash values, newThreshold values, and invalid signature (sigs) data. The
absence of security signature checks within the QGB Smart contract could mean that there is no mechanism
to validate whether the provided hash matches the one endorsed by the current validator set.
On the QGB Smart contract side, it is crucial to ensure that any attempt to halt the QGB bridge is effectively
mitigated to maintain uninterrupted operation.

In the event of a malicious relayer sending invalid hash , nonce , or an incorrect number of

signatures in sigs , the presence of at least one honest relayer ensures that the bridge cannot be
halted.
Orchestrators, operated by validators off-chain, are responsible for signing hashed details of the new
validator set as mentioned in point 1. They create ValsetConfirm during this process and store

https://github.com/celestiaorg/orchestrator-relayer/blob/63940db1a03267acb81e2640d257889bc1089fbd/p2p/querier.go#L177
https://github.com/celestiaorg/orchestrator-relayer/blob/63940db1a03267acb81e2640d257889bc1089fbd/evm/evm_client.go#L127-L167
https://github.com/celestiaorg/orchestrator-relayer/blob/63940db1a03267acb81e2640d257889bc1089fbd/evm/evm_client.go#L141
https://github.com/celestiaorg/orchestrator-relayer/blob/63940db1a03267acb81e2640d257889bc1089fbd/evm/evm_client.go#L153-L161
https://github.com/celestiaorg/orchestrator-relayer/blob/63940db1a03267acb81e2640d257889bc1089fbd/evm/evm_client.go#L153-L161

© 2023 Informal Systems Celestia: Q4 2023 QGB

Threat inspection 13

•

1.

2.

3.

1.

2.

3.
a.

b.

c.

•

it in the QgbDHT . To verify that the same data was signed by the current validator set, the

signatures (sigs) received on the QGB Smart contract side are used to recover the hash received.

Findings:

During this analysis there was issue reported: Redundant EthAdress in ValsetConfirm. The problem doesn't
confirm the actualization of the threat but rather hints at potential enhancements in the current design.

Threat: Misalignment between verification and data submitting to
QGB
The whole process of proving attestations sent from Celestia to QGB Smart Contract is dependent on alignment
between the attestation creation and its verification on the Ethereum side. This means that the creation of
attestation over a range of blocks must be done adequately in accordance with the proof verification on the
contract side. If these protocols are in any way misaligned a possibility may arise that a invalid attestation could be
verified as valid or vice versa.

Potential misalignment:

Namespace Merkle tree functionalities misalignment - QGB Verifyer implements functions for proving
given proofs for leaves from within nmt. It is of utter importance that this protocol is aligned with the
Namespace Merkle Tree library used in Celestia for generating row and column roots for the Extended Data
Square in order to be able to do proper validation of proofs.
Binary tree misalignment - QGB Verifyer implements functions for proving given proofs for leaves from
within binary tree. These should be aligned with the binary tree usage on Celestia for generating data root
from rowRoots and columnRoots .
Verification process misalignment - QGB Verifyer needs to properly do a proving process from shares to
the dataRootTupleRoot . Verification process should be aligned with the process of generation of

dataRootTupleRoot from single shares on Celestia. The whole process must incorporate usage of nmt
proof verification, binary tree proof verification and attestation verification.

Threat Inspection

Namespace Merkle Tree library implementation in solidity smart contract has no major differences with the
nmt library in go. The only noticeable difference is the non existence of the parameter
IgnoreMaxNamespace and the lib in solidity acts as this parameter is true on Celestia (which it is by

default). Even though no issue is caused by this it can lead to maybe future problems.
Binary tree has no differences with the implementation used in Celestia-app for calculating data root of the
block.
This verification process consists of three parts:

verifying the attestation: verification is done in verifyAttestation that does the checking that the data
root was committed to by the QGB smart contract. This is done by verifying the given proof against
committed dataRootTupleRoot. This root represents the binary tree merkle root where the

leafs of the tree are dataRoots of each block within the data commitment window. As it can be
seen in the verifyAttestation the proof verification is done using the Binary Merkle tree.
verifying the shares against corresponding row roots: Verify if shares exists in Merkle tree, given
leaves, mutliproof and root. This is in accordance with the proof creation on Celestia, no differences
found in the nmt libs.
verifying row roots in the corresponding data root: Verify if the given rowRoot exists in Merkle tree,

given data, proof, and dataRoot . This also corresponds to the process of creating the dataRoot
from row and column roots using the Binary Merkle tree.

Findings:

During this analysis there was issue reported:Difference between two nmt libraries .

https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/verifier/DAVerifier.sol#L171-L178
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L359
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L359
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/verifier/DAVerifier.sol#L107-L121
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/verifier/DAVerifier.sol#L188-L190

© 2023 Informal Systems Celestia: Q4 2023 QGB

Findings 14

Findings
Title Type Severity Impact Exploitabilit

y
Issue

Redundant
EthAdress in
ValsetConfirm

IMPLEMEN
TATION

1 LOW 1 LOW 1 LOW https://github.com/
celestiaorg/orchestrator-
relayer/issues/559

Minor code
improvements in x/
qgb module

IMPLEMEN
TATION

0
INFORMAT
IONAL

0 NONE 0 NONE https://github.com/
celestiaorg/celestia-app/
issues/2766

No trusting period or
attestation expiry
time check in
Ethereum

PROTOCO
L
IMPLEMEN
TATION

0
INFORMAT
IONAL

3 HIGH 04 UNKNOWN https://github.com/
celestiaorg/blobstream-
contracts/issues/243

Minor code
improvements in qgb
contracts

IMPLEMEN
TATION

0
INFORMAT
IONAL

0 NONE 0 NONE https://github.com/
celestiaorg/blobstream-
contracts/issues/244

Unnecessary code IMPLEMEN
TATION

0
INFORMAT
IONAL

0 NONE 0 NONE https://github.com/
celestiaorg/celestia-app/
issues/2765

Code simplification IMPLEMEN
TATION

0
INFORMAT
IONAL

0 NONE 0 NONE https://github.com/
celestiaorg/blobstream-
contracts/issues/242

Difference between
two nmt libraries

IMPLEMEN
TATION

0
INFORMAT
IONAL

0 NONE 0 NONE https://github.com/
celestiaorg/blobstream-
contracts/issues/241

https://github.com/celestiaorg/orchestrator-relayer/issues/559
https://github.com/celestiaorg/celestia-app/issues/2766
https://github.com/celestiaorg/blobstream-contracts/issues/243
https://github.com/celestiaorg/blobstream-contracts/issues/244
https://github.com/celestiaorg/celestia-app/issues/2765
https://github.com/celestiaorg/blobstream-contracts/issues/242
https://github.com/celestiaorg/blobstream-contracts/issues/241

© 2023 Informal Systems Celestia: Q4 2023 QGB

Findings 15

•
•

•

•

Minor code improvements in x/qgb module

Title Minor code improvements in x/qgb module

Project Celestia: Q4 2023 QGB

Type IMPLEMENTATION

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Issue https://github.com/celestiaorg/celestia-app/issues/2766

Status

Involved artifacts
x/qgb/abci.go
x/qgb/types/genesis.go

Description
The minor code improvements listed within this finding do not pose a security threat nor do they introduce an
issue. The suggestions are shared to improve the code readability, keep consistency, optimize, and improve
logging:

The following state reads are performed in EndBlocker, so no gas is used, but double reading is not needed:
dataCommitmentWindow is read here & here, while it can be retrieved from the store once and

propagated further.
Add maximum in error log here, to make the message consistent to the log here.

Problem Scenarios
Findings listed above could not introduce any issues, they are suggestions for code improvements.

Recommendation
As described above.

Remediation Plan
Acknowledged/Reported: It was agreed with the team to report this finding as an issue on the Celestia’s GitHub
repository.

https://github.com/celestiaorg/celestia-app/issues/2766
https://github.com/celestiaorg/celestia-app/blob/v1.0.0/x/qgb/abci.go
https://github.com/celestiaorg/celestia-app/blob/v1.0.0/x/qgb/types/genesis.go
https://github.com/celestiaorg/celestia-app/blob/2335d2b7d8d9463abc85f79b430926380dd41001/x/qgb/abci.go#L48
https://github.com/celestiaorg/celestia-app/blob/2335d2b7d8d9463abc85f79b430926380dd41001/x/qgb/keeper/keeper_data_commitment.go#L20
https://github.com/celestiaorg/celestia-app/blob/2335d2b7d8d9463abc85f79b430926380dd41001/x/qgb/types/genesis.go#L70
https://github.com/celestiaorg/celestia-app/blob/2335d2b7d8d9463abc85f79b430926380dd41001/x/qgb/types/genesis.go#L63
https://github.com/celestiaorg/celestia-app/issues/2766

© 2023 Informal Systems Celestia: Q4 2023 QGB

Findings 16

•
•

1.
2.

No trusting period or attestation expiry time check in Ethereum

Title No trusting period or attestation expiry time check in Ethereum

Project Celestia: Q4 2023 QGB

Type PROTOCOL IMPLEMENTATION

Severity 0 INFORMATIONAL

Impact 3 HIGH

Exploitability 04 UNKNOWN

Issue https://github.com/celestiaorg/blobstream-contracts/issues/243

Status

Involved artifacts
x/qgb/abci.go
QuantumGravityBridge.sol

Description
The EndBlocker in the QGB module has a function to remove old attestations. Attestations are considered expired if
they are older than the AttestationExpiryTime, which is currently set to the consensus unbonding period (3 weeks) -
trusted period.
However, the Solidity contract doesn't verify the attestation's expiry time, nor does the GQB module keep track of
when the attestation was last processed. As a result, the contract can't determine if the attestation has expired
since the last processing, and it won't be aware of any pruning that occurred in the QGB module.

The Tendermint security model establishes a trusting period to ensure that validators with over 2/3 of the voting
power, who signed the block, are behaving correctly during this period. In simple terms, once the trusting period is
over, we must assume that validators could act arbitrarily.

The Solidity contract doesn't check this trusting period, and it doesn't record the last time the checkpoint was
updated. Consequently, the contract can't confirm if the trusting period has passed since the last update. Even
though the QGB design updates the validator set as soon as a validator starts unbonding, issues might arise if the
attestation containing this update isn't accepted on the QGB Smart Contract.

Problem Scenarios
If no attestation processing (including valset updates and data commitments) occurs for a period longer than the
attestation expiry time, it can be attributed to the following reasons:

Validators may not be signing.
It's possible that a relayer is unable to transfer the ValSetUpdate on Ethereum. This could be due to factors
such as high transaction fees, lost connections, and so on.

https://github.com/celestiaorg/blobstream-contracts/issues/243
https://github.com/celestiaorg/celestia-app/blob/v1.0.0/x/qgb/abci.go
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol
https://github.com/celestiaorg/celestia-app/blob/v1.0.0/x/qgb/abci.go#L25

© 2023 Informal Systems Celestia: Q4 2023 QGB

Findings 17

3.

•
•

There might not be active or honest relayers or orchestrators/validators available to reach the necessary
voting power threshold.

As a result, the current checkpoint in the Solidity contract may become disconnected from the current status of
bonded and unbonding validators on the Cosmos side.
It's essential to understand that the Solidity smart contract is:

under the complete control of the validators within the checkpoint and
expecting the nonce, next to be processed and is unaware of the pruning happened on the QGB module,
which deleted nonces.

Recommendation
Address the issue with implementing a check for the age of the current checkpoint and time passed from the latest
attestation processed. Alternatively, the design choice should be made explicit in the documentation.

Remediation Plan
Functioning as Designed: The team has communicated that this discovery holds true, but in the present phase, the
Quantum Gravity Bridge does not emphasis liveness.
The intention is to shift the focus towards resolving liveness issues in the next iteration of QGB development, at
which point this particular finding will be addressed on a protocol level.

© 2023 Informal Systems Celestia: Q4 2023 QGB

Findings 18

•
•
•

•

•

Redundant EthAdress in ValsetConfirm

Title Redundant EthAdress in ValsetConfirm

Project Celestia: Q4 2023 QGB

Type IMPLEMENTATION

Severity 1 LOW

Impact 1 LOW

Exploitability 1 LOW

Issue https://github.com/celestiaorg/orchestrator-relayer/issues/559

Status

Involved artifacts
types/valset_confirm.go
orchestrator/broadcaster.go
relayer/relayer.go

Description
During the analysis of update validator set flow, it was noticed that EthAddress was stored two times for one entry
when:

when orchestrator is placing the ValsetConfirm for attestation in the qgbDHT store

when relayer is placing the ValsetConfirms in the SignatureStore

https://github.com/celestiaorg/orchestrator-relayer/issues/559
https://github.com/celestiaorg/orchestrator-relayer/blob/main/types/valset_confirm.go
https://github.com/celestiaorg/orchestrator-relayer/blob/main/orchestrator/broadcaster.go
https://github.com/celestiaorg/orchestrator-relayer/blob/main/relayer/relayer.go
https://github.com/celestiaorg/orchestrator-relayer/blob/bb0bc4214a8a236bba408f573531ab7d2a6ffcd5/orchestrator/broadcaster.go#L23
https://github.com/celestiaorg/orchestrator-relayer/blob/bb0bc4214a8a236bba408f573531ab7d2a6ffcd5/relayer/relayer.go#L304-L327

© 2023 Informal Systems Celestia: Q4 2023 QGB

Findings 19

Problem Scenarios
The suggestions mentioned earlier can help save memory if the EthAddress field is not utilized in

ValsetConfirm .

Recommendation
We suggest simplifying the stored values if possible and reconstructing the ValsetConfirm s if needed, upon
reading the values from the store. In our analysis throughout this project, we did not identify any instances where
the ValsetConfirm 's EthAddress field was used.
However, it's important to note that a detailed audit of the relayer and orchestrator code has not been conducted,
so we cannot definitively assert this to be the case.

Remediation Plan
Acknowledge/Reported: The team agreed that this is a valid issue and that it should be reported to the Celestia
GitHub repository. The team has already planned to remove ValsetConfirm from the orchestrator and relayer
implementation entirely.

© 2023 Informal Systems Celestia: Q4 2023 QGB

Findings 20

•
•
•
•

1.
2.

3.
a.
b.
c.

Minor code improvements in qgb contracts

Title Minor code improvements in qgb contracts

Project Celestia: Q4 2023 QGB

Type IMPLEMENTATION

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Issue https://github.com/celestiaorg/blobstream-contracts/issues/244

Status

Involved artifacts
blobstream-contracts/src/QuantumGravityBridge.sol
blobstream-contracts/src/lib/verifier/DAVerifier.sol
blobstream-contracts/src/lib/tree/binary/BinaryMerkleTree.sol
blobstream-contracts/src/lib/tree/namespace/NamespaceMerkleTree.sol

Description
The minor code improvements listed within this finding do not pose a security threat nor do they introduce an
issue. The suggestions are shared to improve the code readability, keep consistency, optimize, and improve
logging:

Doubled the word “root“ within the comment.
A comment that validators that did not signed the attestation will have nil value in sigs here should be
added to improve readability of code, because looking at this part of the code it can be only assumed that all
the validators have to sign the data. There is a similar comment in checkValidatorSignatures.
Wrong comment placements (should be after the following if blocks):

comment 1
comment 2
comment 3

Problem Scenarios
Findings listed above could not introduce any issues, they are suggestions for code improvements.

Recommendation
As described above.

https://github.com/celestiaorg/blobstream-contracts/issues/244
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/verifier/DAVerifier.sol
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/tree/binary/BinaryMerkleTree.sol
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/tree/namespace/NamespaceMerkleTree.sol
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L297
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L259-L262
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/QuantumGravityBridge.sol#L205
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/verifier/DAVerifier.sol#L180
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/tree/binary/BinaryMerkleTree.sol#L72-L73
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/tree/namespace/NamespaceMerkleTree.sol#L104-L105

© 2023 Informal Systems Celestia: Q4 2023 QGB

Findings 21

Remediation Plan
Acknowledged/Reported: The Celestia Team agreed that this finding is valid and they will change the comments
as described above, since the team pays special attention to the documentation and code inline comments.

© 2023 Informal Systems Celestia: Q4 2023 QGB

Findings 22

•

Unnecessary code

Title Unnecessary code

Project Celestia: Q4 2023 QGB

Type IMPLEMENTATION

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Issue https://github.com/celestiaorg/celestia-app/issues/2765

Status

Involved artifacts
/x/qgb/abci.go

Description
In pruneAttestations function the whole earliest attestation is taken out of the store here using

GetEarliestAvailableAttestationNonce . This is done just to get the earliest nonce to use for
newEarliestAvailableNonce in the for loop and for updating state and logging here and here. It would be sufficient
to get the earliest nonce directly by using GetEarliestAvailableAttestationNonce .

Problem Scenarios
Unnecessary access to the storage.

Recommendation
Just use the functions CheckEarliestAvailableAttestationNonce and

GetEarliestAvailableAttestationNonce for getting earliest nonce.

Remediation Plan
Acknowledged/Reported: The Celestia Team agreed that this finding is valid and they will remove unnecessary
parts of the code.

https://github.com/celestiaorg/celestia-app/issues/2765
https://github.com/celestiaorg/celestia-app/blob/2335d2b7d8d9463abc85f79b430926380dd41001/x/qgb/abci.go
https://github.com/celestiaorg/celestia-app/blob/d8d91e51791e80db92b89f0b54e5d84b0bd1c20a/x/qgb/abci.go#L145-L157
https://github.com/celestiaorg/celestia-app/blob/2335d2b7d8d9463abc85f79b430926380dd41001/x/qgb/abci.go#L161
https://github.com/celestiaorg/celestia-app/blob/2335d2b7d8d9463abc85f79b430926380dd41001/x/qgb/abci.go#L183
https://github.com/celestiaorg/celestia-app/blob/2335d2b7d8d9463abc85f79b430926380dd41001/x/qgb/abci.go#L189

© 2023 Informal Systems Celestia: Q4 2023 QGB

Findings 23

•

Code simplification

Title Code simplification

Project Celestia: Q4 2023 QGB

Type IMPLEMENTATION

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Issue https://github.com/celestiaorg/blobstream-contracts/issues/242

Status

Involved artifacts
blobstream-contracts/src/lib/tree/namespace/TreeHasher.sol

Description
NMT assumes that the leafs are ordered by namespace. This assumption is not used here as it is used in the rest of
the code.

Problem Scenarios
Findings listed above could not introduce any issues, they are suggestions for code improvements.

Recommendation
Calculated minimum namespace is always equal to the left minimum namespace so it could be calculated as
follows:
Namespace memory min = l.min

This is how it is done in the nmt library that is used in Celestia:
minNs := leftMinNs

Remediation Plan
Acknowledged/Reported: The Celestia Team agreed that this finding is valid and they will simplify the code.

https://github.com/celestiaorg/blobstream-contracts/issues/242
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/tree/namespace/TreeHasher.sol
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/tree/namespace/TreeHasher.sol#L45
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/tree/namespace/TreeHasher.sol#L47-L53
https://github.com/celestiaorg/nmt/blob/21fccffa75bc84f169dd92b472d7dd5119127950/hasher.go#L277

© 2023 Informal Systems Celestia: Q4 2023 QGB

Findings 24

•

Difference between two nmt libraries

Title Difference between two nmt libraries

Project Celestia: Q4 2023 QGB

Type IMPLEMENTATION

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Issue https://github.com/celestiaorg/blobstream-contracts/issues/241

Status

Involved artifacts
blobstream-contracts/src/lib/tree/namespace/TreeHasher.sol

Description
This calculation of min and max namespace of the node within nmt does not correspond to the calculation in the
nmt library. It actually functions the same under the assumption that ignoreMaxNs in the nmt library is set to
true which is by default set to true in the NMT go-lang library.

Problem Scenarios
Finding listed above does not introduce any issues. It is a suggestion for preventing future issues.

Recommendation
-

Remediation Plan
Acknowledged/Reported: The Celestia Team acknowledged the differences but states that the parameter will stay
true on Celestia side. They will think about potential Celestia forks and potential changes to this parameter and
their effect.

https://github.com/celestiaorg/blobstream-contracts/issues/241
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/tree/namespace/TreeHasher.sol
https://github.com/celestiaorg/blobstream-contracts/blob/cf301adfbfdae138526199fab805822400dcfd5d/src/lib/tree/namespace/TreeHasher.sol#L45-L53
https://github.com/celestiaorg/nmt/blob/21fccffa75bc84f169dd92b472d7dd5119127950/hasher.go#L274-L281

© 2023 Informal Systems Celestia: Q4 2023 QGB

Appendix: Vulnerability Classification 25

•

•

Appendix: Vulnerability Classification
For classifying vulnerabilities identified in the findings of this report, we employ the simplified version of Common
Vulnerability Scoring System (CVSS) v3.1, which is an industry standard vulnerability metric. For each identified
vulnerability we assess the scores from the Base Metric Group, the Impact score, and the Exploitability score.
The Exploitability score reflects the ease and technical means by which the vulnerability can be exploited. That is, it
represents characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
The Impact score reflects the direct consequence of a successful exploit, and represents the consequence to
the thing that suffers the impact, which we refer to formally as the impacted component. In order to ease score
understanding, we employ CVSS Qualitative Severity Rating Scale, and abstract numerical scores into the textual
representation; we construct the final Severity score based on the combination of the Impact and Exploitability sub-
scores.

As blockchains are a fast evolving field, we evaluate the scores not only for the present state of the system, but also
for the state that deems achievable within 1 year of projected system evolution. E.g., if at present the system
interacts with 1-2 other blockchains, but plans to expand interaction to 10-20 within the next year, we evaluate the
impact, exploitability, and severity scores wrt. the latter state, in order to give the system designers better
understanding of the vulnerabilities that need to be addressed in the near future.

Impact Score
The Impact score captures the effects of a successfully exploited vulnerability on the component that suffers the
worst outcome that is most directly and predictably associated with the attack.

Impact Score Examples

 High Halting of the chain; loss, locking, or unauthorized withdrawal of funds of many users;
arbitrary transaction execution; forging of user messages / circumvention of
authorization logic

 Medium Temporary denial of service / substantial unexpected delays in processing user requests
(e.g. many hours/days); loss, locking, or unauthorized withdrawal of funds of a single
user / few users; failures during transaction execution (e.g. out of gas errors); substantial
increase in node computational requirements (e.g. 10x)

 Low Transient unexpected delays in processing user requests (e.g. minutes/a few hours);
Medium increase in node computational requirements (e.g. 2x); any kind of problem that
affects end users, but can be repaired by manual intervention (e.g. a special transaction)

🔵 None Small increase in node computational requirements (e.g. 20%); code inefficiencies; bad
code practices; lack/incompleteness of tests; lack/incompleteness of documentation

Exploitability Score
The Exploitability score reflects the ease and technical means by which the vulnerability can be exploited; it
represents the characteristics of the vulnerable component. In the below table we list, for each category, examples
of actions by actors that are enough to trigger the exploit. In the examples below:

Actors can be any entity that interacts with the system: other blockchains, system users, validators, relayers,
but also uncontrollable phenomena (e.g. network delays or partitions).
Actions can be

https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/specification-document#2-3-Impact-Metrics
https://www.first.org/cvss/specification-document#2-1-Exploitability-Metrics
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale

© 2023 Informal Systems Celestia: Q4 2023 QGB

Appendix: Vulnerability Classification 26

•

•

•

legitimate, e.g. submission of a transaction that follows protocol rules by a user; delegation/
redelegation/bonding/unbonding; validator downtime; validator voting on a single, but alternative
block; delays in relaying certain messages, or speeding up relaying other messages;
illegitimate, e.g. submission of a specially crafted transaction (not following the protocol, or e.g. with
large/incorrect values); voting on two different alternative blocks; alteration of relayed messages.

We employ also a qualitative measure representing the amount of certain class of power (e.g. possessed
tokens, validator power, relayed messages): small for < 3%; medium for 3-10%; large for 10-33%, all for
>33%. We further quantify this qualitative measure as relative to the largest of the system components. (e.g.
when two blockchains are interacting, one with a large capitalization, and another with a small
capitalization, we employ small wrt. the number of tokens held, if it is small wrt. the large blockchain, even if
it is large wrt. the small blockchain)

Exploitability Score Examples

 High illegitimate actions taken by a small group of actors; possibly coordinated with
legitimate actions taken by a medium group of actors

 Medium illegitimate actions taken by a medium group of actors; possibly coordinated with
legitimate actions taken by a large group of actors

 Low illegitimate actions taken by a large group of actors; possibly coordinated with
legitimate actions taken by all actors

🔵 None illegitimate actions taken in a coordinated fashion by all actors

Severity Score
The severity score combines the above two sub-scores into a single value, and roughly represents the probability of
the system suffering a severe impact with time; thus it also represents the measure of the urgency or order in which
vulnerabilities need to be addressed. We assess the severity according to the combination scheme represented
graphically below.

As can be seen from the image above, only a combination of high impact with high exploitability results in a Critical
severity score; such vulnerabilities need to be addressed ASAP. Accordingly, High severity score receive
vulnerabilities with the combination of high impact and medium exploitability, or medium impact, but high
exploitability.

Severity Score Examples

Severity Score Examples

🔴 Critical Halting of chain via a submission of a specially crafted transaction

© 2023 Informal Systems Celestia: Q4 2023 QGB

Appendix: Vulnerability Classification 27

Severity Score Examples

 High Permanent loss of user funds via a combination of submitting a specially crafted
transaction with delaying of certain messages by a large portion of relayers

 Medium Substantial unexpected delays in processing user requests via a combination of
delaying of certain messages by a large group of relayers with coordinated withdrawal
of funds by a large group of users

 Low 2x increase in node computational requirements via coordinated withdrawal of all user
tokens

🔵Informational Code inefficiencies; bad code practices; lack/incompleteness of tests; lack/
incompleteness of documentation; any exploit for which a coordinated illegitimate
action of all actors is necessary

	Audit overview
	The Project
	Conclusions
	Further Increasing Confidence
	Disclaimer

	Audit Dashboard
	Severity Summary
	Resolution Status Summary

	System overview
	State machine
	QGB Orchestrator and Relayer (Not part of the audit)
	QGB Smart Contract

	Threat inspection
	Threat: Valset power change influence on consensus over the attestation
	Threat: Disrupting next nonce processing on QGB Smart contract due to attestation pruning
	Threat: System congestion or halt due to invalid or non sequential nonce
	Threat: Invalid new validator set update on QGB contract halts QGB bridge
	Threat: Misalignment between verification and data submitting to QGB

	Findings
	Minor code improvements in x/qgb module
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Remediation Plan

	No trusting period or attestation expiry time check in Ethereum
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Remediation Plan

	Redundant EthAdress in ValsetConfirm
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Remediation Plan

	Minor code improvements in qgb contracts
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Remediation Plan

	Unnecessary code
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Remediation Plan

	Code simplification
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Remediation Plan

	Difference between two nmt libraries
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Remediation Plan

	Appendix: Vulnerability Classification
	Impact Score
	Exploitability Score
	Severity Score

